

The State of New Hampshire
Department of Environmental Services

Robert R. Scott, Commissioner

Table of Contents

NHDES is providing a Table of Contents for the 145 Temple Street, LLC – Greenridge LLC temporary permit application. Please note that updated information has been added to the end of this document.

Item	Page
ARD-1 Form General Facility Information(received 3/14/23)	2 – 7
ARD-8 Form Information Required for Permits for Stationary HMA plants (received 3/14/23)	8-11
Cover letter and Table of Contents – Engineering Technologies Group (received 1/30/23)	12 – 13
ARD-1 Form General Facility Information – (original 1/30/23)	14 – 20
ARD-8 Form Information Required for Permits for Stationary HMA plants (original 1/30/23)	21 – 25
Calculations – Engineering Technologies Group (received 1/30/23)	26 – 30
Relevant Section of AP-42 – Engineering Technologies Group (received 1/30/23)	31 – 52
Monitoring Plan for Air Pollution Control Equipment – Drum Mix Plant	53 – 54
Site Drawings	55 – 57
Equipment Description	58 – 92
Site Drawing	93
Calculations – Engineering Technologies Group (received 4/21/23)	94 – 107

Received March 14, 2023 ARD Permitting & Environmental Health Bureau

ARD-1 FORM

GENERAL FACILITY INFORMATION

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

This ARD-1 General Facility Information form shall be submitted with every application for an air permit,

except for a Permit by Notification (PBN).

1. TYPE OF FACILITY ¹	a start the start	- Size all						
Title V Non-Title	V Unkn	iown						
2. TYPE OF PERMIT ²								
Temporary Permit (Const	ruction) [State Permit to Op	erate Ti	tle V Operating Permit				
General State Permit	[Limitation on Pote	ntial to Emit (Env-A 625)				
3. TYPE OF APPLICATION ³								
New R	enewal (Modification	Administra	ative Amendment				
4. FACILITY INFORMATION								
FACILITY NAME ⁴ : 145 Temple Street, LLC – Greenridge LLC AFS NUMBER ⁵ :								
PHYSICAL ADDRESS: 145 Terr	ple Street							
TOWN/CITY: Nashua STATE: NH ZIP: 03060								
GOVERNMENT FACILITY COD	E ⁶ : 0							
5. BUSINESS INFORMATION	AS REGISTERED WIT	H SECRETARY OF STA	TE (If applicable)	and the second second second second				
REGISTERED NAME: 145 Tem	ple Street, LLC - Gre	enridge LLC						
REGISTERED ADDRESS: 145 T	emple Street							
TOWN/CITY: Nashua			STATE: NH	ZIP: 03060				
6. PARENT CORPORATION IN	IFORMATION (If app	olicable)						
PARENT CORPORATION NAM	IE:							
MAILING ADDRESS:								
TOWN/CITY: Nashua			STATE: NH	ZIP: 03060				
7. MAJOR ACTIVITY OR PROU List all activities performed		provide SIC and/or NA	NICS Code(s).					
SIC Code	Activity Descri	ption N	AICS Code	Activity Description				
2951	Hot Mix Asphalt (H Production	IMA)						
	×							

At a minimum, please provide contact information below for Responsible Official, Prepared Application, Technical, and Invoicing contacts. Make as many copies of this page as necessary in order to include all contacts that you wish to associate with the application. Multiple people can be assigned one role; multiple roles can be assigned to one person.

8. RESPONSIBLE OFFICIAL INFORMATION									
RESPONSIBLE OFFICIAL NAME ⁷ : Richard DeFelice									
TITLE: President									
COMPANY NAME: 145 Temple Street, LLC – Greenridge LLC									
MAILING ADDRESS: 145 Temple Street									
TOWN/CITY: Nashua STATE: NH ZIP: 03060									
EMAIL ADDRESS: Rdefel6875@gmail.com									
TELEPHONE NUMBER: (617) 459-9775		EXTENSIO	DN:						
FAX NUMBER:		- 36 - e							
ROLES: 🔀 Responsible Official	Technical	Invoicing		Legal	Emissions				
Prepared Application	Corporate	Owner/Op	erator	Consultant					
9. ADDITIONAL CONTACT INFORMATIO	DN								
CONTACT NAME: Christine M. Gibbons									
TITLE: Manager of Environmental Servi	ces								
COMPANY NAME: ETG/Engineering Tec	chnologies Group, I	nc.			a service and the service of the ser				
MAILING ADDRESS: 71 South Street									
TOWN/CITY: Hopkinton			STATE:	MA	ZIP: 01748				
EMAIL ADDRESS: Chris@etg-engineerin	ig.com								
TELEPHONE NUMBER: (508) 250-6676	(cell)		EXTENS	ION:					
FAX NUMBER: N/A				1.4	8				
ROLES: Responsible Official	Technical	Invoicing	Legal 🛛 Emissions						
Prepared Application	Corporate	Owner/Op	erator	Consultant					
10. ADDITIONAL CONTACT INFORMAT	ION								
CONTACT NAME:									
TITLE:									
COMPANY NAME:									
MAILING ADDRESS:									
TOWN/CITY: . STATE: ZIP:									
EMAIL ADDRESS:									
TELEPHONE NUMBER: EXTENSION:									
FAX NUMBER:				1					
ROLES: Responsible Official	Technical	Invoicing		Legal					
	airpermitting@des.nh.	gov or phone (6	503) 271-13	370					

Prepared Application	Corporate	Owner/Op	erator	Consultant	
11. ADDITIONAL CONTACT INFORMAT	ΓΙΟΝ		and and a	and any rest of the second	
CONTACT NAME:					2 - 12 M
TITLE:					
COMPANY NAME:					
MAILING ADDRESS:					
TOWN/CITY:			STATE:		ZIP:
EMAIL ADDRESS:					
TELEPHONE NUMBER:			EXTENS	ION:	
FAX NUMBER:					
ROLES: Responsible Official	Technical	Invoicing		Legal	Emissions
Prepared Application	Corporate	Owner/Op	erator	Consultant	
12. ADDITIONAL CONTACT INFORMATION	TION			and the second	
CONTACT NAME:					
TITLE:				1	
COMPANY NAME:					
MAILING ADDRESS:	1980 A Stores				
TOWN/CITY:			STATE:	profil agences	ZIP:
EMAIL ADDRESS:					
TELEPHONE NUMBER:			EXTENS	ON:	
FAX NUMBER:					
ROLES: Responsible Official	Technical	Invoicing		Legal	Emissions
Prepared Application	Corporate	Owner/Op	erator	Consultant	
13. ADDITIONAL CONTACT INFORMAT	TION	The second second	alder a		
CONTACT NAME:		- (-). (
TITLE:		1.1.1			
COMPANY NAME:			-		
MAILING ADDRESS:					
TOWN/CITY:			STATE:	Carles and and	ZIP:
EMAIL ADDRESS:	10		9 (1904) 1	1.12	
TELEPHONE NUMBER:			EXTENS	ION:	
FAX NUMBER:					
ROLES: Responsible Official Prepared Application	Technical	 Invoicing Owner/Op 	erator	Legal	Emissions

14. FACILITY-WIDE EMISSIONS (Drum Mix Plant (EU1) and Hot Oil Heater (EU2))							
POLLUTANT ⁸	POTENTIAL TPY (UNRESTRICTED/UNCONTROLLED)	ACTUAL TPY (PROPOSED POTENTIAL RESTRICTED)					
Nitrogen oxides (NOx)	73.40	14.07					
Carbon Monoxide (CO)	171.48	32.69					
Particulate Matter (PM10)	30.32	5.78					
Volatile Organic Compounds (VOC), Hazardous Air Pollutants (HAPs)	42.09, 11.8	8.01, 2.24					
Asphalt Fumes	15.77	3.0					

For ALL APPLICATIONS except Administrative Amendments, General State Permits, and Limitations on Potential to Emit:

Please include calculations used in determining emissions and include any non-permitted emission devices.

15. FO	R NEW APPLICATIONS OR IF CHANGES ARE MADE – PLEASE INCLUDE:
\boxtimes	A copy of the USGS map, property identified, which shows the facility's location.
	A site plan to scale of the facility showing:
\boxtimes	 The locations of all emission points;
	2. The dimensions of all buildings and tiers, including roof heights; and
	3. The facility's property boundary and any security features (fences, walls, etc.).

		PPLICATIONS – PLEASE INCLUDE: ⁹
Included in Application	Previously Submitted and Unchanged	
		A. Identification and details of limitations on source operation, or any work practice standards affecting emissions for all regulated pollutants.
		B. Information required by any other applicable requirement of the Act, including, but not limited to, information related to stack height limitations developed pursuant to section 123 of the federal Clean Air Act (42 U.S.C. §7401).
		C. A citation and description of state and federal air pollution control regulations and requirements applicable to each emission unit.
		D. A narrative description or reference to test methods used or required for initial compliance demonstration with each applicable regulation.
		E. Any additional information required to be provided pursuant to the Act or to determine applicability of any other requirements of the Act.
		F. A written explanation of proposed exemptions.
		G. Any information required to be provided to the director pursuant to the Act in order to evaluate alternative operating scenarios, or to define permit terms and conditions.
	-	H. A list of all equipment and devices located at the source classified as insignificant

irpermitting@des.nh.gov or phone (603) 271-1370 PO Box 95, Concord, NH 03302-0095

www.des.nh.gov

16 CONITIN	activities pursuant to Env-A 600, including appropriate sizing data for equipment and devices which are exempt from permitting requirements based on their process ratings, fuel consumption rate, or both.
Included in Application	ED - FOR TITLE V PERMIT APPLICATIONS - PLEASE INCLUDE:~
	 Compliance plan information containing: A narrative description of the compliance status of the source with respect to all applicable requirements; A narrative statement of methods used to determine continued compliance, including a description of monitoring, recordkeeping and reporting requirements and test methods; A statement indicating the source's compliance status with an applicable enhanced monitoring and compliance certification requirements specified in Env-A 800; A statement that the source shall continue to comply with all applicable requirements; A statement that the source shall meet all applicable requirements that will become effective during the permit term on a timely basis; A compliance schedule stating all applicable requirements of and be at least as stringent as that contained in any judicial consent decree or administrative order to which the source is subject; Such compliance schedule shall incorporate the requirements and schedules:
	J. For sources subject to Title IV of the Act, the compliance plan requirements, specified in (I.) above, shall apply to and be included in the acid rain portion of a compliance plan for an affected source, except as specifically superseded by regulations promulgated under Title IV of the Act with regard to the schedule and method(s) the source will use to achieve compliance with the acid rain emission limitations.
<i>.</i> ,	K. In addition to the forms required pursuant to Env-A 1700, sources subject to Title IV of the Act shall use the nationally standardized forms for the acid rain portions of the Title V operating permit application, pursuant to 40 CFR 72.30.

This section of the form must be completed and signed by the Responsible Official only.

17. CERTIFICATIONS I certify that the applicant, or the owner or operator the applicant represents, has right, title, or interest in all of the property that is proposed for development or use because the owner or operator owns, leases, or has binding options to purchase all of the property proposed for development or use. I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the \boxtimes information submitted in this document and all of its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment. **18. RESPONSIBLE OFFICIAL INFORMATION AND SIGNATURE RESPONSIBLE OFFICIAL NAME: Richard DeFelice TITLE: President** Kindand J. D. Felici 3/13/23 **RESPONSIBLE OFFICIAL'S SIGNATURE** DATE:

NHDES

ARD-8 FORM INFORMATION REQUIRED FOR PERMITS FOR STATIONARY HOT MIX ASPHALT PLANTS

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I. EQUIPMENT INFORMATION – Complete a separate form for each hot mix asphalt plant.

Hot Mix Asphalt Plant Description: Drum Mix Plant									
Date Construction Commenced ¹ Estimated 2023 Start-Up Date ¹ :									
Equipment Manufacturer: CMI Roadbuilding Inc									
Magnum 300 Stationary 300 Recycled Asphalt Product (RAP) –									
Model Number: TPH Counterflow Drum Mix Serial Number: up to 35%									
Plant Type: Batch Z Drum									
Maximum Plant Capacity (tons HMA/hr)300									
Dryer Burner Heat Input Rating (MMBtu/hr): 82.5									
Hot Oil Heater Burner Input Rating (MMBtu/hr): 1.84									

II. OPERATIONAL INFORMATION

A. Fuel Information List each fuel utilized by each device, as applicable:

Device	Fuel Type	Heat Value ²	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
Dryer Burner (Example)	ULSD (Example)	137,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	2.74 (Example)	MMBtu/hr (Example)
Dryer	natural gas	1020	BTU/scf	nil	80,882	cuft/hour	82.5	MMBTU/hr
Burner	ULSD	140,000	BTU/gal	0.0015%	589	gal/hour	82.5	MMBTU/hr
Hot Oil	natural gas	1020	BTU/scf	nil	1840	cuft/hour	1.84	MMBTU/hr
Heater	ULSD	140,000	BTU/gal	0.0015%	13.14	gal/hour	1.84	MMBTU/hr

B. Operating Hours and/or Production Rates

Hours per day: <u>13</u> Days per year: 365 Tons per day: <u>3900</u> Tons per year: <u>500,000</u>

C. Stack Information

Is device equipped with multiple stacks? Are multiple units connected to this stack? Yes ⋈ No (If yes, provide data for each stack)
 Yes ⋈ No

Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ³	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted ⁴ (Yes-Type/No)	Exhaust Orientation ⁵	Stack Monitor (Yes/No) and Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 °F (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	Yes – CEM for PM (Example)
# 1	45 ft	3.28 ft	265	57,348	No	vertical	No
# 2	10 ft	0.833 ft	400		No	vertical	No

(If yes, identify other devices on this stack:)

III. UNCONTROLLED AIR POLLUTANT EMISSIONS (list emissions that result from the burning of each fuel utilized by the hot mix asphalt plant <u>prior</u> to add on controls – *use additional sheets if necessary*)

Pollutant	Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
NOx	0.026, 0.055	lbs/ton	AP-42	TBD	7.8, 16.5	TBD	34.16, 72.27
СО	0.13, 0.13	lbs/ton	AP-42	TBD	39.0, 39.0	TBD	170.8, 170.8
PM10	0.023, 0.023	lbs/ton	AP-42	TBD	6.9, 6.9	TBD	30.22, 30.22
VOC, HAPs	0.032 0.0055, 0.009	lbs/ton lbs/ton	AP-42	TBD	9.6 1.6, 2.7	TBD	42.05 7.21, 11.77

Provide an example of the calculations used to determine uncontrolled air pollutant emissions, if applicable:

Note in Table III above, the first emission factor and Potential (lb/hr) and Potential (tpy) is natural gas burning. The second numbers are from ULSD burning.

Asphalt fumes - 0.012 lbs/ton * 2,628,000 TPY (unrestricted) / 2000 lbs/ton = 15.77 TPY

Sulfur Dioxide (SO2) (natural gas) - 0.0034 lbs/ton *2,628,000 TPY / 2000 lbs/ton -= 4.47 TPY

Sulfur Dioxide (SO2) (ULSD) - 0.011 lbs/ton *2,628,000 TPY / 2000 lbs/ton -= 14.45 TPY

Based on unrestricted operation of 365 days/year, 24 hours/day (totals 2,628,000 TPY production)

IV. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPS) – ENV-A 1400

Do any of the devices burn a non-exempt fuel⁷ and emit any of the RTAPs listed in Env-A 1400? \Box Yes \bigotimes No

If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

v. □

POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the devices utilize more than one type of pollution control equipment, provide data for each type of equipment.

A. Type of Equipment

cyclone or knock-out box

baghouse

_____ ____ wet scrubber

baffled settling chamber

other (specify):

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

B. Controlled Air Pollution Emissions (list emissions that result from the burning of each fuel utilized by the hit mix asphalt plant <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
NOx	0.026, 0.055	Lbs/ton	AP-42	TBD	7.8, 16.5	TBD	6.50 <i>,</i> 13.75
СО	0.13	Lbs/ton	AP-42	TBD	39.0 39.0	TBD	32.5 32.5
PM10	0.023	Lbs/ton	AP-42	TBD	6.9 6.9	TBD	5.75 5.75
VOC, HAPs Asphalt Fumes	0.032 0.0055, 0.009 0.012	Lbs/ton (all)	AP-42 NH DES	TBD	9.6, 9.6 1.6, 2.7 3.6, 3.6	TBD	8.0, 8.0 1.37, 2.24 3.0, 3.0

Provide an example of the calculations used to determine controlled air pollutant emissions, if applicable:

Potential emissions are based on a maximum of 500,000 TPY of asphalt production.

Adjusted in-stack concentration = in-stack conc / 700

X = 3.6 lbs/hour of asphalt fumes Y = x/7.94 = 3.6/7.94 = 0.4534Z = y x 10^6 = 0.4534 x 10^6 = 453,400 A = 57,348 ACFM B= 57348/2119 = 27.064 In-stack = 453,400 / 27.064 = 16,752.9 / 700 = Adjusted in-stack concentration **23.9 ug/m3** < 25 ug/m3

ARD-8 FORM INFORMATION INSTRUCTIONS

1 If exact date is unknown for Date Construction Commenced or Start-Up Date, you may use 01/01/year. If dates are not available at the time of application, please provide to the department upon installation. Date Construction Commenced refers to the date the owner or operator has entered into a contractual obligation to undertake and complete a continuous program of construction, reconstruction, or modification of the emission unit. Start-Up Date refers to the date the emission unit is first operated at the facility.

2	<u>Liquid Fuels</u> Ultra-Low Sulfur Diesel (ULSD) #2 Fuel Oil Kerosene Other – Liquid	<u>Heat Value</u> 137,000 Btu/gal 140,000 Btu/gal 135,000 Btu/gal Obtain from Fuel Supplier
	Gaseous Fuels	<u>Heat Value</u>
	Natural Gas	1,020 Btu/cubic foot
	Propane (LPG)	94,000 Btu/gal
	Gasoline	130,000 Btu/gal
	Other (Gaseous)	Obtain from Fuel Supplier

- 3 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 4 Flapper valves and other devices which do not restrict the vertical exhaust flow while the device is operating are not considered obstructions or restrictions.
- 5 Examples of Exhaust Orientation: Vertical, Horizontal, Downward <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 6 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate
- 7 Fuels exempt from Env-A 1400 include:
 - Virgin Petroleum Products (#2, #4, or #6 fuel oil, gasoline, kerosene, jet fuel, etc.)
 - Coal
 - Natural Gas
 - Propane
 - Biofuels as defined in Env-A 1401.03(b)
 - Biomass as defined in Env-A 1401.03(c)

January 27, 2023

Received January 30, 2023 ARD Permitting & Environmental Health Bureau

NH Department of Environmental Services Air Resources Division 29 Hazen Drive P.O. Box 95 Concord, NH 03302

Attn.: Ms. Barbara Dorfschmidt, Environmental Engineer

Re.: Newport Bituminous LLC 147 Temple Street Nashua, NH 03060

Subj .: Temporary permit application

Dear Barbara,

Enclosed, please find two (2) copies of an air permit application (Temporary Permit) for a Proposed New Hot Mix Asphalt Drum Plant to be located at the above referenced address. We have included the required forms (ARD-1, ARD-8), calculations, a Monitoring Plan for the Drum Mix Plant, Site Drawings, Equipment Description, and other supporting documentation herein.

The facility would like the ability to produce up to 500,000 tons per year (TPY) of hot mix asphalt. They would also like the ability to use up to a maximum of 35% Recycled Asphalt Product (RAP) in the product. In addition, we are permitting the site for both natural gas and No. 2 fuel oil.

If you have any questions, please feel free to contact me on my cell at (508) 250-6676 or via email at: Chris@ETG-engineering.com.

Thank you in advance for your attention to this matter.

Sincerely, For ETG/Engineering Technologies Group, Inc.

Christine M. Gibbons Manager of Environmental Services

enclosure

3

cc w enclosure: Mr. Richard DeFelice, Newport Bituminous LLC

Table of Contents

ARD-1 FORM: GENERAL FACILITY INFORMATION

ARD-8 FORM: INFORMATION REQUIRED FOR PERMITS FOR STATIONARY HOT MIX ASPHALT PLANTS

CALCULATIONS

RELEVANT SECTIONS OF AP-42

MONITORING PLAN

SITE DRAWINGS

٩

EQUIPMENT DESCRIPTION

ARD-1 FORM GENERAL FACILITY INFORMATION

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

This ARD-1 General Facility Information form shall be submitted with every application for an air permit,

except for a Permit by Notification (PBN).

1. TYPE OF FACILITY ¹	n-Title V 🗌 Unk	nown		
2. TYPE OF PERMIT ²				
Temporary Permit (Construction)	State Permit to C	Operate] Title V Operating Permit
General State Permi	t	Limitation on Po	tential to Emit (Env-A	625)
3. TYPE OF APPLICATIO	N ³			
🖂 New	Renewal	Modification	Admir	nistrative Amendment
4. FACILITY INFORMATI	ON			
FACILITY NAME4: Newpo	ort Bituminous LLC		AFS NUMBER ⁵ :	
PHYSICAL ADDRESS: 147	7 Temple Street			
TOWN/CITY: Nashua			STATE: NH	ZIP: 03060
GOVERNMENT FACILITY	CODE ⁶ : 0			
5. BUSINESS INFORMAT	TION AS REGISTERED WI	TH SECRETARY OF ST	TATE (If applicable)	
REGISTERED NAME:				
REGISTERED ADDRESS:	i i		Ļ	
TOWN/CITY:			STATE:	ZIP:
6. PARENT CORPORATIO	ON INFORMATION (If ap	plicable)		
PARENT CORPORATION	NAME:			1
MAILING ADDRESS:				
TOWN/CITY: Nashua			STATE: NH	ZIP: 03060
	PRODUCT DESCRIPTION prmed at this facility and	provide SIC and/or N	NAICS Code(s).	
SIC Code	Activity Descr	iption	NAICS Code	Activity Description
2951	Hot Mix Asphalt (I Production	HMA)		

At a minimum, please provide contact information below for Responsible Official, Prepared Application, Technical, and Invoicing contacts. Make as many copies of this page as necessary in order to include all contacts that you wish to associate with the application. Multiple people can be assigned one role; multiple roles can be assigned to one person.

8. RESPONSIBLE OFFICIAL INFORMATION		
RESPONSIBLE OFFICIAL NAME ⁷ : Richard DeFelice	8. X	
TITLE: President		
COMPANY NAME: Newport Bituminous LLC		
MAILING ADDRESS: 147 Temple Street		1
TOWN/CITY: Nashua	STATE: NH ZIF	2: 03060
EMAIL ADDRESS: Rdefel6875@gmail.com		10
TELEPHONE NUMBER: (617) 459-9775 EXTEN	SION:	1
FAX NUMBER:		5
ROLES: Responsible Official Technical Invoicin Prepared Application Corporate Owner/		Emissions
9. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME: Christine M. Gibbons		
TITLE: Manager of Environmental Services		
COMPANY NAME: ETG/Engineering Technologies Group, Inc.		
MAILING ADDRESS: 71 South Street		
TOWN/CITY: Hopkinton	STATE: MA ZIP	: 01748
EMAIL ADDRESS: Chris@etg-engineering.com		
TELEPHONE NUMBER: (508) 250-6676 (cell)	EXTENSION:	
FAX NUMBER: N/A		
ROLES: Responsible Official Technical Invoicin Prepared Application Corporate Owner/	g 🗌 Legal 🕅 Operator 🖾 Consultant	Emissions
10. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE: ZIP	;
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicin	g [] Legal []	Emissions
airpermitting@des.nh.gov or phor	e (603) 271-1370	

PO Box 95, Concord, NH 03302-0095 www.des.nh.gov NHDES-A-02-009d

Prepared Application	Corporate	Owner/Op	erator	Consultant	
11. ADDITIONAL CONTACT INFORMAT	TION				
CONTACT NAME:					
TITLE:					
COMPANY NAME:					
MAILING ADDRESS:					
TOWN/CITY:			STATE:		ZIP:
EMAIL ADDRESS:					, v
TELEPHONE NUMBER:			EXTENS	ION:	~
FAX NUMBER:					1
ROLES: Responsible Official	Technical	Invoicing		Legal	Emissions
Prepared Application	Corporate	Owner/Op		Consultant	
12. ADDITIONAL CONTACT INFORMAT	TION	* Constraints	-later-		pierop (ministary) minist
CONTACT NAME:					/
TITLE:					
COMPANY NAME:					
MAILING ADDRESS:					
TOWN/CITY:			STATE:		ZIP:
EMAIL ADDRESS:					
TELEPHONE NUMBER:			EXTENS	ION:	•
FAX NUMBER:					
ROLES: Responsible Official	Technical	Invoicing		Legal	Emissions
Prepared Application	Corporate	Owner/Or	berator	Consultant	
13. ADDIVIONAL CONTACT INFORMA	TION				
CONTACT NAME:					
TITLE:					
COMPANY NAME:					
MAILING ADDRESS:			CTATE		710.
TOWN/CITY:			STATE:		ZIP:
EMAIL ADDRESS:					
TELEPHONE NUMBER:	<u></u>		EXTENS	SION:	
FAX NUMBER:					
ROLES: Responsible Official	Technical Corporate	Invoicing	perator] Legal [_] Consultant	Emissions

14. FACILITY-WIDE EMISSIONS (Drum Mix Plant (EU1) and Hot Oil Heater (EU2))							
POLLUTANT ⁸	POTENTIAL TPY (UNRESTRICTED/UNCONTROLLED)	ACTUAL TPY (PROPOSED POTENTIAL RESTRICTED)					
Nitrogen oxides (NOx)	73.40	14.07					
Carbon Monoxide (CO)	171.48	32.69					
Particulate Matter (PM10)	30.32	5.78					
Volatile Organic Compounds (VOC), Hazardous Air Pollutants (HAPs)	42.09, 11.8	8.01, 2.24					
Asphalt Fumes	15.77	3.0					

For ALL APPLICATIONS except Administrative Amendments, General State Permits, and Limitations on Potential to Emit:

Please include calculations used in determining emissions and include any non-permitted emission devices.

15. FO	R NEW APPLICATIONS OR IF CHANGES ARE MADE - PLEASE INCLUDE:
	A copy of the USGS map, property identified, which shows the facility's location.
	 A site plan to scale of the facility showing: 1. The locations of all emission points; 2. The dimensions of all buildings and tiers, including roof heights; and 3. The facility's property boundary and any security features (fences, walls, etc.).

16. FOR TITL	E V PERMIT A	PPLICATIONS - PLEASE INCLUDE:
Included in Application	Previously Submitted and Unchanged	
		A. Identification and details of limitations on source operation, or any work practice standards affecting emissions for all regulated pollutants.
		B. Information required by any other applicable requirement of the Act, including, but not limited to, information related to stack height limitations developed pursuant to section 123 of the federal Clean Air Act (42 U.S.C. §7401).
		C. A citation and description of state and federal air pollution control regulations and requirements applicable to each emission unit.
		D. A narrative description or reference to test methods used or required for initial compliance demonstration with each applicable regulation.
		E. Any additional information required to be provided pursuant to the Act or to determine applicability of any other requirements of the Act.
		F. A written explanation of proposed exemptions.
		G. Any information required to be provided to the director pursuant to the Act in order to evaluate alternative operating scenarios, or to define permit terms and conditions.
		H. A list of all equipment and devices located at the source classified as insignificant
		airpermitting@des.nh.gov or phone (603) 271-1370

PO Box 95, Concord, NH 03302-0095

www.des.nh.gov

NHDES-A-02-009d

8 20	activities pursuant to Env-A 600, including appropriate sizing data for equipment and
	devices which are exempt from permitting requirements based on their process ratings,
	fuel consumption rate, or both.
16. CONTINU	ED - FOR TITLE V PERMIT APPLICATIONS - PLEASE INCLUDE:10
Included in Application	
	I. Compliance plan information containing:
	 A narrative description of the compliance status of the source with respect to all applicable requirements;
	A narrative statement of methods used to determine continued compliance, including a description of monitoring, recordkeeping and reporting requirements and test methods;
	 A statement indicating the source's compliance status with an applicable enhanced monitoring and compliance certification requirements specified in Env-A 800;
	4. A statement that the source shall continue to comply with all applicable requirements;
	A statement that the source shall meet all applicable requirements that will become effective during the permit term on a timely basis;
	A compliance schedule stating all applicable requirements with which the source is not in compliance, consistent with the following:
	 The compliance schedule shall incorporate the requirements of and be at least as stringent as that contained in any judicial consent decree or administrative order to which the source is subject;
	b. Such compliance schedule shall be supplemental to, and not sanction non-compliance with, the applicable requirements on which it is based; and
	c. The compliance schedule shall include the following statements and schedules:
	 A narrative description of how the source shall achieve compliance with such requirements;
	ii. A schedule of remedial measures, including an enforceable sequence of actions with milestones leading to compliance with any applicable requirements for which the source shall be in non-compliance with at the time of permit issuance; and
	iii. A schedule for submission of certified progress reports no less frequently than every 6 months.
	7. For sources deemed in compliance with all applicable requirements, a certified statement signed by a responsible official stating:
	"The undersigned certifies that, based on information and belief formed after reasonable inquiry, the source is in compliance with all applicable regulations"; and
	8. A schedule for submission of compliance certifications during the permit term, to be submitted annually or more frequently as specified by the underlying applicable requirement.
	J. For sources subject to Title IV of the Act, the compliance plan requirements, specified in (I.) above, shall apply to and be included in the acid rain portion of a compliance plan for an affected source, except as specifically superseded by regulations promulgated under Title IV of the Act with regard to the schedule and method(s) the source will use to achieve compliance with the acid rain emission limitations.
	K. In addition to the forms required pursuant to Env-A 1700, sources subject to Title IV of the Act shall use the nationally standardized forms for the acid rain portions of the Title V operating permit application, pursuant to 40 CFR 72.30.

This section of the form must be completed and signed by the Responsible Official only.

17. CERTIFICATIONS I certify that the applicant, or the owner or operator the applicant represents, has right, title, or interest in all of the property that is proposed for development or use because the owner or operator owns, leases, or has binding options to purchase all of the property proposed for development or use. I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the \square information submitted in this document and all of its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment. **18. RESPONSIBLE OFFICIAL INFORMATION AND SIGNATURE RESPONSIBLE OFFICIAL NAME: Richard DeFelice TITLE:** President 1/24/23 DATE: **RESPONSIBLE OFFICIAL'S SIGNATURE**

ARD-1 GENERAL FACILITY INFORMATION INSTRUCTIONS

- 1 A list of Title V facilities in NH can be found to the NHDES website. Most facilities are Non-Title V. Check Unknown if you are unsure.
- Temporary Permit = New Construction at Existing or New Facility
 State Permit to Operate = Existing Non-Title V Facilities
 Title V Operating Permit = Existing Title V Facilities
 GSP = General State Permit
 Limitation on Potential to Emit = Small Facilities requesting coverage under Env-A 625
- New = New devices at facility, change in operation at Existing facility or New facility never permitted before Renewal = Renewal of any permit type Modification = Currently permitted by non-expired permit and wants to make amendment/modification to information contained in permit. This includes adding/removing devices covered by GSP.
 Administrative Amendment = changes in ownership or responsible official.
- 4 Facility Name = Trade Name or Doing Business As
- 5 AFS number is assigned by NHDES and is a 10-digit number starting with 33 (example 3300100001).
- 6 0 = Facility is not government owned
 1 = Source owned by the Federal Government
 2 = Source owned by the State
- 3 = Source owned by the County

4 = Source owned by the Municipality

5 = Source owned by the District

7 Responsible Official:

For a corporation = President, Secretary, treasurer, or vice-president in charge of a principal business function For a partnership = General partner or proprietor For a municipality = Principal executive officer or ranking elected official

- 8 For Title V sources, include facility wide emissions of filterable PM, filterable PM₁₀, filterable PM_{2.5}, condensable PM, SO₂, NO_x, CO, NMVOCs, Pb (if appropriate), HAPs, and CO₂e.
- 9 If any of the information requested in Section 16 A-H was submitted in a previous Title V Operating Permit application and has **not** changed, it can be incorporated by reference in the renewal application package. This previous information must be <u>clearly</u> referenced in the renewal application package and must <u>accurately</u> reflect current operations at the facility. If any changes have occurred at the facility or if changes are proposed in the renewal application package, new information must be provided. The information requested in Section 16 I-K must be completed based on <u>current</u> operations at the facility. Due to the time sensitive nature of this required information, incorporation by reference in the application package is **not** allowed.

ARD-8 FORM INFORMATION REQUIRED FOR PERMITS FOR STATIONARY HOT MIX ASPHALT PLANTS

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I. EQUIPMENT INFORMATION – Complete a separate form for each hot mix asphalt plant.

Hot Mix Asphalt Plant Description: Drum Mix Pla	ant
Date Construction Commenced ¹ Estimated 2023	Start-Up Date ¹ :
Equipment Manufacturer: CMI Roadbuilding Inc	
Magnum 300 Stationary 300	Recycled Asphalt Product (RAP) –
Model Number: TPH Counterflow Drum Mix	Serial Number: up to 35%
Plant Type: 🛛 Batch 🛛 Drum	
Maximum Plant Capacity (tons HMA/hr)300	
Dryer Burner Heat Input Rating (MMBtu/hr): 82.	5 /
Hot Oil Heater Burner Input Rating (MMBtu/hr): 1	.84

II. OPERATIONAL INFORMATION

A. Fuel Information *List each fuel utilized by each device, as applicable:*

Device	Fuel Type	Heat Value ²	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
Dryer Burner (Example)	ULSD (Example)	137,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	2:74 (Example)	MMBtu/hr (Example)
Dryer	natural gas	1020	BTU/scf	nil	80,882	cuft/hour	82.5	MMBTU/hr
Burner	ULSD	140,000	BTU/gal	0.0015%	589	gal/hour	82.5	MMBTU/hr
Hot Oil	natural gas	1020	BTU/scf	nil	1840	cuft/hour	1.84	MMBTU/hr
Heater	ULSD	140,000	BTU/gal	0.0015%	13.14	gal/hour	1.84	MMBTU/hr

B. Operating Hours and/or Production Rates

- Hours per day: <u>13</u> Days per year: <u>365</u> Tons per day: <u>3900</u> Tons per year: <u>500,000</u>
- C. Stack Information

NHDES-A-OXX-XXXX

Is device equipped with multiple stacks? Are multiple units connected to this stack? (If yes, identify other devices on this stack:)

Yes No (If yes, provide data for each stack) ☐ Yes ⊠ No

Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft²) at Stack Exit³	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted⁴ (Yes-Type/No)	Exhaust Orientation ⁵	Stack Monitor (Yes/No) and [,] Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 °F (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	Yes – CEM for PM (Example)
# 1	45 ft	3.28 ft	265	57,348	No	vertical	No
# 2	10 ft	0.833 ft	400		No	vertical	No
							1

III. UNCONTROLLED AIR POLLUTANT EMISSIONS (list emissions that result from the burning of each fuel utilized by the hot mix asphalt plant prior to add on controls – use additional sheets if necessary)

Pollutant	Emission Factor	Units	Emission Factor Source [®]	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
NOx	0.026, 0.055	lbs/ton	AP-42	TBD	7.8, 16.5	TBD	34.16, 72.27
СО	0.13, 0.13	lbs/ton	AP-42	TBD	39.0, 39.0	TBD	170.8, 170.8
PM10	0.023, 0.023	lbs/ton	AP-42	TBD	6.9, 6.9	TBD	30.22, 30.22
VOC, HAPs	0.032 0.0055, 0.009	lbs/ton lbs/ton	AP-42	TBD	9.6 1.6, 2.7	TBD	42.05 7.21, 11.77

Provide an example of the calculations used to determine uncontrolled air pollutant emissions, if applicable:

Note in Table III above, the first emission factor and Potential (lb/hr) and Potential (tpy) is natural gas burning. The second numbers are from ULSD burning.

Asphalt fumes - 0.012 lbs/ton * 2,628,000 TPY (unrestricted) / 2000 lbs/ton = 15.77 TPY

Sulfur Dioxide (SO2) (natural gas) - 0.0034 lbs/ton *2,628,000 TPY / 2000 lbs/ton -= 4.47 TPY

Sulfur Dioxide (SO2) (ULSD) - 0.011 lbs/ton *2,628,000 TPY / 2000 lbs/ton -= 14.45 TPY

Based on unrestricted operation of 365 days/year, 24 hours/day (totals 2,628,000 TPY production)

IV. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPS) - ENV-A 1400

Do any of the devices burn a non-exempt fuel⁷ and emit any of the RTAPs listed in Env-A 1400? Yes X No

If Yes, attach your facility's most recent compliance demonstration.

٧.

POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the devices utilize more than one type of pollution control equipment, provide data for each type of equipment.

A. Type of Equipment

cyclone or knock-out box	baffled settling chamber
🔀 baghouse	wet scrubber
other (specify):	

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

B. Controlled Air Pollution Emissions (list emissions that result from the burning of each fuel utilized by the hit mix asphalt plant <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
NOx	0.026, 0.055	Lbs/ton	AP-42	TBD	7.8, 16.5	TBD	6.50, 13.75
СО	0.13	Lbs/ton	AP-42	TBD	39.0 39.0	TBD	32.5 32.5
PM10	0.023	Lbs/ton	AP-42	TBD	6.9 6.9	TBD	5.75 5.75
VOC, HAPs Asphalt	0.032 0.0055, 0.009	Lbs/ton (all)	AP-42	TBD	9.6, 9.6 1.6, 2.7	TBD	8.0, 8.0 1.37, 2.24
Fumes	0.012		NH DES		3.6, 3.6		3.0, 3.0

Provide an example of the calculations used to determine controlled air pollutant emissions, if applicable:

The facility is restricted to 500,000 Tons of bituminous concrete production per year (TPY):

SO2 (natural gas) – 0.0034 lbs/ton * 500,000 TPY / 2000 lbs/ton = 0.85 TPY SO2 (ULSD) – 0.011 lbs/ton * 500,000 TPY / 2000 lbs/ton = 2.75 TPY Asphalt Fumes -0.012 * 500,000 TPY / 2000 lbs/ton = 3.0 TPY

ARD-8 FORM INFORMATION INSTRUCTIONS

1 If exact date is unknown for Date Construction Commenced or Start-Up Date, you may use 01/01/year. If dates are not available at the time of application, please provide to the department upon installation. Date Construction Commenced refers to the date the owner or operator has entered into a contractual obligation to undertake and complete a continuous program of construction, reconstruction, or modification of the emission unit. Start-Up Date refers to the date the emission unit is first operated at the facility.

2 3

Liquid Fuels Ultra-Low Sulfur Diesel (ULSD) #2 Fuel Oil Kerosene Other – Liquid

Gaseous Fuels Natural Gas Propane (LPG) Gasoline Other (Gaseous) <u>Heat Value</u> 137,000 Btu/gal 140,000 Btu/gal 135,000 Btu/gal Obtain from Fuel Supplier

<u>Heat Value</u> 1,020 Btu/cubic foot 94,000 Btu/gal 130,000 Btu/gal Obtain from Fuel Supplier

- 4 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 5 Flapper valves and other devices which do not restrict the vertical exhaust flow while the device is operating are not considered obstructions or restrictions.
- 6 Examples of Exhaust Orientation: Vertical, Horizontal, Downward <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 7 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)

NHDES-A-0XX-XXXX

- Vendor Guaranteed Rates (Provide Documentation)
- AP-42 Emission Factors
- Material Balance (Provide Sample Calculation)
- Engineering Estimate
- 8 Fuels exempt from Env-A 1400 include:
 - Virgin Petroleum Products (#2, #4, or #6 fuel oil, gasoline, kerosene, jet fuel, etc.)
 - Coal
 - Natural Gas
 - Propane
 - Biofuels as defined in Env-A 1401.03(b)
 - Biomass as defined in Env-A 1401.03(c)

CALCULATIONS

0

UNRESTRICTED/UNCONTROLLED POTENTIAL EMISSION CALCULATIONS

Emission factors for NOx, CO, VOC, PM10, SO2, and HAPs were taken from the latest version of AP-42, Section 11.1 Hot Mix Asphalt Plants (3/04). Based on unrestricted operation of 24 hours/day or operation for 365 days/year (8760 hours/year).

UNIT NO. 1 - DRUM MIX PLANT	Primary Fuel	Back-up fuel	Maximum
Fuel Sulfur Content Burner Rating Maximum Fuel Firing Rate Higher Heating Value Production (Tons/Hour) Annual Production (Tons/Year)	Natural gas nil 82.5 MMBTU/hour 80,882 cuft/hr 1,020 BTU/scf 300 TPH 2,628,000 TPY	No. 2 oil 0.0015 % 82.5 MMBTU/hour 589 Gal/Hr 140,000 BTU/gallon 300 TPH 2,628,000 TPY	2,628,000
Annual Production (Tons/Tear)	2,020,000 11 1	1,010,000 11 1	
Nitrogen Oxides (NO _x) Emission Factor x Hourly production rate = x Annual Production/2000 =	0.026 Lbs/ton 7.8 lbs/hour 34.16 TPY	0.055 Lbs/ton 16.5 lbs/hour 72.27 TPY	16.50 72.27
Sulfur Dioxide (SO ₂) Emission Factor x Hourly production rate = x Annual Production/2000 =	0.0034 Lbs/ton 1.0 lbs/hour 4.47 TPY	0.011 Lbs/ton 3.3 lbs/hour 14.45 TPY	3.30 14.45
Carbon Monoxide (CO)			*
Emission Factor	0.13 Lbs/ton	0.13 Lbs/ton	
x Hourly production rate = x Annual Production/2000 =	39.0 lbs/nour 170.8 TPY	39.0 lbs/hour 170.8 TPY	39.00 170.82
Volatile Organic Compounds (VOC)			
Emission Factor	0.032 Lbs/ton	0.032 Lbs/ton	
x Hourly production rate =	9.6 lbs/hour	9.6 lbs/hour	9.60
x Annual Production/2000 =	42.05 TPY	42.05 TPY	42.05
Particulate Matter (PM10)			
Emission Factor	0.023 Lbs/ton	0.023 Lbs/ton	
x Hourly production rate =	6.9 lbs/hour	6.9 lbs/hour	6.90
x Annual Production/2000 =	30.22 TPY	30.22 TPY	30.22
Asphalt fumes			A.
Emission Factor	0.012 Lbs/ton	0.012 Lbs/ton	
x Hourly production rate =	3.6 lbs/hour	3.6 lbs/hour	3.60
x Annual Production/2000 =	15.77 TPY	15.77 TPY	15.77
Total HAPs			
Emission Factor	5.49E-03 Lbs/ton	8.96E-03 Lbs/ton	2.22
x Hourly production rate =	1.6 lbs/hour	2.7 lbs/hour	2.69
x Annual Production/2000 =	7.21 TPY	11.77 TPY	11.77

UNIT 2 - HOT OIL HEATER

Emission factors for the criteria pollutants were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) Emission factors for HAPs while burning natural gas were obtained from AP-42, Section 1.4 Natural Gas Combustion, (Table 1.4-3 and Table 1.4-4) (7/98). Emission factors for HAPs while burning no. 2 fuel oil were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) and AP-42,

Section 1.3, Fuel Oil Combustion, (Table 1.3-10) (5/10). Based on unrestricted operation of 24 hours/day or operation for 365 days/year (8760 hours/year).

Natural gas is based on a heating value of 1020 BTU/scf, ULSD is based on a heating value of 140,000 BTU/gallon. Maximum #2 Oil Fuel Natural gas Maximum fuel firing rate 1,840 cuft/hour 13.14 GPH 8,760 Hrs/Year 8,760 Hrs/Year Hours of Operation 115,131 Gallons 16.1 MMSCF Annual Fuel Usage Nitrogen Oxides 20 lbs/1000 gal 100 lbs/MMscf **Emission Factor** x Hourly Fuel Usage/2000 =

1

0.18 lbs/hour 0.81 TPY

0.26 lbs/hour 1.15 TPY

0.26 1.15 •

Sulfur Dioxide		a a (a 11 - 11 a a a - 1	
Emission Factor	0.6 lbs/MMscf	0.213 lbs/1000 gal	0.00
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.00 lbs/hour	0.00
x Annual Fuel Usage/2000 =	0.005 TPY	0.01 TPY	0.01
Carbon Monoxide			
Emission Factor	84 Lbs/MMscf	5.0 lbs/1000 gal	100 M
x Hourly Fuel Usage/2000 =	0.15 lbs/hour	0.07 lbs/hour	0.15
x Annual Fuel Usage/2000 =	0.68 TPY	0.29 TPY	0.68
Volatile Organic Compounds			
Emission Factor	5.5 lbs/MMscf	0.34 lbs/1000 gal	6.000 M20 M2
x Hourly Fuel Usage/2000 =	0.01 lbs/hour	0.00 lbs/hour	0.01
x Annual Fuel Usage/2000 =	0.04 TPY	0.02 TPY	0.04
Particulate Matter 10 (PM10)			
Emission Factor	1.9 lbs/MMscf	1.8 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.02 lbs/hour	0.02
x Annual Fuel Usage/2000 =	0.02 TPY	0.10 TPY	0.10
Total HAPs			
Emission Factor	1.80E+00 Lbs/MMCuFt	7.55E-05 lbs/gal	
x Hourly Fuel Usage/2000 =	3.31E-03 lbs/hour	9.92E-04 lbs/hour	3.3E-03
x Annual Fuel Usage/2000 =	1.45E-02 TPY	4.35E-03 TPY	1.5E-02

Total Facility Wide Emissions (Lbs/Hour)

	<u>NOx</u>	<u>SO2</u>	<u>CO</u>	VOC	PM10	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	16.5	3.3	39.0	9.6	6.9	2.69E+00	3.60
UNIT NO. 2 - HOT OIL HEATER	0.26	0.00	<u>0.15</u>	<u>0.01</u>	0.02	<u>3.31E-03</u>	N/A
TOTAL FACILITY WIDE (LBS/HOUR)	16 76	3.30	39.15	9.61	6.92	2.69E+00	3.60

Total Facility Wide Emissions (TPY)

	NOx	<u>SO2</u>	<u>co</u>	VOC	PM10	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	72.3	14.5	170.8	42.0	30.2	1.18E+01	15.77
UNIT NO. 2 - HOT OIL HEATER	<u>1.15</u>	<u>0.01</u>	0.68	0.04	<u>0.10</u>	<u>1.45E-02</u>	N/A
TOTAL FACILITY WIDE (TPY)	73.42	14.47	171.50	42.09	30.33	1.18E+01	15.77

٠

PROPOSED POTENTIAL EMISSION CALCULATIONS

Emission factors for NOx, CO, VOC, PM10, SO2, and HAPs were taken from the latest version of AP-42, Section 11.1 Hot Mix Asphalt Plants (3/04). Restrictions are for a total of 500,000 TPY of product.

UNIT NO. 1 - DRUM MIX PLANT	Primary Fuel	Back-up fuel	Maximum
Fuel	Natural gas	No. 2 oil	
Sulfur Content	nil	0.0015 %	
Burner Rating	82.5 MMBTU/hour	82.5 MMBTU/hour	
Maximum Fuel Firing Rate	80,882 cuft/hr	589 Gal/Hr	
Higher Heating Value	1,020 BTU/scf	140,000 BTU/gallon	
Production (Tons/Hour)	300 TPH	300 TPH	*
Annual Production (Tons/Year)	500,000 TPY	500,000 TPY	500,000
Nitrogen Oxides (NO _x)			
Emission Factor	0.026 Lbs/ton	0.055 Lbs/ton	
x Hourly production rate =	7.8 lbs/hour	16.5 lbs/hour	16.50
x Annual Production/2000 =	6.50 TPY	13.75 TPY	13.75
Sulfur Dioxide (SO ₂)			
Emission Factor	0.0034 Lbs/ton	0.011 Lbs/ton	3
x Hourly production rate =	1.0 lbs/hour	3.3 lbs/hour	3.30
x Annual Production/2000 =	0.85 TPY	2.75 TPY	2.75
Carbon Monoxide (CO)			ý
Emission Factor	0.13 Lbs/ton	0.13 Lbs/ton	<i>t</i> .
x Hourly production rate =	39.0 lbs/hour	39.0 lbs/hour	39.00
x Annual Production/2000 =	32.5 TPY	32.5 TPY	32.50
Volatile Organic Compounds (VOC)			
Emission Factor	0.032 Lbs/ton	0.032 Lbs/ton	
x Hourly production rate =	9.6 lbs/hour	9.6 lbs/hour	9.60
x Annual Production/2000 =	8.00 TPY	8.00 TPY	8.00
Particulate Matter (PM10)			
Emission Factor	0.023 Lbs/ton	0.023 Lbs/ton	
x Hourly production rate =	6.9 lbs/hour	6.9 lbs/hour	6.90
x Annual Production/2000 =	5.75 TPY	5.75 TPY	5.75
Asphalt fumes			
Emission Factor	0.012 Lbs/ton	0.012 Lbs/ton	
x Hourly production rate =	3.6 lbs/hour	3.6 lbs/hour	3.60
x Annual Production/2000 =	3.00 TPY	3.00 TPY	3.00
Total HAPs			
Emission Factor	5.49E-03 Lbs/ton	8.96E-03 Lbs/ton	
x Hourly production rate =	1.6 lbs/hour	2.7 lbs/hour	2.69
x Annual Production/2000 =	1.37 TPY	2.24 TPY	2.24

UNIT 2 - HOT OIL HEATER

Emission factors for the criteria pollutants viere obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) Emission factors for HAPs while burning natural gas were obtained from AP-42, Section 1.4. Natural Gas Combustion, (Table 1.4-3 and Table 1.4-4) (7/98). Emission factors for HAPs while burning no. 2 fuel oi! were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) and AP-42,

Section 1.3, Fuel Oil Combustion, (Table 1.3-10) (5/10). Natural gas is based on a heating value of 1020 BTU/scf, ULSD is based on a heating value of 140,000 BTU/gallon.

			Maximum
Fuel	Natural gas	#2 Oil	
Maximum fuel firing rate	1,840 cuft/hour	13.14 GPH	
Hours of Operation	4,745 Hrs/Year	4,745 Hrs/Year	
Annual Fuel Usage	8.7 MMSCF	62,363 Gallons	
Nitrogen Oxides			
Emission Factor	100 lbs/MMscf	20 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.18 lbs/hour	0.26 lbs/hour	0.26
x Annual Fuel Usage/2000 =	0.44 TPY	0.62 TPY	0.62

Sulfur Dioxide			
Emission Factor	0.6 lbs/MMscf	0.213 lbs/1000 gal	10-10 PA10-10
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.00 lbs/hour	0.00
x Annual Fuel Usage/2000 =	0.003 TPY	0.01 TPY	0.01
Carbon Monoxide			
Emission Factor	84 Lbs/MMscf	5.0 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.15 lbs/hour	0.07 lbs/hour	0.15
x Annual Fuel Usage/2000 =	0.37 TPY	0.16 TPY	0.37
Volatile Organic Compounds			
Emission Factor	5.5 lbs/MMscf	0.34 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.01 lbs/hour	0.00 lbs/hour	0.01
x Annual Fuel Usage/2000 =	0.02 TPY	0.01 TPY	0.02
Particulate Matter 10 (PM10)			
Emission Factor	1.9 lbs/MMscf	1.8 lbs/1000 gal	(2) (2)
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.02 lbs/hour	0.02
x Annual Fuel Usage/2000 =	0.01 TPY	0.06 TPY	0.06
Total HAPs			
Emission Factor	1.80E+00 Lbs/MMCuFt	7.55E-05 lbs/gal	
x Hourly Fuel Usage/2000 =	3.31E-03 lbs/hour	9.92E-04 lbs/hour	3.3E-03
x Annual Fuel Usage/2000 =	7.86E-03 TPY	2.35E-03 TPY	7.9E-03

Total Facility Wide Emissions (Lbs/Hour)

	NOx	<u>SO2</u>	<u>CO</u>	VOC	PM10	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	16 5	3.3	39.0	9.6	6.9	2.69	3.60
UNIT NO. 2 - HOT OIL HEATER	0.26	0.00	0.15	<u>0.01</u>	0.02	3.31E-03	<u>N/A</u>
TOTAL FACILITY WIDE (LBS/HOUR)	16.76	3.30	39.15	9.61	6.92	2.69E+00	3.60

Total Facility Wide Emissions (TPY)

	NOx	<u>SO2</u>	<u>co</u>	VOC	PM10	<u>HAPs</u>	Asphait Fumes
UNIT NO. 1 - DRUM MIX PLANT	13.8	2.8	32.5	8.0	5.8	2.24	3.00
UNIT NO. 2 - HOT OIL HEATER	0.62	<u>0.01</u>	0.37	0.02	<u>0.06</u>	7.86E-03	<u>N/A</u>
TOTAL FACILITY WIDE (TPY)	14.37	2.76	32.87	8.02	5.81	2.25E+00	3.00

RELEVANT SECTIONS OF AP-42 - SECTIONS 11.1, 1.3, 1.4

Table 11.1-3. PARTICULATE MATTER EMISSION FACTORS FOR DRUM MIX HOT MIX ASPHALT PLANTS^a

	Filterable PM				Condensable PM ^b				Total PM			
Process	PM ^c	EMISSION FACTOR RATING	PM-10 ^d	EMISSION FACTOR RATING	Inorganic	EMISSION FACTOR RATING	Organic	EMISSION FACTOR RATING	PM ^e	EMISSION FACTOR RATING	PM-10 ^f	EMISSION FACTOR RATING
Dryer ^g (SCC 3-05-002-05,-55 to -63)												
Uncontrolled	28 ^h	D	6.4	D	0.0074 ^j	E	0.058 ^k	E	28	D	6.5	D
Venturi or wet scrubber	0.026 ^m	А	ND	NA	0.0074 ⁿ	A	0.012 ^p	A	0.045	A	ND	NA
Fabric filter	0.014 ^q	А	0.0039	C	0.0074 ⁿ	A	0.012 ^p	A	0.033	A	0.023	С

^a Factors are lb/ton of product. SCC = Source Classification Code. ND = no data. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

- ^b Condensable PM is that PM collected using an EPA Method 202, Method 5 (analysis of "back-half" or impingers), or equivalent sampling train.
- ^c Filterable PM is that PM collected on or before the filter of an EPA Method 5 (or equivalent) sampling train.
- ^d Particle size data from Reference 23 were used in conjunction with the filterable PM emission factors shown.
- ^e Total PM is the sum of filterable PM, condensable inorganic PM, and condensable organic PM.
- ^f Total PM-10 is the sum of filterable PM-10, condensable inorganic PM, and condensable organic PM.
- ^g Drum mix dryer fired with natural gas, propane, fuel oil, and waste oil. The data indicate that fuel type does not significantly effect PM emissions.
- ^h References 31, 36-38, 340.
- ^b Because no data are available for uncontrolled condensable inorganic PM, the emission factor is assumed to be equal to the maximum controlled condensable inorganic PM emission factor.
- ^k References 36-37.
- ^m Reference 1, Table 4-14. Average of data from 36 facilities. Range: 0.0036 to 0.097 lb/ton. Median: 0.020 lb/ton. Standard deviation: 0.022 lb/ton.
- Reference 1, Table 4-14. Average of data from 30 facilities. Range: 0.0012 to 0.027 lb/ton. Median: 0.0051 lb/ton. Standard deviation: 0.0063 lb/ton.
- P Reference 1, Table 4-14. Average of data from 41 facilities. Range: 0.00035 to 0.074 lb/ton. Median: 0.0046 lb/ton. Standard deviation: 0.016 lb/ton.
- ^q Reference 1, Table 4-14. Average of data from 155 facilities. Range: 0.00089 to 0.14 lb/ton. Median: 0.010 lb/ton. Standard deviation: 0.017 lb/ton.

1

11.1-13

3/04

11.1-17

Table 11.1-7. EMISSION FACTORS FOR CO, CO₂, NO_x, AND SO₂ FROM DRUM MIX HOT MIX ASPHALT PLANTS^a

Process	CO ^b	EMISSION FACTOR RATING	CO ₂ ^c	EMISSION FACTOR RATING	NO _x	EMISSION FACTOR RATING	SO ₂ °	EMISSION FACTOR RATING
Natural gas-fired dryer (SCC 3-05-002-55,-56,-57)	0.13	В	33 ^d	А	0.026°	D	0.0034 ^f	D
No. 2 fuel oil-fired dryer (SCC 3-05-002-58,-59,-60)	0.13	В	33 ^d	А	0.055 ^g	С	0.011 ^h	E
Waste oil-fired dryer (SCC 3-05-002-61,-62,-63)	0.13	В	33 ^d	А	0.055 ^g	С	0.058 ^j	В
Coal-fired dryer ^k (SCC 3-05-002-98)	ND	NA	33 ^d	А	ND	NA	0.19 ^m	E

EMISSION FACTORS

^a Emission factor units are lb per ton of HMA produced. SCC = Source Classification Code. ND = no data available. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

^b References 25, 44, 48, 50, 149, 154, 197, 214, 229, 254, 339-342, 344, 346, 347, 390. The CO emission factors represent normal plant operations without scrutiny of the burner design, operation, and maintenance. Information is available that indicates that attention to burner design, periodic evaluation of burner operation, and appropriate maintenance can reduce CO emissions. Data for dryers firing natural gas, No. 2 fuel oil, and No. 6 fuel oil were combined to develop a single emission factor because the magnitude of emissions was similar for dryers fired with these fuels.

^c Emissions of CO₂ and SO₂ can also be estimated based on fuel usage and the fuel combustion emission factors (for the appropriate fuel) presented in AP-42 Chapter 1. The CO₂ emission factors are an average of all available data, regardless of the dryer fuel (emissions were similar from dryers firing any of the various fuels). Fifty percent of the fuel-bound sulfur, up to a maximum (as SO₂) of 0.1 lb/ton of product, is expected to be retained in the product, with the remainder emitted as SO₂.

^d Reference 1, Table 4-15. Average of data from 180 facilities. Range: 2.6 to 96 lb/ton. Median: 31 lb/ton. Standard deviation: 13 lb/ton.

1

- ^e References 44-45, 48, 209, 341, 342.
- ^f References 44-45, 48.
- ^g References 25, 50, 153, 214, 229, 344, 346, 347, 352-354.
- ^h References 50, 119, 255, 340
- ^j References 25, 299, 300, 339, 345, 351, 371-377, 379, 380, 386-388.
- ^k Dryer fired with coal and supplemental natural gas or fuel oil.
- ^m References 88, 108, 189-190.

3/04

Process	TOC ^b	EMISSION FACTOR RATING	CH4 ^c	EMISSION FACTOR RATING	VOC ^d	EMISSION FACTOR RATING	HCl ^e	EMISSION FACTOR RATING
Natural gas-fired dryer (SCC 3-05-002-55, -56,-57)	0.044 ^f	В	0.012	С	0.032	С	ND	NA
No. 2 fuel oil-fired dryer (SCC 3-05-002-58, -59,-60)	0.044 ^f	В	0.012	С	0.032	С	ND	NA
Waste oil-fired dryer (SCC 3-05-002-61, -62,-63)	0.044 ^f	Е	0.012	С	0.032	E	0.00021	D

Table 11.1-8. EMISSION FACTORS FOR TOC, METHANE, VOC, AND HCI FROM
DRUM MIX HOT MIX ASPHALT PLANTS^a

^a Emission factor units are lb per ton of HMA produced. SCC = Source Classification Code. ND = no data available. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

^b TOC equals total hydrocarbons as propane as measured with an EPA Method 25A or equivalent sampling train plus formaldehyde.

^c References 25, 44-45, 48, 50, 339-340, 355. Factor includes data from natural gas-, No. 2 fuel oil, and waste oil-fired dryers. Methane measured with an EPA Method 18 or equivalent sampling train.

^d The VOC emission factors are equal to the TOC factors minus the sum of the methane emission factors and the emission factors for compounds with negligible photochemical reactivity shown in Table 11.1-10; differences in values reported are due to rounding.

^e References 348, 374, 376, 379, 380.

^f References 25, 44-45, 48, 50, 149, 153-154, 209-212, 214, 241, 242, 339-340, 355.

EMISSION FACTORS

		Pollutant		Emission	
			Factor,	Factor	
Process	CASRN	Name	lb/ton	Rating	Ref. No.
Natural gas-fired		PAH hazardous air pollutants ^e			
dryer with fabric filter ^b (SCC 3-05-002-55,	71-43-2	Benzene ^d	0.00039	А	25,44,45,50, 341, 342, 344-351, 373, 376, 377, 383, 384
-56,-57)	100-41-4	Ethylbenzene	0.00024	D	25,44,45
	50-00-0	Formaldehyde ^e	0.0031	А	25,35,44,45,50, 339- 344, 347-349, 371- 373, 384, 388
	110-54-3	Hexane	0.00092	Е	339-340
	540-84-1	Isooctane (2,2,4-trimethylpentane)	4.0x10 ⁻⁵	Е	339-340
	71-55-6	Methyl chloroform ^f	4.8x10 ⁻⁵	Е	35
	108-88-3	Toluene	0.00015	D	35,44,45
	1330-20-7	Xylene	0.00020	D	25,44,45
		Total non-PAH HAPs	0.0051		
		PAH HAPs			
	91-57-6	2-Methylnaphthalene ^g	7.4x10 ⁻⁵	D	44,45,48
	83-32-9	Acenaphthene ^g	1.4x10 ⁻⁶	Е	48
	208-96-8	Acenaphthylene ^g	8.6x10 ⁻⁶	D	35,45,48
	120-12-7	Anthracene ^g	2.2x10 ⁻⁷	E	35,48
	56-55-3	Benzo(a)anthracene ^g	2.1x10 ⁻⁷	E	. 48
	50-32-8	Benzo(a)pyrene ^g	9.8x10 ⁻⁹	E	48
	205-99-2	Benzo(b)fluoranthene ^g	1.0x10 ⁻⁷	E	35,48
	192-97-2	Benzo(e)pyrene ^g	1.1x10 ⁻⁷	Е	48
	191-24-2	Benzo(g,h,i)perylene ^g	4.0x10 ⁻⁸	Е	48
	207-08-9	Benzo(k)fluoranthene ^g	4.1x10 ⁻⁸	Е	35,48
	218-01-9	Chrysene ^g	1.8x10 ⁻⁷	E	35,48
2	206-44-0	Fluoranthene ^g	6.1x10 ⁻⁷	D	35,45,48
	86-73-7	Fluorene ^g	3.8x10 ⁻⁶	D	35,45,48,163
	193-39-5	Indeno(1,2,3-cd)pyrene ^g	7.0x10 ⁻⁹	Е	48
	91-20-3	Naphthalene ^g	9.0x10 ⁻⁵	D	35,44,45,48,163
	198-55-0	Perylene ^g	8.8x10 ⁻⁹	Е	48
	85-01-8	Phenanthrene ^g	7.6x10 ⁻⁶	D	35,44,45,48,163
	129-00-0	Pyrene ^g	5.4x10 ⁻⁷	D	45,48
		Total PAH HAPs	0.00019		

Table 11.1-10. EMISSION FACTORS FOR ORGANIC POLLUTANT EMISSIONS FROM DRUM MIX HOT MIX ASPHALT PLANTS^a

Mineral Products Industry

١

۰

Table 11.1-10 (cont.)

		Pollutant	Emission		
	CLODN	21	Factor,	Factor	Ref. No.
Process	CASRN	Name Total HAPs	1b/ton 0.0053	Rating	Kel. No.
Natural gas-fired dryer with fabric			0.0033		
filter ^b		n-HAP organic compounds			
(SCC 3-05-002-55,	106-97-8	Butane	0.00067	Е	339
-56,-57) (cont.)	74-85-1	Ethylene	0.0070	Е	339-340
	142-82-5	Heptane	0.0094	Е	339-340
	763-29-1	2-Methyl-1-pentene	0.0040	Е	339,340
	513-35-9	2-Methyl-2-butene	0.00058	Е	339,340
	96-14-0	3-Methylpentane	0.00019	D	339,340
	109-67-1	1-Pentene	0.0022	Е	339-340
	109-66-0	n-Pentane	0.00021	Е	339-340
		Total non-HAP organics	0.024		
No. 2 fuel oil-fired		Non-PAH HAPs ^c		State of Arts	
dryer with fabric filter (SCC 3-05-002-58,	71-43-2	Benzene ^d	0.00039	А	25,44,45,50, 341, 342, 344-351, 373, 376, 377, 383, 384
-59,-60)	100-41-4	Ethylbenzene	0.00024	D	25,44,45
	50-00-0	Formaldehyde ^e	0.0031	A	25,35,44,45,50, 339- 344, 347-349, 371- 373, 384, 388
	110-54-3	Hexane	0.00092	Е	339-340
	540-84-1	Isooctane (2,2,4-trimethylpentane)	4.0x10 ⁻⁵	E	339-340
	71-55-6	Methyl chloroform ^f	4.8x10 ⁻⁵	Е	35
	108-88-3	Toluene	0.0029	E	25, 50, 339-340
	1330-20-7	Xylene	0.00020	D	25,44,45
		Total non-PAH HAPs	0.0078		
		PAH HAPs		1220	
	91-57-6	2-Methylnaphthalene ^g	0.00017	E	50
	83-32-9	Acenaphthene ^g	1.4x10 ⁻⁶	E	48
	208-96-8	Acenaphthylene ^g	2.2x10 ⁻⁵	E	50
	120-12-7	Anthracene ^g	3.1x10 ⁻⁶	Е	50,162
	56-55-3	Benzo(a)anthracene ^g	2.1x10 ⁻⁷	Е	48
	50-32-8	Benzo(a)pyrene ^g	9.8x10 ⁻⁹	E	48
	205-99-2	Benzo(b)fluoranthene ^g	1.0x10 ⁻⁷	Е	35,48
	192-97-2	Benzo(e)pyrene ^g	1.1x10 ⁻⁷	Е	48

11.1-22

1

•

		Pollutant	Emission	Emission	
Ducasas	CASRN	Name	Factor, lb/ton	Factor Rating	Ref. No.
Process No. 2 fuel oil-fired	191-24-2	Benzo(g,h,i)perylene ^g	4.0×10^{-8}	E	48
dryer with fabric	207-08-9	Benzo(k)fluoranthene ^g	4.1x10 ⁻⁸	E	35,48
(SCC 3-05-002-58,	218-01-9	Chrysene ^g	1.8x10 ⁻⁷	Е	35,48
-59,-60) (cont.)	206-44-0	Fluoranthene ^g	6.1x10 ⁻⁷	D	35,45,48
	86-73-7	Fluorene ^g	1.1x10 ⁻⁵	Е	50,164
	193-39-5	Indeno(1,2,3-cd)pyrene ^g	7.0x10 ⁻⁹	Е	48
	91-20-3	Naphthalene ^g	0.00065	D	25,50,162,164
	198-55-0	Perylene ^g	8.8x10 ⁻⁹	Е	48
	85-01-8	Phenanthrene ^g	2.3x10 ⁻⁵	D	50,162,164
	129-00-0	Pyrene ^g	3.0x10 ⁻⁶	Е	50
		Total PAH HAPs	0.00088		
		Total HAPs	0.0087		
	No	n-HAP organic compounds			
	106-97-8	Butane	0.00067	Е	339
1	74-85-1	Ethylene	0.0070	Е	339-340
	142-82-5	Heptane	0.0094	Е	339-340
	763-29-1	2-Methyl-1-pentene	0.0040	Е	339,340
	513-35-9	2-Methyl-2-butene	0.00058	Е	339,340
	96-14-0	3-Methylpentane	0.00019	D	339,340
	109-67-1	1-Pentene	0.0022	E	339-340
	109-66-0	n-Pentane	0.00021	Е	339-340
		Total non-HAP organics	0.024		

Table 11.1-10 (cont.)

١

.

Table 11.1-10 (cont.)

		Pollutant	Emission		
D	CASDN	Name	Factor, lb/ton	Factor	Ref. No.
Process	CASRN	Dioxins	10/10/1	Rating	Kel. NO.
Fuel oil- or waste oil-fired dryer with fabric filter (SCC 3-05-002-58, -59,-60,-61,-62,	1746-01-6	2,3,7,8-TCDD ^g	2.1×10^{-13}	Е	339
	1740-01-0	Total TCDD ^g	9.3x10 ⁻¹³	E	339
	40321-76-4		3.1x10 ⁻¹³	E	339
-63)			2.2×10^{-11}	E	339-340
		Total PeCDD ^g		22.000	
		1,2,3,4,7,8-HxCDD ^g	4.2x10 ⁻¹³	E	339
		1,2,3,6,7,8-HxCDD ^g	1.3x10 ⁻¹²	Е	339
	19408-24-3	1,2,3,7,8,9-HxCDD ^g	9.8x10 ⁻¹³	E	339
		Total HxCDD ^g	1.2x10 ⁻¹¹	Е	339-340
	35822-46-9	1,2,3,4,6,7,8-HpCDD ^g	4.8x10 ⁻¹²	Е	339
		Total HpCDD ^g	1.9x10 ⁻¹¹	Е	339-340
	3268-87-9	Octa CDD ^g	2.5x10 ⁻¹¹	Е	339
		Total PCDD ^g	7.9x10 ⁻¹¹	Е	339-340
		Furans			
	51207-31-9	2,3,7,8-TCDF ^g	9.7x10 ⁻¹³	Е	339
		Total TCDF ^g	3.7x10 ⁻¹²	Е	339-340
		1,2,3,7,8-PeCDF ^g	4.3x10 ⁻¹²	E	339-340
	· · · · · · · · · · · · · · · · · · ·	2,3,4,7,8-PeCDF ^g	8.4x10 ⁻¹³	Е	339
		Total PeCDF ^g	8.4x10 ⁻¹¹	Е	339-340
		1,2,3,4,7,8-HxCDF ^g	4.0x10 ⁻¹²	Е	339
		1,2,3,6,7,8-HxCDF ^g	1.2×10^{-12}	Е	339
		2,3,4,6,7,8-HxCDF ^g	1.9x10 ⁻¹²	Е	339
		1,2,3,7,8,9-HxCDF ^g	8.4x10 ⁻¹²	Е	340
		Total HxCDF ^g	1.3x10 ⁻¹¹	Е	339-340
		1,2,3,4,6,7,8-HpCDF ^g	6.5x10 ⁻¹²	Е	339
		1,2,3,4,7,8,9-HpCDF ^g	2.7x10 ⁻¹²	Е	339
		Total HpCDF ^g	1.0x10 ⁻¹¹	Е	339-340
	39001-02-0	Octa CDF ^g	4.8x10 ⁻¹²	E	339
	39001-02-0	Total PCDF ^g	4.0x10 ⁻¹¹	E	339-340
			1.2×10^{-10}	E	339-340
		Total PCDD/PCDF ^g	1.2X10	E	559-540

١

7 .

Table 11.1-10 (cont.)

		Pollutant	Emission	Emission	
Process	CASRN	Name	Factor, lb/ton	Factor Rating	Ref. No.
Fuel oil- or waste	H	Iazardous air pollutants ^c			
oil-fired dryer (uncontrolled)		Dioxins	1		
(SCC 3-05-002-58,		Total HxCDD ^g	5.4×10^{-12}	Е	340
-59,-60,-61,-62, -63)	35822-46-9	1,2,3,4,6,7,8-HpCDD ^g	3.4x10 ⁻¹¹	Е	340
		Total HpCDD ^g	7.1x10 ⁻¹¹	Е	340
	3268-87-9	Octa CDD ^g	2.7x10 ⁻⁹	Е	340
		Total PCDD ^g	2.8x10 ⁻⁹	Е	340
		Furans			3
		Total TCDF ^g	3.3x10 ⁻¹¹	Е	340
		Total PeCDF ^g	7.4x10 ⁻¹¹	Е	340
		1,2,3,4,7,8-HxCDF ^g	5.4x10 ⁻¹²	Е	340
		2,3,4,6,7,8-HxCDF ^g	1.6x10 ⁻¹²	Е	340
		Total HxCDF ^g	8.1x10 ⁻¹²	E	340
Fuel oil- or waste		1,2,3,4,6,7,8-HpCDF ^g	1.1x10 ⁻¹¹	E	340
oil-fired dryer (uncontrolled)		Total HpCDF ^g	3.8x10 ⁻¹¹	E	340
(SCC 3-05-002-58,		Total PCDF ^g	1.5x10 ⁻¹⁰	E	340
-59,-60,-61,-62, -63) (cont.)		Total PCDD/PCDF ^g	3.0x10 ⁻⁹	Е	340

١

)

•

Process	Pollutant	Emission Factor, lb/ton	Emission Factor Rating	Reference Numbers
Fuel oil-fired dryer,	Arsenic ^b	1.3x10 ⁻⁶	E	340
uncontrolled	Barium	0.00025	E	340
(SCC 3-05-002-58,	Beryllium ^b	0.0	E	340
-59,-60)	Cadmium ^b	4.2x10 ⁻⁶	E	340
and a state of	Chromium ^b	2.4x10 ⁻⁵	E	340
	Cobalt ^b	1.5x10 ⁻⁵	E	340
	Copper	0.00017	Е	340
	Lead ^b	0.00054	Е	340
	Manganese ^b	0.00065	Е	340
	Nickel ^b	0.0013	Е	340
	Phosphorus ^b	0.0012	Е	340
	Selenium ^b	2.4x10 ⁻⁶	Е	340
	Thallium	2.2x10 ⁻⁶	Е	340
	Zinc	0.00018	E	340
Natural gas- or	Antimony	1.8x10 ⁻⁷	E	339
propane-fired dryer,	Arsenic ^b	5.6x10 ⁻⁷	D	25, 35, 339-340
with fabric filter	Barium	5.8x10 ⁻⁶	E	25, 339-340
(SCC 3-05-002-55,	Beryllium ^b	0.0	Е	339-340
-56,-57))	Cadmium ^b	4.1x10 ⁻⁷	D	25, 35, 162, 301, 339-340
	Chromium ^b	5.5x10 ⁻⁶	С	25, 162-164, 301, 339-340
	Cobalt ^b	2.6x10 ⁻⁸	Е	339-340
	Copper	3.1x10 ⁻⁶	D	25, 162-164, 339-340
	Hexavalent chromium ^b	4.5x10 ⁻⁷	Е	163
	Lead ^b	6.2x10 ⁻⁷	Е	35
	Manganese ^b	7.7x10 ⁻⁶	D	25, 162-164, 339-340
	Mercury ^b	2.4x10 ⁻⁷	Е	35, 163
	Nickel ^b	6.3x10 ⁻⁵	D	25, 163-164, 339-340
	Phosphorus ^b	2.8x10 ⁻⁵	Е	25, 339-340
	Silver	4.8x10 ⁻⁷	Е	25, 339-340
	Selenium ^b	3.5x10 ⁻⁷	Е	339-340
	Thallium	4.1x10 ⁻⁹	Е	339-340
	Zinc	6.1x10 ⁻⁵	С	25, 35, 162-164, 339-340

Table 11.1-12. EMISSION FACTORS FOR METAL EMISSIONS FROM DRUM MIX HOT MIX ASPHALT PLANTS^a

٩

Process	Pollutant	Emission Factor, lb/ton	Emission Factor Rating	Reference Numbers
No. 2 fuel oil-fired	Antimony	1.8x10 ⁻⁷	Е	339
dryer or waste oil/drain	Arsenic ^b	5.6x10 ⁻⁷	D	25, 35, 339-340
oil/No. 6 fuel oil-fired	Barium	5.8x10 ⁻⁶	E	25, 339-340
dryer, with fabric filter	Beryllium ^b	0.0	E	339-340
(SCC 3-05-002-58,	Cadmium ^b	4.1x10 ⁻⁷	D	25, 35, 162, 301, 339-340
-59,-60,-61,-62,-63)	Chromium ^b	5.5x10 ⁻⁶	С	25, 162-164, 301, 339-340
	Cobalt ^b	2.6x10 ⁻⁸	E	339-340
	Copper	3.1x10 ⁻⁶	D	25, 162-164, 339-340
	Hexavalent chromium ^b	4.5x10 ⁻⁷	E	163
	Lead ^b	1.5x10 ⁻⁵	С	25, 162, 164, 178-179, 183, 301, 315, 339-340
	Manganese ^b	7.7x10 ⁻⁶	D	25, 162-164, 339-340
	Mercury ^b	2.6x10 ⁻⁶	D	162, 164, 339-340
	Nickel ^b	6.3x10 ⁻⁵	D	25, 163-164, 339-340
	Phosphorus ^b	2.8x10 ⁻⁵	Е	25, 339-340
	Silver	4.8x10 ⁻⁷	Е	25, 339-340
	Selenium ^b	3.5x10 ⁻⁷	Е	339-340
	Thallium	4.1x10 ⁻⁹	Е	339-340
	Zinc	6.1x10 ⁻⁵	С	25, 35, 162-164, 339-340

Table 11.1-12 (cont.)

^a Emission factor units are lb/ton of HMA produced. SCC = Source Classification Code. To convert from lb/ton to kg/Mg, multiply by 0.5. Emission factors apply to facilities processing virgin aggregate or a combination of virgin aggregate and RAP.

^b Arsenic, beryllium, cadmium, chromium, hexavalent chromium, cobalt, lead, manganese, mercury, nickel, and selenium compounds are HAPs as defined in the 1990 CAAA. Elemental phosphorus also is a listed HAP, but the phosphorus measured by Method 29 is not elemental phosphorus.

٩

)

	Pollutant		D. J. J.	P	EMISSION	
Process	CASRN	Name	Emission factor	Emission factor units	FACTOR RATING	Reference
	630-08-0	Carbon monoxide	8.9x10 ⁻⁶	lb/ft ³	С	395
Hot oil system fired with natural gas	630-08-0 124-38-9	Carbon dioxide	0.20	lb/ft ³	C	395
(SCC 3-05-002-06)			2.6x10 ⁻⁸	lb/ft ³	C	395
	50-00-0	Formaldehyde	0.0012	1	C	395
Hot oil system fired with No. 2 fuel oil	630-08-0	Carbon monoxide	28	lb/gal	C	3.95
(SCC 3-05-002-08)	124-38-9	Carbon dioxide	00759-8780	lb/gal	C	395
(500 5 05 002 00)	50-00-0	Formaldehyde	3.5×10^{-6}	lb/gal	2, 261	1004 12
	83-32-9	Acenaphthene ^b	5.3x10 ⁻⁷	lb/gal	E	35
	208-96-8	Acenaphthylene ^b	2.0x10 ⁻⁷	lb/gal	E	35
	120-12-7	Anthracene ^b	1.8x10 ⁻⁷	lb/gal	E	35
	205-99-2	Benzo(b)fluoranthene ^b	1.0x10 ⁻⁷	lb/gal	E	35
	206-44-0	Fluoranthene ^b	4.4x10 ⁻⁸	lb/gal	Е	35
	86-73-7	Fluorene ^b	3.2x10 ⁻⁸	lb/gal	Е	35
	91-20-3	Naphthalene ^b	1.7x10 ⁻⁵	lb/gal	E	35 ′
	85-01-8	Phenanthrene ^b	4.9x10 ⁻⁶	lb/gal	E	35
	129-00-0	Pyrene ^b	3.2x10 ⁻⁸	lb/gal	E	35
		Dioxins				
	19408-74-3	1,2,3,7,8,9-HxCDD ^b	7.6x10 ⁻¹³	lb/gal	E	35
	39227-28-6	1,2,3,4,7,8-HxCDD ^b	6.9x10 ⁻¹³	lb/gal	E	35
		HxCDD ^b	6.2×10^{-12}	lb/gal	E	35
	35822-46-9	1,2,3,4,6,7,8-HpCDD ^b	1.5x10 ⁻¹¹	lb/gal	E	35
		HpCDD ^b	2.0x10 ⁻¹¹	lb/gal	E ,	35
	3268-87-9	OCDD ^b	1.6x10 ⁻¹⁰	lb/gal	Е	35
		Total PCDD	2.0x10 ⁻¹⁰	lb/gal	E	35
		Furans				
		TCDF ^b	3.3x10 ⁻¹²	lb/gal	Е	35
		PeCDF ^b	4.8x10 ⁻¹³	lb/gal	Е	35
		HxCDF ^b	2.0x10 ⁻¹²	lb/gal	Е	35
		HpCDF ^b	9.7x10 ⁻¹²	lb/gal	Е	35
	67562-39-4		3.5x10 ⁻¹²	lb/gal	E	35
	39001-02-0	OCDF ^b	1.2x10 ⁻¹¹	lb/gal	E	35
	57001-02-0	Total PCDF	3.1x10 ⁻¹¹	lb/gal	E	35
		Total PCDD/PCDF	2.3×10^{-10}	lb/gal	E	35

Table 11.1-13. EMISSION FACTORS FOR HOT MIX ASPHALT HOT OIL SYSTEMS^a

^a Emission factor units are lb/gal of fuel consumed. To convert from pounds per standard cubic foot (lb/ft³⁾ to kilograms per standard cubic meter (kg/m³⁾, multiply by 16. To convert from lb/gal to kilograms per liter (kg/l), multiply by 0.12. CASRN = Chemical Abstracts Service Registry Number. SCC = Source Classification Code.

^b Compound is classified as polycyclic organic matter, as defined in the 1990 Clean Air Act Amendments (CAAA). Total PCDD is the sum of the total tetra through octa dioxins; total PCDF is sum of the total tetra through octa furans; and total PCDD/PCDF is the sum of total PCDD and total PCDF.

	SC	D ₂ ^b	SC	D ₃ ^c	N	D _x ^d	С	O ^e	Filterab	e PM ^f
Firing Configuration (SCC) ^a	Emission Factor (lb/10 ³ gal)	EMISSION FACTOR RATING								
Boilers < 100 Million Btu/hr No. 6 oil fired (1-02-004-02/03) (1-03-004-02/03)	1578	A	25	A	55	А	5	A	9.19(S)+3.22 ⁱ	В
No. 5 oil fired (1-03-004-04)	157S	А	25	А	55 .	А	5	А	10 ⁱ	А
No. 4 oil fired (1-03-005-04)	150S	А	28	A	20	А	5	А	7	В
Distillate oil fired (1-02-005-02/03) (1-03-005-02/03)	1428	А	25	А	20	A	5	А	2	А
Residential furnace (A2104004/A2104011)	1428	А	28	А	18	А	5	А	0.4 ^g	В

Table 1.3-1. (cont.)

a To convert from lb/103 gal to kg/103 L, multiply by 0.120. SCC = Source Classification Code.

b References 1-2,6-9,14,56-60. S indicates that the weight % of sulfur in the oil should be multiplied by the value given. For example, if the fuel is 1% sulfur, then S = 1.

c References 1-2,6-8,16,57-60. S indicates that the weight % of sulfur in the oil should be multiplied by the value given. For example, if the fuel is 1% sulfur, then S = 1.

d References 6-7,15,19,22,56-62. Expressed as NO2. Test results indicate that at least 95% by weight of NOx is NO for all boiler types except residential furnaces, where about 75% is NO. For utility vertical fired boilers use 105 lb/103 gal at full load and normal (>15%) excess air. Nitrogen oxides emissions from residual oil combustion in industrial and commercial boilers are related to fuel nitrogen content, estimated by the following empirical relationship: lb NO2 /103 gal = 20.54 + 104.39(N), where N is the weight % of nitrogen in the oil. For example, if the fuel is 1% nitrogen, then N = 1.

e References 6-8,14,17-19,56-61. CO emissions may increase by factors of 10 to 100 if the unit is improperly operated or not well maintained.

f References 6-8,10,13-15,56-60,62-63. Filterable PM is that particulate collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train. Particulate emission factors for residual oil combustion are, on average, a function of fuel oil sulfur content where S is the weight % of sulfur in oil. For example, if fuel oil is 1% sulfur, then S = 1.

g Based on data from new burner designs. Pre-1970's burner designs may, emit filterable PM as high as 3.0 1b/103 gal.

h The SO2 emission factor for both no. 2 oil fired and for no. 2 oil fired with LNB/FGR, is 142S, not 157S. Errata dated April 28, 2000. Section corrected May 2010.

1

i The PM factors for No.6 and No. 5 fuel were reversed. Errata dated April 28, 2000. Section corrected May 2010.

1.3-12

Table 1.3-3. EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS (TOC), METHANE, AND NONMETHANE TOC (NMTOC) FROM UNCONTROLLED FUEL OIL COMBUSTION^a

Firing Configuration (SCC)	TOC ^b Emission Factor (lb/10 ³ gal)	Methane ^b Emission Factor (lb/10 ³ gal)	NMTOC ^b Emission Factor (lb/10 ³ gal)
Utility boilers			
No. 6 oil fired, normal firing (1-01-004-01)	1.04	0.28	0.76
No. 6 oil fired, tangential firing (1-01-004-04)	1.04	0.28	0.76
No. 5 oil fired, normal firing (1-01-004-05)	1.04	0.28	0.76
No. 5 oil fired, tangential firing (1-01-004-06)	1.04	0.28	0.76
No. 4 oil fired, normal firing (1-01-005-04)	1.04	0.28	0.76
No. 4 oil fired, tangential firing (1-01-005-05)	1.04	0.28	0.76
Industrial boilers			
No. 6 oil fired (1-02-004-01/02/03)	1.28	1.00	0.28
No. 5 oil fired (1-02-004-04)	1.28	1.00	0.28
Distillate oil fired (1-02-005-01/02/03)	0.252	0.052	0.2
No. 4 oil fired (1-02-005-04)	0.252	0.052	0.2
Commercial/institutional/residential combustors			*
No. 6 oil fired (1-03-004-01/02/03)	1.605	0.475	1.13
No. 5 oil fired (1-03-004-04)	1.605	0.475	1.13
Distillate oil fired (1-03-005-01/02/03)	0.556	0.216	0.34
No. 4 oil fired (1-03-005-04)	0.556	0.216	0.34
Residential furnace (A2104004/A2104011)	2.493	1.78	0.713

EMISSION FACTOR RATING: A

a To convert from lb/103 gal to kg/103 L, multiply by 0.12. SCC = Source Classification Code.

b References 29-32. Volatile organic compound emissions can increase by several orders of magnitude if the boiler is improperly operated or is not well maintained.

Table 1.3-8. EMISSION FACTORS FOR NITROUS OXIDE (N₂O), POLYCYCLIC ORGANIC MATTER (POM), AND FORMALDEHYDE (HCOH) FROM FUEL OIL COMBUSTION^a

EMISSION FACTOR RATING: E

Picing One Groundian	Emission Factor (lb/10 ³ gal)						
Firing Configuration (SCC)	N ₂ O ^b	POM ^c	HCOH				
Utility/industrial/commercial boilers							
No. 6 oil fired (1-01-004-01, 1-02-004-01, 1-03-004-01)	0.53	0.0011 - 0.0013 ^d	0.024 - 0.061				
Distillate oil fired (1-01-005-01, 1-02-005-01, 1-03-005-01)	0.26	0.0033 ^e	0.035 - 0.061				
Residential furnaces (A2104004/A2104011)	0.05	ND	ND				

^a To convert from lb/10³ gal to kg/10³ L, multiply by 0.12. SCC = Source Classification Code. ND = no data. ^b References 45-46. EMISSION FACTOR RATING = B. ^c References 29-32. ^d Particulate and gaseous POM.

^e Particulate POM only.

Organic Compound	Average Emission Factor ^b (lb/10 ³ Gal)	EMISSION FACTOR RATING
Benzene	2.14E-04	С
Ethylbenzene	6.36E-05°	E
Formaldehyde ^d	3.30E-02	C ′
Naphthalene	1.13E-03	С
1,1,1-Trichloroethane	2.36E-04 ^c	E
Toluene	6.20E-03	D
o-Xylene	1.09E-04 ^c	E
Acenaphthene	2.11E-05	С
Acenaphthylene	2.53E-07	D
Anthracene	1.22E-06	C
Benz(a)anthracene	4.01E-06	C
Benzo(b,k)fluoranthene	1.48E-06	С
Benzo(g,h,i)perylene	2.26E-06	С
Chrysene	2.38E-06	С
Dibenzo(a,h) anthracene	1.67E-06	D
Fluoranthene	4.84E-06	С
Fluorene	4.47E-06	С
Indo(1,2,3-cd)pyrene	2.14E-06	С
Phenanthrene	1.05E-05	. C
Pyrene	4.25E-06	С
OCDD	3.10E-09°	E

Table 1.3-9. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.
 ^b References 64-72. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.

^c Based on data from one source test (Reference 67).

^d The formaldehyde number presented here is based only on data from utilities using No. 6 oil. The number presented in Table 1.3-7 is based on utility, commercial, and industrial boilers.

Table 1.3-10. EMISSION FACTORS FOR TRACE ELEMENTS FROM DISTILLATE FUEL OIL COMBUSTION SOURCES^a

EMISSION FACTOR RATING: E

Firing Configuration (SCC)					Emission	n Factor (l	b/10 ¹² Btu)			
	As	Be	Cd	Cr	Cu	Pb	Hg	Mn	Ni	Se	Zn
Distillate oil fired (1-01-005-01, 1-02-005-01, 1-03-005-01)	4	3	3	3	6	9	3	6	3	15	4

^a Data are for distillate oil fired boilers, SCC codes 1-01-005-01, 1-02-005-01, and 1-03-005-01. References 29-32, 40-44 and 83. To convert from lb/10¹² Btu to pg/J, multiply by 0.43.

1 5

1.3-22

Combustor Time	NC	D _x ^b	СО	
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS)°	190	A	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	Α	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
 ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D ' *
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^d	0.6	А
ТОС	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
 ^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/ 10^6 scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/ 10^6 scf) to 2,000 grains/ 10^6 scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	E
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Ε
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	E
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	E
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	E
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Ε
25321-22- 6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Ε
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Ε
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Ε
91-20-3	Naphthalene ^b	6.1E-04	Ε
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
129-00-0	Pyrene ^{b, c}	5.0E-06	E	
108-88-3	Toluene ^b	3.4E-03	С	

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired.
 Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	E
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	E

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceeded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

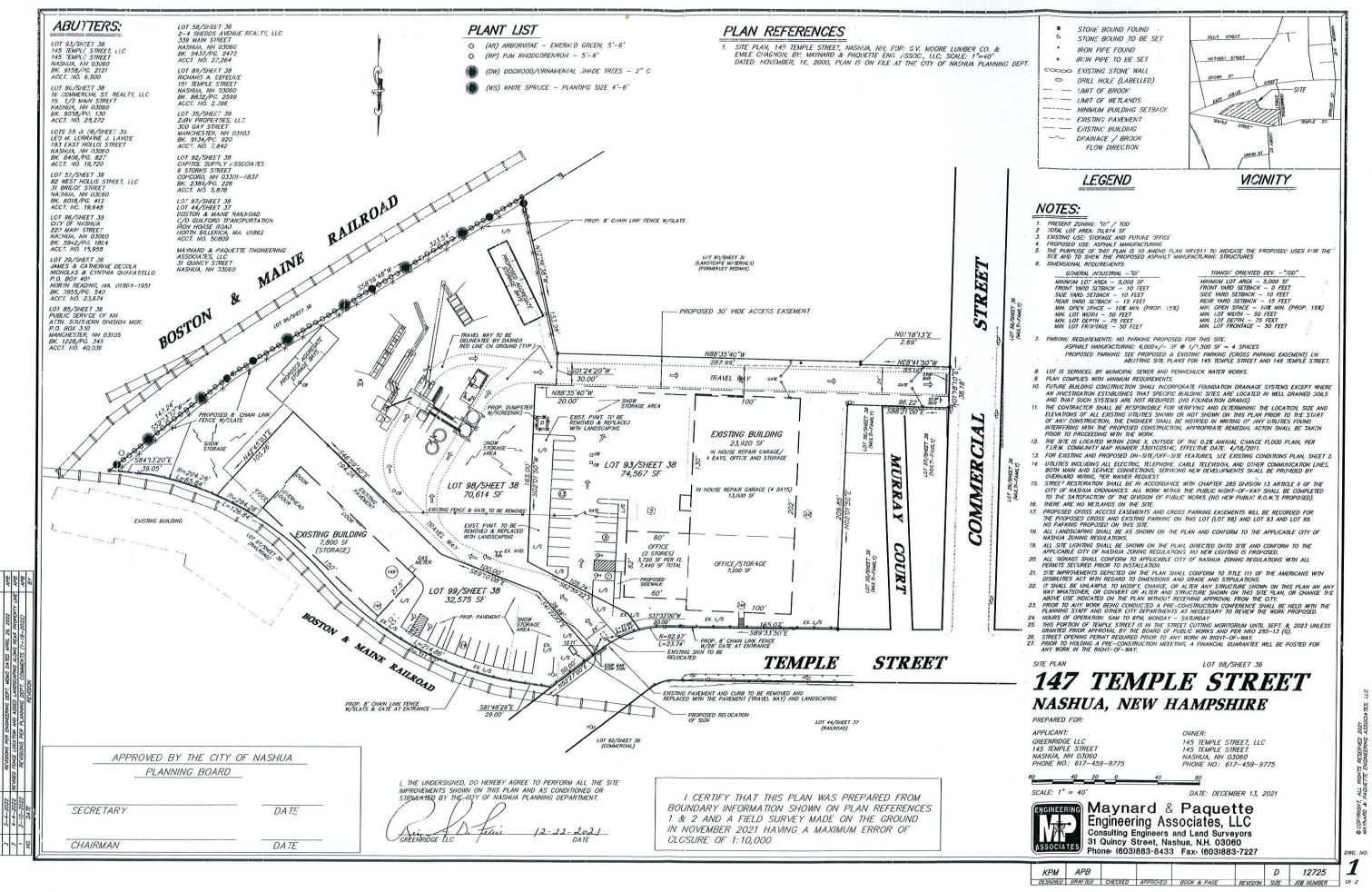
MONITORING PLAN FOR AIR POLLUTION CONTROL EQUIPMENT DRUM MIX PLANT

Monitoring Plan for Air Pollution Control Equipment Newport Bituminous LLC HMA Drum Plant - Nashua, NH

Newport Bituminous' site in Nashua, NH employs a CMI Corporation Magnum 300 Stationary counterflow Drum Mix Asphalt Plant, which contains a Wisper Jet-WJLE75 burner, having a maximum energy input capacity of 82,500,000 BTU/hour (82.5 MMBTU/hour). The plant's aggregate dryer is fired with natural gas or No. 2 fuel oil. The maximum production rate is 300 tons per hour (TPH). Particulate matter in the exhaust gases from the dryer is controlled with a primary dust collector (inertial dust collector), a CMI Stationary RA220S Roto-Aire baghouse, an exhaust fan, and associated ductwork.

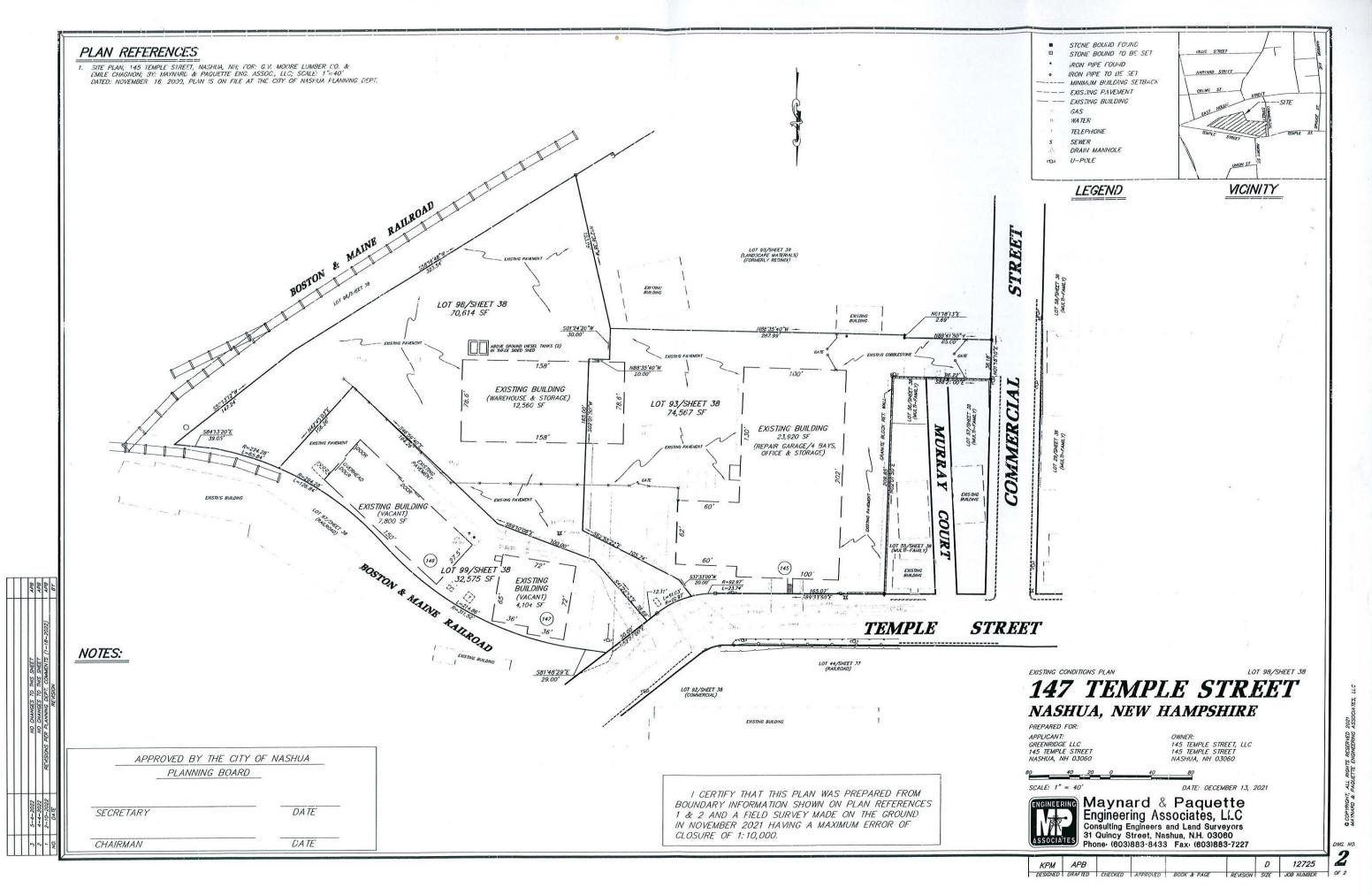
The primary inertial dust collector serves to remove larger particles that may be swept from the dryer and thus reduces the load on the baghouse. The primary collector is designed to operate with a gas pressure loss of 2-3 inches w.g.

The baghouse collects fine particulate that has not been captured by the primary collector. The baghouse consists of 720, fourteen (14) ounce Aramid filter bags. Total filter area for the baghouse is 12,744 square feet. The baghouse operates with a gas pressure loss of 2 to 6 inches water gauge. Filtered particulate is released from the fabric by use of a reverse pulse of air, drops to a collector hopper, and is recovered to be added as an ingredient at the mixing zone of the drum mixer. The baghouse inlet ductwork is equipped with a high temperature sensor. In the event of excessive exhaust temperatures (greater than 375° F), the burner is switched off and the exhaust fan is stopped (slowed). If the baghouse operates above or below this range the operator must investigate the cause. The capture efficiency for this system is 100%. The capture efficiency value is determined based on the assumption that due to the negative pressure created by the baghouse exhaust fan all particulate that exits the dryer will enter the baghouse. The anticipated baghouse control efficiency is 99.95%. The combined baghouse plus inertial dust collector particulate control efficiency is anticipated to be 99.98%. The baghouse exhaust fan in combination with the baghouse and inertial dust collector produces a maximum design exhaust gas flow from the baghouse of 57,348 acfm at a nominal operating temperature of 265° F.


Daily maintenance and inspection procedures:

- Grease screws
- Listen as baghouse pulse timer cycles through all rows for any unusual sound when diaphragm valves fire. Investigate as needed.
- Check the dust level inside the baghouse
- · Monitor the stack exhaust for presence of any visible emissions
- Monitor the plant equipment for any unusual fugitive emissions
- Maintain a log book with routine maintenance, inspections, fuel burned and sulfur content in the fuel, baghouse differential pressure, production and weather

Other maintenance and inspection procedures:


Perform a visolite test on the baghouse annually (within 10 days of spring start up and as needed).

SITE DRAWINGS

......

EQUIPMENT DESCRIPTION

Service Manager Street Street

Newport Construction Corporation 145 Temple Street Nashua, NH 03060

_

15th November 2022

Proposal no P222628

EQUIPMENT PROPOSAL

MAGNUM 300 STATIONARY 300 TPH COUNTERFLOW DRUM-MIX

SUMMARY DESCRIPTION

Item 1	Stationary five (5) compartment 532 aggregate feed unit
Item 2	Stationary aggregate weigh feed conveyor & scalping screen
Item 3	Stationary Magnum 300 counterflow drum-mix & burner
Item 4	Stationary RA220S Roto-Aire baghouse
Item 5	Stationary AC storage system
Item 6	Stationary 420 ton mixed material storage system
Item 7	Truck scale
Item 8	Stationary two (2) compartment 232 RAP feed unit
Item 9	Stationary RAP weigh feed conveyor & scalping screen
Item 10	Stationary control house/ motor control center & Impulse III
Item 11	Wiring
Item 12	Assistance to install and commission

TOTAL NET PRICE FCA POINT OF ORIGIN

\$ 0,000,000.00

CMI ROADBUILDING INC.

SUITE 225 THE PARKWAY 1300 S MERIDIAN AVE OKLAHOMA CITY OK 73108, U.S.A. T: 1-800-994-1736 E: sales@cmi-roadbuilding.com

Cedarapids www.cmi-roadbuilding.com

MOTOR POWER LIST

See attached

EXCLUSIONS

See appendix 1 attached All prices quoted do not include any applicable taxes

PAYMENT TERMS

20% non-refundable down payment due with signed order required to activate the order.

Balance due when equipment is ready to ship

VALIDITY

Prices firm for 30 days from date of this quotation

TERMS OF SALE

See attached

MAGNUM 300

TECHNICAL DESCRIPTION

300 TPH STATIONARY COUNTERFLOW DRUM-MIX

PLANT CAPACITY

300 tons per hour based on a temperature of 300° F from drum-mix discharge. Capable of up to 35% RAP. Average moisture content of 5% and including 5% bitumen in the mix.

Assuming the following conditions: -

- 1) 100% Plant utilisation
- 2) Ambient temperature 70°F
- 3) Altitude at sea level
- 4) Average moisture content is for surface moisture only
- 5) Free-flowing filler, density 70 lb/ft³
- 6) Single sized aggregate with max. lump 1¹/₂ in, density 100 lb/ft³
- 7) Mix recipe with no excessive proportion of one size
- 8) Feed to contain a maximum of 20% minus #8 Sieve (0-0.093")
- 9) Fuel oil calorific value of 138,000 Btu/gallon
- 10) Gas calorific value of 1,040 Btu/ft³
- 11) Liquid propane calorific value of 91,044 Btu/gallon
- 12) Capacities include filler and bitumen
- 13) Aggregate is non-porous and not excessively flaky

1 STATIONARY FIVE (5) COMPARTMENT 532 AGGREGATE FEED UNIT

1.1 HOPPERS

Hoppers	÷	Five (5) compartment steep sided hopper unit
Thickness	-	1/4"
Capacity	-	45 ton heaped
Loading width	-	14'
Vibrators		Two (2) 0.75 hp fitted to bins #2 
Guards	-	Removable guards installed on non-feed side and
		each end of hopper structure

1.2 **BELT FEEDERS**

Feeders	-	Five (5) variable speed
Capacity	-	300 tph (each)
Size	-	30" wide x 10' 2" centres
Gate	-	For manual adjustment and calibration
Belt	-	30" wide 3 ply with vulcanised joint
Idlers	-	20° troughed, bolted to steel section support frame
Head drum	-	Steel construction with rubber lagged face
Tail drum	-	Steel construction, self-cleaning
Drive		5 hp with AC variable frequency inverter to vary
		feeder output
Belt tensioning	-	Via tension bolts fitted to tail drum slide bearings
Starvation switches	-	Fitted to each feeder with indication on Impulse III
		control system in the event of no-flow

1.3 GATHERING CONVEYOR

Gathering conveyor	-	Mounted under feeders with curved head section to
		weigh feed conveyor scalping screen
Belt	-	36" wide 3 ply with vulcanised joint
Idlers	-	40 troughed bolted to steel section support frame

	Head drum	-	Steel construction with rubber lagged face
	Tail drum	-	Steel construction, self-cleaning
	Drive	-	15 hp
	Belt scraper	-	Belt scraper fitted at head drum
	Belt tensioning	-	Via tension bolts fitted to tail drum slide bearings
	Guards	-12	To 7' above grade
	Emergency grab wire	-	Fitted full length one side to 7' above grade
1.4	HOPPER DIVIDER	RS	
	Dividers	-	Three (3) 2' steel extension dividers fitted
			between storage hoppers to prevent/ minimise
			contamination between aggregate hoppers
1.5	BULKHEAD		
	Ramp bulkhead	-	Full height steel bulkhead fitted on one side of feed
			unit to retain customer constructed loader ramp
	Ramp wings	-	Used in conjunction with bulkhead assembly to
			retain loader ramp at each end
1.6	SUPPORT STRUC	ГURE	
	Structure	-	Fully welded rolled steel construction, suitably
			braced including steel support legs with steel base
			plates to distribute load evenly across foundations
2	STATIONARY WE	IGH F	EED CONVEYOR & SCALPING SCREEN
7			
2.1	SCALPING SCREE	EN	
	Size	_	4' wide x 10' long single deck

Size	-	4' wide x 10' long single deck
Screen mesh	-	The screen is supplied with a set of standard woven
		wire 2" screen meshes
Drive	-	5 hp

í.

Screen under hopper - Mounted below screen to direct material onto the weigh feed conveyor

2.2 SUPPORT STRUCTURE

Structure - Fully welded rolled steel structure, suitably braced to support the scalping screen with steel base plates to distribute load evenly across foundations

2.3 AGGREGATE WEIGH FEED CONVEYOR

Weigh feed conveyor	· -	Feeding sized aggregate material from scalping
		screen discharge to drum-mix slinger conveyor
Belt	-	36" wide 3 ply with vulcanised joint
Idlers	-	40° troughed bolted to steel section support frame
Weigh idler		Single idler belt scale to record material feed rate
		via Impulse III control system
Wind covers	-	Galvanised wind covers provided over belt weigh
		idler section for weather protection
Calibration	-	Air actuated pre-load test weight mechanism
		mounted on weigh idler section to provide
		instant calibration of belt scale with readout
		displayed on Impulse III control system
Head drum	-	Steel construction with rubber lagged face
Tail drum-	-	Steel construction, self-cleaning
Drive	 £	15 hp
Belt scraper		Belt scraper fitted at head drum
Belt tensioning	1)	Gravity take-up type
Receiving hopper	Ŧ	Conveyor fitted with feed hopper to receive material
		from scalping screen
Guards	-	To 7' above grade
Emergency grab wire	a	Fitted full length both sides to 7' above grade
Emergency grad with	J -	Thed full length both sides to 7 doore grade

2.4 SUPPORT STRUCTURE

Structure - Fully welded rolled steel construction, suitably braced support trestles with steel base plates to distribute load evenly across foundations

3 STATIONARY MAGNUM 300 COUNTERFLOW DRUM-MIX & BURNER

3.1 SLINGER CONVEYOR

Slinger conveyor	-	Mounted on chassis
Calibration	-	Slinger conveyor is reversible to facilitate
		calibration of the aggregate weigh feed conveyor
		belt scale
Belt		24" wide heat resistant belt with vulcanised joint
Idlers	-	20° troughed bolted to steel section support frame
Head drum	-	Steel construction with recessed flange bearings
Tail drum	-	Steel construction, self-cleaning
Drive	-	5 hp
Belt scraper	-	Belt scraper fitted at head drum
Belt scraper shield	-77	Protective belt scraper shield fitted to front of
		scraper to provide an air gap to protect scraper from
		drum heat
Belt tensioning	-	Via tension bolts fitted to tail drum slide bearings
Access platform		Slinger access platform mounted on one side of the
		slinger conveyor with handrailing, kick strip and
		vertical access ladder

3.2 COUNTERFLOW DRUM-MIX

Magnum	-	Two zone; drying/mixing
Diameter	-	7' 4"
Overall Length	-	44'
Shell construction	-	3/8" A572 grade 50 alloy steel throughout
Liners	-	Liners fitted in critical wear areas

Lifter flights	-	Bolt-in replaceable 1/4" steel plate
Mixing flights	-	Bolt-in replaceable 1/4" A514B T-1A folded alloy
		steel plate
Exhaust breaching	-	Fabricated in 3/16" A36 plate suitably braced with
		access hatch and feed opening for slinger conveyor
Discharge breaching	-	Fabricated in 3/16" and 1/4" A36 plate suitably
		braced with burner inlet and discharge chute
RAP Inlet chute	-	Top entry RAP collar inlet chute located at the
		beginning of the RAP zone with 1/4" A514B T-1A
		alloy steel liner plate.
RAP by-pass	-	RAP collar inlet chute has pneumatically operated
		by-pass facility for calibration of the RAP feed
		material
Seals	-2	High temperature flexible seals running on bands
		installed on shell contact surfaces for RAP collar
		and breach housing
Tires	-	Forged steel and machined on all faces supported on
		mounting blocks
Trunnion rollers	-	Four (4) machined steel 18" dia x 10" wide, running
		on shafts mounted in Pillow block bearings
		supported on the drum-mix chassis
Thrust rollers	-	12" dia x 2 thick mounted in pillow block bearings
		bolted to chassis
Insulation	-	2" high-density mineral wool with steel cladding
Drive	-	Four (4) 30 hp direct drive through each
		independent trunnion roller

3.3 DRUM MIX THERMOCOUPLE

Thermocouple	-	Shielded thermocouple mounted in drum discharge
		chute to record mix discharge temperature and
		display via Impulse III control system

3.4	DRUM-MIX INFRA	ARED	SENSOR	
	Infrared sensor	-	Mounted to drum-mix discharge chute (non-contact type) to measure and record mix discharge temperature via Impulse III control system	t
3.5	FINES INJECT AU	GER		
	Inject auger	-	Installed through discharge breeching end of drum	
			to return fines from bag house or mineral filler to	
			drum mixing zone	
	Drive	-	5 hp	5
				j
3.6	AC INJECTION			1
	AC injection		Via fixed 3" A/C line adjacent to fines inject auger	
3.7	BURNER			
	Туре	-	WISPER JET-WJLE75 allows for the burning of	
			gaseous fuels	
	Capacity	<u> </u>	82.5 MMbtu/hr	
	Primary fuel	-	Natural gas	
	Turbo blower	-	75 hp	
	Sound attenuation	-	Combustion air blower silencer	
	Burner control	-	Via Impulse III control system which monitors	
			drum material discharge temperature and regulates	
			burner air/ fuel ratios to achieve preset discharge	
			temperatures automatically	
	Ignition	-	Spark ignition electrode	
	Sub-freezing option	-	fitted to fuel train	

3.8 BURNER ACCESS PLATFORM

Access platform	-	Burner access platform mounted on one side of the
		burner with handrailing, kick strip and vertical
		access ladder

3.9 COLD AIR BLEED DOOR

Bleed door - Positioned in the drum exhaust breeching to allow quenching of exhaust gas temperature when producing open graded mixes via an electrically actuated bleed door

3.10 SUPPORT STRUCTURE

Structure - Fully welded rolled steel construction, suitably braced with drum tapered steel wedge supports to facilitate correct drum angle on customer's supplied concrete plinths

4 STATIONARY RA220S ROTO-AIRE BAGHOUSE

4.1 PRIMARY DUST

First stage	-	Inertial dust collector
Discharge chute	-	Collected heavy fines from inertial dust collector
		are fed via horizontal auger and discharge chute to
		the primary return auger

4.2 PRIMARY RETURN AUGER

Auger	-	14" dia high lift auger transfers heavy fines from
		inertial collector discharge to the drum-mix RAP
		collar inlet chute
Drive	-	10 hp
Rotation sensor	-	Fitted to primary return auger for the monitoring of
		auger rotation sequenced with Impulse III control
		system
Support	-	Auger support stand
Rotation sensor	-	Fitted to primary return auger for the monitoring of auger rotation sequenced with Impulse III control system

4.3 SECONDARY DUST

CAPACITY - 57,348 ACFM

4.4 SECOND STAGE

Second stage	-	Roto-Aire reverse air cleaning type bag filter
Filter medium	-	Aramid 14 oz/sq yd (720 bags)
Filter area	-	12,744 sq ft
Air to cloth ratio	-	4.5 : 1
Temperature	-	Maximum operating temperature 375°F
Particulate emission	-	Less than 0.04 gr/dscf provided the filter is
		maintained in accordance with our operating
		instructions

4.5 FILTER CABINET

Filter cabinet	-	Fabricated from 3/16" steel plate mounted on a
		trough hopper
Plenum plate	-	3/16" steel plate
Cabinet top access	-	Via vertical caged ladder with handrailing and kick
		strip mounted around top of filter cabinet

4.6 CLEANING

Cleaning mecha	nism -	Roto Step reverse induced air mechanism.
		During cleaning sequence, the mechanism opens a
		small number of bags to atmosphere for a short
		duration, to allow the exhaust fan to induce a
		reverse flow of air for bag cleaning.
Drive	-	One (1) 0.75 hp

4.7 TROUGH HOPPER

Trough hopper	- 35	Fabricated in 3/16" steel plate
Hopper auger	-	12" dia auger delivers fines to first fines return
		auger
Drive	-8	10 hp
Level indicator	-0	High-level indicator with high-level alarm signal on
		Impulse III control system
Rotation sensor	•	Fitted to hopper auger for the monitoring of auger
		rotation sequenced with Impulse III control system

4.8 FAN UNIT

Fan unit	-	Backward inclined centrifugal
Drive	-	Two (2) 100 hp motors via v-belts
Exhaust stack	-	Fabricated in 3/16" steel plate with test sockets and
		height of 37'

4.9 DUCTING

Ducting	T.	All interconnecting ducting included
Drum to knock out box -		From drum exhaust breeching to knockout box inlet
Knock out box to filter	<u>-</u>	From knockout box outlet to baghouse inlet
Filter to exhaust fan	-	Transition to fan housing
Test point access	×	Via vertical caged ladder from filter cabinet top to
		exhaust stack platform with handrailing and kick
		strip to access stack test points

4.10 AIR VOLUME CONTROL

Inverter/ VFD	-	200 hp inverter automatically varies air volume
		through plant via a transducer monitoring drum
		pressure
Indication	-	Inverter speed and drum pressure controlled via
		impulse III control system

4.11	BAG PROTECTIO	N	
	Bag protection	-	Two (2) temperature probes fitted in the ducting prior to the baghouse to protect bags from high gas
			temperatures
	Indication	-	Vacuum gauge provided to indicate pressure drop
			across the bag filter and control the filter cleaning
			system
4.12	SLAM DAMPER		
	Damper assembly	-	Pneumatically operated damper assembly positioned
			in main ducting prior to the primary dust inlet
	High temperature	-	Isolation damper blades automatically close when
			activated by temperature (probe 1) with high
			temperature alarm on Impulse III control system
	Burner shut-off	-	Temperature (probe 2) acts as a back-up to (probe
			1) and in the event that high temperature is still
			recorded, will shut off the burner automatically
			sequenced with the Impulse III control system

4.13 SUPPORT STRUCTURE

Structure	-	Fully welded rolled steel construction suitably
		braced to support the filter and exhaust fan unit with
		steel base plates to distribute load evenly across
		foundations

4.14 FIRST FINES RETURN AUGER

Return auger	-	14" dia auger transfers fines from baghouse auger
		outlet to second fines return auger
Drive	-	10 hp

Rotation sensor	-	Fitted to first fines return auger for the monitoring
		of auger rotation sequenced with Impulse III control
		system
Support	-	Auger support stand

4.15 SECOND FINES RETURN AUGER

Return auger	-	14" dia auger transfers fines from second fines
		return auger discharge to drum-mix fines inject
		auger
Drive	-	10 hp
Rotation sensor	-	Fitted to second fines return auger for the
		monitoring of auger rotation sequenced with
		Impulse III control system
Support	-	Auger support stand

5 STATIONARY VERTICAL AC STORAGE SYSTEM

5.1 VERTICAL THERMAL OIL HEATED TANKS

Tanks	-	Two (2) vertical
Capacity	-	30,000 gallon
Tank body	-	11' 5" diameter cylindrical section single
		compartment shell fabricated from 1/4" and 5/16"
		S275 (A570 Grade 40) plate, all welded
		construction
Fill inlet	-	3" flanged
Supply outlet	-	3" flanged
Return inlet	-	3" flanged
Drain outlet	-	4" flanged
Top vent	-	4" flanged
Vent/overflow	-	4" vent/overflow pipe mounted inside the tank
Heating tubes	-	2" Internal thermal oil heating heat coil with hot oil
		supply from an external heat exchange unit

Temperature contro	1 -	Indicating type temperature control with drywell
		socket wired to thermal oil solenoid
Visual contents gau	ge-	Mechanical contents gauge mounted on vertical
		tank side for visual identification of tank contents
		and level
Limit switch	-	High limit switch operated via the mechanical
		contents gauge
Contents gauge	-	Pressure transmitter with digital display
High level switch	-	Sends warning signal to local alarm
Manholes	-	Two (2) 24" dia bolted manholes
Tank roof access		Via vertical caged ladders with intermediate staged
		platform and spring release safety gate to top of tank
Tank roof	-	Fitted with handrailing and kick strip around
		circumference to provide safe access on tank roof
Tank base	-	Rolled steel section construction designed to
		distribute ground load on customer foundation

5.2 INSULATION & CLADDING

Cylinder	-	6" high density mineral wool
Tank roof	-	6" high density mineral wool
Tank base	-	6" high density mineral wool
Cladding	-	Stucco embossed aluminium cladding

5.3 ASPHALT PROPORTIONING

ì.

riable
lotion mass
valve and

5.4 AC SUPPLY SYSTEM

Unload pump	-	3" positive displacement pump with thermal oil
		jacket and pressure relief valve. Pump mounted on
		chassis frame and connected to 3" fill inlet via
		jacketed pipework and flex line jumpers
Pump capacity	-	200 GPM
Drive	-	15 hp
Valve	-	3" Three (3) way valve for supply, return and
		unloading pump

5.5 PIPEWORK & VALVES

Pipework and valves -	3" jacketed piping between metering pump and	
	drum, along with pump supply and return piping	
	with plug and 3-way valve to connect primary with	
	future AC storage tanks	

5.6 HEAT EXCHANGE UNIT

Heat exchanger	-	1,840,050 Btu/hr (464,000 Kcal/hr) heat exchange
		unit, mono-tubular, efficiency up to 90%
Chamber	-	Insulated heat chamber with galvanised steel
		cladding
Insulation	-	4" on shell and 6" on ends
Burner	-	Fully automatic gas oil burner, fuel viscosity 200
		SSU @ 100 F
Drive	-	1.5 hp
Circulation pump	-	Centrifugal pump with mechanical seal
Pump capacity	-	175 GPM
Drive	-	7.5 hp
Expansion tank	-	150 gallon with level gauge and shutoff
Heat Transfer Fluid	-	145 gallons required

	Tank outlet	-	Outlet flange at the lowest point to facilitate
			cleaning
	Exhaust stack	-	Hinged for shipping, including rain cap
5.7	CONTROLS		
	Control panel	-	Unit mounted, fully enclosed weatherproof control
			panel, 460v, 60 Hz, 3 phase and neutral. Complete
			with mains isolator, contactors and overloads
	Controls	-	Fully automatic controls incorporating: -
			Starters for oil pump and burner
			Flame failure burner control
			High limit cut-off
			7 day timer
	Safety control	-	Thermostatically controlled high oil temperature
			cut-off, pump pressure switch to avoid over heating
			if circulation fails and pump timer to stop
			circulation if burner fails

6 STATIONARY 420 TON MIXED MATERIAL STORAGE SYSTEM

6.1 MAIN DRAG SLAT CONVEYOR

Conveyor	-	36" wide x 48" deep x 83' long
Capacity	-	350 tph
Slats	-	Hard surfaced bolt on slats mounted on chain
		attachments with full welded bolts
Chain	-	Dual, 5" heavy-duty steel roller chains with hardened
		rollers and pins with heat treated side bars
Head shaft	-	Steel shaft with segmented split hub sprockets.
Tail shaft	-	Steel shaft with split sprockets.

Chain tensioning	-	By two (2) hydraulic cylinders either side of head shaft. Complete with calibration indicator on each side to assist with keeping the head shafts parallel
Drive	-	Chain drive from helical foot mounted reducer unit driven by a 100 hp motor
Idler rollers	-	16" dia drag chain idler rollers mounted in sliding
		bearing assemblies with shock absorbing
		adjustable stops
Casing	-	Fabricated in steel plate with 11/16" chrome
		carbide steel floor plate
Side wear liners	-	Abrasion resistant steel liners fitted to each side of
		the casing
Tail boot		Curved chrome carbide steel self-cleaning tail boot
		to minimise mixed material build-up
Chop Gate	-	Pneumatically operated chop gate located in conveyor
		floor with discharge chute for reject material
Covers	-	Hinged top covers for ease of inspection and
		maintenance
Drag slat heating	-	Via frame mounted thermal oil pipework fitted to
		the underside of the drag slat floor plate
Rotation sensor	-	Fitted to drag slat conveyor tail shaft for the
		monitoring of conveyor rotation, sequenced with
		Impulse III control system
Access walkway	-	Galvanized steel walkway along each side of drag
		slat conveyor up to the silo top with outer
		handrailing and kick strip with bottom access
		stairways
Head access	-	Via galvanized vertical cage ladder from silo top to
		drag slat head section platform with handrailing
		and kick strip to access drive components and
		chain adjustment

6.2 TWO (2) BIN TOP DRAG SLAT CONVEYORS

• •		
Conveyor	-	Two (2) 36" wide x 30" deep x 14' long
Capacity		Up to 350 tph
Slat	-	Hard surfaced corner bolt on slats mounted on
		chain attachments with full welded bolts
Chain	-	Dual, 4" heavy-duty steel roller chains with hardened
		rollers and pins with heat treated side bars
Head shaft	-	Steel shaft with split hub sprockets
Tail shaft	-	Steel shaft with one-piece sprockets
Chain tensioning	-	Via tension bolts fitted to head shaft slide bearing
Drive	-	Chain drive from 30 hp motor on helical foot
		mounted reducer unit
Idler rollers	-	10 3/4" dia drag chain idler rollers mounted in
		sliding bearing assemblies with shock absorbing
		adjustable stops
Casing	-	Fabricated in steel plate with 11/16" chrome
		carbide steel floor plate
Side wear liners	-	Abrasion resistant wear liners fitted to each side of
		the casing
Covers	-	Removable top covers for ease of inspection and
		maintenance
Rotation sensor		Fitted to drag slat conveyor tail shaft for the
		monitoring of conveyor rotation, sequenced with
		Impulse III control system

6.3 DIVERT FLOP GATE

-	Pneumatically operated chrome carbide flop gate
	positioned in bin top drag slat tail section to select
	designated silo batcher
-	Two (2) limit switches to prove position of flop
	gate, sequenced with Impulse III control system

6.4 **THREE (3) MIXED MATERIAL BATCHERS**

Batcher assembly	-	Three (3) bolt on batcher design encloses silo top	
		and batcher providing blue smoke control and	
		upper main silo seal.	
Cone assembly	-	Cone fabricated from 1/4" T1-A abrasion resistant	
		steel with 1/4" T1-A alloy steel liner	
Batch control		Preset batch size for automatic mixed material	
		batching into storage silo	
Ultimate limit	-	Independent ultimate limit switch sequenced with	
		Impulse III control system	
Batcher discharge		Direct into storage silo via two (2) pneumatically	1
		operated radial doors	

6.5 THREE (3) MIXED MATERIAL STORAGE SILOS (140 Ton each silo)

Storage silos	-	Three (3) insulated storage silos fabricated from
		3/8", 5/16" & 1/4" steel plate
Diameter	-	11' 11 1/4"
Capacity	-	420 tons based on a density of 120 lbs cu ft
Silo top	-	Manufactured from floor plate to provide access
		maintenance deck and walkway between storage
		silo tops, with galvanised handrailing and kick strip
Silo insulation	-	15" high density mineral wool fitted under storage
		silo top deck and 5" high density mineral wool on
		silo sides with sheet metal cladding
Silo inlet	<u>.</u>	Via pneumatically operated, insulated sliding silo
		inlet door
Door limit switch		Limit switch fitted to prove open position of silo
		inlet door, sequenced with Impulse III control
		system
Door grease seals	÷	Silo inlet door is sealed via 360° grease seal system
Silo outlet cone	-	Fabricated from 1/4" A36 stee1 with 1/4" T1-A
		alloy steel liner

Cone heating	-	Via thermal oil pipework mounted vertically
		around the circumference of the cone,
		thermostatically controlled via solenoid valve
Discharge doors	-	Pneumatically operated, insulated dual clamshell
		discharge doors
Door heating	-	Discharge doors heated via electrical heating
		elements thermostatically controlled
Silo level indication	-	Two (2) independent rods mounted in the storage
		silo to record high and low-level via limit switches
		mounted on silo top, with high level alarm signal
		sequenced with Impulse III control system and
		low-level indication
Silo base structure	-	Manufactured from heavy duty I-beam welded to
		storage silo with bolted end plates to receive silo
		support legs

6.6 SILO SUPPORT LEGS

Support legs	-	Manufactured from heavy duty I-beam, suitably
		braced with bolted end plates to silo base structure
		with steel base plates to distribute load on customer
		supplied concrete plinths
Access clearance	-	Support legs provide a vertical clearance of 13' 4"
		mounted on customer supplied concrete plinths to
		facilitate surface mounted truck scale with
		horizontal clearance of 13'

6.7 AUXILIARY THERMAL OIL BOOSTER PUMP

Booster pump	-	Additional thermal oil circulating booster pump to
		maintain pressure and flow to the main drag slat
		conveyor and silo cone heating
Drive	-	5 hp

6.8 COMPRESSOR & PNEUMATICS

Compressor	-	25 hp with 120-gallon receiver	
Pneumatics	-	Solenoid valves, nylon pipework and fittings	
Air receiver	-	Independent air receiver with check valve mounter	ed
		on silo structure to provide local air reservoir to	
		storage silos	<i>.</i>

7 TRUCK SCALE

Model	-	Steel deck truck scale
Deck size	-	120' long x 10' wide x 15-3/4" tall
Capacity		300,000 lbs design load capacity, dual tandem
		axle capacity 90,000 lbs
Construction	-	Modular open longitudinal ribbed orthotropic
		design with maximum deflection rating of
		1/1100 th of span
Suspension	-	Rocker pin suspension with bumper style checking
		allowing platform to move freely to accommodate
		vehicle movements
Load cells	-	66,000 lbs stainless steel rocker column
		NEMA 6P rated hermetically sealed load cells
Controls and display	Ξ.	Flash series instruments with digital technology
		converts analog loadcell signal to digital; load cells
		connected to smart sectional controllers which
		allow each loadcell to be multiplexed individually
	-	IND-2500 indicator
	-	Standard features include full graphic display,
		alphanumeric LCD, LED backlit display, desktop
		mounted

8 STATIONARY TWO (2) COMPARTMENT 232 RAP FEED UNIT

8.1 HOPPERS

Hoppers		Two (2) compartment steep sided hopper unit
Thickness	-	1/4"
Capacity	-	32 ton heaped
Loading width	-	14'
Vibrators	-	Two (2) 0.75 hp (one per hopper)
Hopper grids	-	Two (2) (one per hopper) fitted to top openings to
		prevent oversize material entering the hoppers
Pneumatic cannon	-	Blockage breaking system fitted on hopper with
		timers and controls
Guards	-76	Removable guards installed on non-feed side and
		each end of hopper structure to 7' above grade

8.2 RAP BELT FEEDERS

Feeders	-	Two (2) variable speed
Capacity	-	300 tph
Size	-	30" wide x 10' 2" centres
Gate	-	For manual adjustment and calibration
Belt	-	30" wide, 3 ply with vulcanised joint
Idlers	-	20° troughed bolted to steel section support frame
Head drum	÷	Steel construction with rubber lagged face
Tail drum		Steel construction, self-cleaning
Belt tensioning	-	Via tension bolts fitted to tail drum slide bearings
Drive	-	5 hp with AC variable frequency inverter to vary
		feeder output
Starvation switch	÷	Fitted to feeder with indication on Impulse III
		control system in the event of no-flow

8.3 RAP GATHERING CONVEYOR

Gathering conveyor	-	Mounted under feeders with curved head section to
		RAP weigh feed conveyor scalping screen
Belt	-	36" wide, 3 ply with vulcanised joint
Idlers	-	40° troughed bolted to steel section support frame
Head drum	-	Steel construction with rubber lagged face
Tail drum	-	Steel construction, self-cleaning
Belt tensioning	-	Via tension bolts fitted to tail drum slide bearings
Drive	-	15 hp
Belt scraper	÷	Belt scraper fitted at head drum
Covers	×	Dust/weather shielding forming roof and both sides
		belt protection, manufactured from galvanised
		sheeting to facilitate removal of side protection by
		one operative for maintenance purposes
Guards	-	To 7' above grade
Emergency grab wire	e -	Fitted full length on one side

8.4 SUPPORT STRUCTURE

Structure	-	Fully welded rolled steel construction, suitably
		braced including steel support legs with steel base
		plates to distribute load evenly across foundations

9 STATIONARY RAP WEIGH FEED CONVEYOR & SCALPING SCREEN

9.1 RAP SCALPING SCREEN

Size	-	4' wide x 10' long single deck
Screen mesh	-	The screen is supplied with a set of standard woven
		wire 1" screen meshes
Drive	-	5 hp
Screen under hopper	-	Mounted into the support structure below screen to
		direct material onto the RAP weigh feed conveyor

9.2 SUPPORT STRUCTURE

Structure	-	Fully welded rolled steel construction, suitably
		braced to support the RAP scalping screen with
		steel base plates to distribute load evenly across
		foundations

9.3 RAP WEIGH FEED CONVEYOR

Weigh feed conveyor - Feeding sized RAP material from the RAP scalping			
		screen to drum-mix RAP collar inlet chute	
Belt	-	36" wide 3 ply with vulcanised joint	
Idlers	-	40° troughed bolted to steel section support frame	
Weigh idler	-	Single idler belt scale to record material feed rate	
		via Impulse III control system	
Wind covers	-	Galvanised wind covers provided over belt weigh	
		idler section for weather protection	
Head drum	-	Steel construction with rubber lagged face	
Tail drum-	-	Steel construction, self-cleaning	
Drive	-	15 hp	
Belt scraper	-	Belt scraper fitted at head drum	
Belt tensioning	-	Gravity take-up type	
Receiving hopper	-	Conveyor fitted with feed hopper to receive material	
		from scalping screen	
Guards	-	To 7' above grade	
Emergency grab wire	-	Fitted full length on one side	

9.4 SUPPORT STRUCTURE

Structure	-	Fully welded rolled steel construction, suitably
		braced support trestles with steel base plates to
		distribute load evenly across foundations

10 STATIONARY CONTROL HOUSE/ MCC & IMPULSE III

10.1 CONTROL HOUSE/ MCC

Size	-	32' long x 12' wide
Base frame	-	Constructed from rolled steel section
Construction	-	Steel panels fitted between rolled steel sections with
		plastic coated exterior finish
Roof	-	Sheet steel construction insulated with 6"
		encapsulated rockfibre
Floor	-	Wooden floor with steel bracings, covered with
		heavy-duty rubber floor tiles, insulated with 4"
		rockfibre slab, foil faced both sides
Walls	-	Clad internally with decorative boarding, insulated
		with 2" rockfibre slab, foil faced both sides
Room divider	_	Internal partition clad internally with decorative
		boarding, insulated with 2" rockfibre slab, foil faced
		both sides with internal door between control
		section and motor control section
Windows		Three sides double-glazed, operators end of control
		house
Ticket window	-	Double sliding, glazed window on one side to allow
		manual issuing of tickets
Lighting	-	Overhead LED panel lights fitted per room
Night lighting	4) -	Red light fitted in control house for night
		operation
HVAC	-	Two (2) zonal heating and air conditioning units,
		one (1) per room
Power	-	Eight (8) quad socket outlets and five (5) double
		socket outlets
External doors	-	Via Two (2) steel access doors, one (1) per room
Access	-	Via galvanized stairway and platform with
		handrailing and kick strip

10.2 MOTOR CONTROLS (Located in MCC room)

Motor panel	-	With main line disconnect, transformer and all
		switchgear interconnect wiring to control console
Contactors		Combination circuit breakers/contactors
Standards	-	UL and CSA approved

10.3 NIGHT GENERATOR CHANGE OVER ISOLATOR SWITCH

Change over switch - Change over isolator switch fitted in motor control panel to allow for the use of an auxiliary night generator for plant heating etc inclusive of a 250A breaker.

10.4 IMPULSE III CONTROL & MANAGEMENT SYSTEM

Control system

User friendly Plant Control and Management SCADA control system on Windows operating system consisting of the following: -

Industrial Fanless Intel i5 4 core Embedded Computer (minimum spec) running Windows 10 IoT with SATA III SSD. Vibration and temperature tolerant from -4 to 158F (-20 to 70C) Two (2) high resolution 24" widescreen DisplayPort monitors allow for control functions to be operated by optical mouse and keyboard while simultaneously displaying plant operations on second screen.

Battery back-up for uninterruptible power supply (UPS) to protect the PC from power spikes etc.

Rockwell Compact Logix software and licenses Impulse III software Fully integrated Burner control Rockwell Compact Logix PLC racks with processor and I/O cards Laser printer Interconnecting communication cables Impulse III PLC uses PID (Proportional-Integral-Derivative) process control of the material drives to ensure continual accuracy of the blend during a mix.

Characteristics

Features of Impulse III include

- Step by step calibration of all metering parameters
- Diagnostic trouble shooting screens
- Ethernet communications between PC, PLC and VFD motor controllers
- Automatic proportioning of all materials
- Automatic sequence start up and shut down
- Motor start / stop for manual control of motors
- Safety interlocks
- Automatic burner control
- Automatic bag house cleaning and airflow control
- Automatic mix changes in process
- Automatic divert mix to another silo when changing mixes
- Plant graphics color display with user friendly animation
- Display real time status and values of plant operation
- Pre-configured to match actual plant configuration
- Plant operator virtual training in simulation

- Remote diagnostics and updates via the web
- Spoken Alarms announced in English with comprehensive alarm logging

10.5 JWS LOADOUT SYSTEM

Weigh Loadout

- JWS silo load out PC based control system comprising of:

Standard tower PC Windows 7 professional, 3.2 ghz processor, (1) x 22" flat monitor, AC I/O enclosure, input and output couplers, screw type terminal connections and interface with MicroController module.

Cardinal 205 digital weight indicator.

Model 1182 DWI interface module

OKI Microline 320 turbo printer system

Software

A highly configurable design allowing producer to add fields, layout printing of delivery tickets, add or modify reports, create database fields, and simple upgrade.

Open database architecture provides seamless integration with virtually any office application

11 WIRING

SOOW electric cabling provided, suitable for plant layout with terminal connections to motor control center.

Internet connection is required on delivery of plant to site.

Plant control via I/O panels mounted on plant.

JWS initial site set up and annual service contract by customer.

12 ASSISTANCE TO INSTALL AND COMMISSION

We include for the services of a skilled mechanical/electrical engineer to assist with the installation and commissioning for a maximum four (4) weeks stay, including return airfare.

Customer to provide all skilled and unskilled site labour, cranage and hand tools together with accommodation, meals, and local transport for our engineer.

Customer to provide employer liability insurance for labour they supply.

STEELWORK

All welds to be cleaned as necessary, steelwork to be wire brushed and generally cleaned of all mill scale etc before painting.

PAINTING

All external surfaces are painted with one-coat single pack zinc phosphate primer, followed by a high build semi-gloss topcoat enamel finish.

Drum, discharge, and exhaust breaching painted with black, matte finish high-temperature resistant paint.

Plant to be painted CMI White (Cream to pattern)

Drag salt to be painted Black

All stairways, platforms and handrailing to be galvanised

All guards to be **safety yellow**

All plastic coated steel sheeting to be Goosewing grey

VOLTAGE

460 Volt, 3 phase, 60 Hz

MANUALS

We include for two complete sets of operators and maintenance instruction manuals and illustrated spare parts manuals.

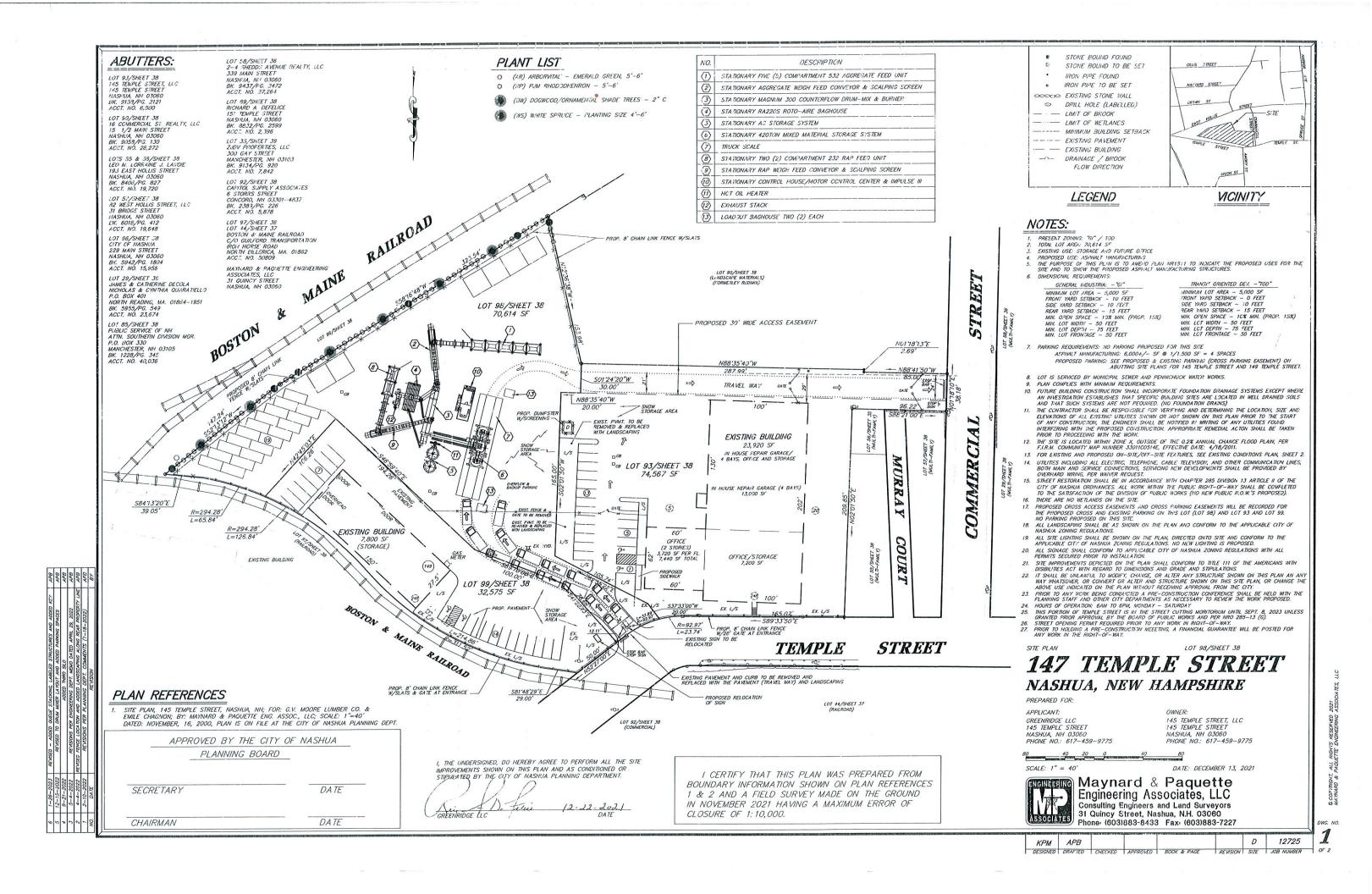
Magnum 300 Stationary Drum-Mix Plant Motor List

Item	Qu	antity	Motor		Star	rter	hp	Total hp	
1.	4	Feeder mo	otors		I	nverter	5	20	
2.	2	Vibrators	DOL		C).75	1.5	¢	
3.	1	Gathering	conveyor		I	DOL	15	15	
4.	1	Scalping s	creen		Ι	DOL	5	5	
5.	1	weigh feed	l conveyor		Ι	DOL	15	15	
6.	1	Slinger con	nveyor		Ι	OOL fwd/rev	5	5	
7.	4	Drum-mix	Soft start			30	120		7
8.	1	Fines injec	ct auger		Ι	DOL	5	5	1
9.	1	Burner blo	ower		I	nverter	100	100	
10.	1	Fuel pump	DOL		1	.5	1.5		
11.	1	Primary re	eturn auger		Ι	DOL	10	10	
12.	1	Roto-Step	DOL		C).75	0.75		
13.	1	Trough ho	pper auger		Ι	DOL	10	10	
14.	2	Exhaust fa	n		Ι	nverter	100	200	
15.	2	Fines retur	rn augers		Ι	DOL	10	20	
16.	1	Asphalt pr	roportioning		Ι	nverter	15	15	
17.	1	AC unload	l pump		Ι	OOL Fwd/rev	15	15	
18.	1	Heat excha	anger		Ι	DOL	1.5	1.5	
19.	1	Circulating	g pump		Ι	DOL	7.5	7.5	
20.	1	Drag slat		Fwd/rev	1	100	100		
21.	2	Bin top dra	ag slat conveyor	DOL	3	30	60		
22.	1	Auxiliary	pump		Ι	DOL	5	5	
23.	1	Compress	or		Ι	DOL	25	25	
24.	2	RAP vibra	ators		Ι	DOL	0.75	1.5	
25.	2	RAP feede	ers		Ι	DOL	5	10	
26.	1	RAP conv	reyor			DOL	15	15	
27.	1	RAP scalp	oing screen			DOL	5	5	
28.	1	RAP feed	conveyor		I	DOL	15	15	

Total 804.25 hp

HEATING/OTHER SUPPLIES

29.1	Cabin supply	1 ph + N	18	18
30.2	HVAC 1 ph + N	3	6	
31.2	Silo door heaters	1 ph + N	2	24


Total 48 kW

APPENDIX 1

REQUIREMENTS TO BE PROVIDED BY THE BUYER NOT INCLUDED IN THIS PROPOSAL

- 1. All state or local engineering approvals, certificates as may be required.
- 2. Any applicable taxes, duties, etc.
- 3. All freight from point of origin.
- 4. Necessary permits for EPA, erection, and all others necessary for the operation of the plant.
- 5. Site preparation, foundation design, footings, anchor bolts and/or necessary blocking to provide support for individual components.
- 6. Foundations, piers and all necessary ground works
- 7. Footings, installation, certification and calibration for truck scale, if required.
- 8. Electrical service and hook up to control center.
- 9. External main electrical disconnect (if required).
- 10. Aggregate hopper grids
- 11. AC tank agitators and liquid additive system
- 12. Mineral filler storage system
- 13. Fuel storage tank and piping (unless otherwise stated in this proposal).
- 14. Gas supply for burner pilot.
- 15. JWS site set up and service contract
- 16. All air piping from air compressor(s).
- 17. All lubricants, heat transfer oil and hydraulic oil as required.
- 18. All water pump piping suction and pressure.
- 19. Asphalt piping as required, (unless otherwise stated in this proposal).
- 20. All equipment and labor necessary for the proper erection of the plant. Proper sizing of lifting equipment is purchaser's responsibility.
- 21. Mechanical and electrical installation and commissioning.
- 22. Additional requirements necessary to make the equipment operable and not specifically stated in this proposal are the responsibility of the buyer.

NOTE: THE PERFORMANCE OF THE EQUIPMENT COVERED IN THIS PROPOSAL CANNOT BE EXACTLY PREDICTED FOR EVERY OPERATING CONDITION. IN CONSEQUENCE, ANY PREDICTED PERFORMANCE DATA SUBMITTED ARE INTENDED TO SHOW PROBABLE OPERATING RESULTS WHICH MAY BE CLOSELY APPROXIMATED, BUT WHICH CANNOT BE GUARANTEED

UNRESTRICTED/UNCONTROLLED POTENTIAL EMISSION CALCULATIONS

Emission factors for NOx, CO, VOC,PM10, SO2, and HAPs were taken from the latest version of AP-42, Section 11.1 Hot Mix Asphalt Plants (3/04). Based on unrestricted operation of 24 hours/day or operation for 365 days/year (8760 hours/year).

UNIT NO. 1 - DRUM MIX PLANT	Primary Fuel	Back-up fuel	Maximum
Fuel	Natural gas	No. 2 oil	
Sulfur Content	nil	0.0015 %	
Burner Rating	82.5 MMBTU/hour	82.5 MMBTU/hour	
Maximum Fuel Firing Rate	80,882 cuft/hr	589 Gal/Hr	
Higher Heating Value Production (Tons/Hour)	1,020 BTU/scf	140,000 BTU/gallon	
Annual Production (Tons/Year)	300 TPH 2,628,000 TPY	300 TPH 2,628,000 TPY	2,628,000
Annual Froduction (Tons/Tear)	2,020,000 171	2,020,000 171	2,020,000
Nitrogen Oxides (NO _x)			
Emission Factor	0.026 Lbs/ton	0.055 Lbs/ton	
x Hourly production rate =	7.8 lbs/hour	16.5 lbs/hour	16.50
x Annual Production/2000 =	34.16 TPY	72.27 TPY	72.27
Sulfur Dioxide (SO ₂)			
Emission Factor	0.0034 Lbs/ton	0.011 Lbs/ton	
x Hourly production rate =	1.0 lbs/hour	3.3 lbs/hour	3.30
x Annual Production/2000 =	4.47 TPY	14.45 TPY	14.45
Carbon Monoxide (CO)			
Emission Factor	0.13 Lbs/ton	0.13 Lbs/ton	
x Hourly production rate =	39.0 lbs/hour	39.0 lbs/hour	39.00
x Annual Production/2000 =	170.8 TPY	170.8 TPY	170.82
Volatile Organic Compounds (VOC)			
Emission Factor	0.032 Lbs/ton	0.032 Lbs/ton	
x Hourly production rate =	9.6 lbs/hour	9.6 lbs/hour	9.60
x Annual Production/2000 =	42.05 TPY	42.05 TPY	42.05
Particulate Matter (PM10)			
Particulate Matter (PM10) Emission Factor	0.023 Lbs/ton	0.023 Lbs/ton	
x Hourly production rate =	6.9 lbs/hour	6.9 lbs/hour	6.90
x Annual Production/2000 =	30.22 TPY	30.22 TPY	30.22
Asphalt fumes		0.040.11. //	
Emission Factor	0.012 Lbs/ton 3.6 lbs/hour	0.012 Lbs/ton 3.6 lbs/hour	3.60
x Hourly production rate = x Annual Production/2000 =	15.77 TPY	15.77 TPY	3.80 15.77
X Annuar i Toudellon/2000 -	10.77 11 1	13.77 11 1	10.77
HAPs			
Non-PAH HAPs			
Benzene (E.F.)	3.90E-04 lbs/ton	3.90E-04 lbs/ton	
x Hourly production rate =	1.17E-01 lbs/hour	1.17E-01 lbs/hour	1.17E-01
x Annual Production / 2000 =	5.12E-01 TPY	5.12E-01 TPY	5.12E-01
Ethylbenzene (E.F.)	2.40E-04 lbs/ton	2.40E-04 lbs/ton	
x Hourly production rate =	7.20E-02 lbs/hour	7.20E-02 lbs/hour	7.20E-02
x Annual Production / 2000 =	3.15E-01 TPY	3.15E-01 TPY	3.15E-01
Formaldehyde (E.F.)	3.10E-03 lbs/ton	3.10E-03 lbs/ton 9.30E-01 lbs/hour	0.305-01
x Hourly production rate = x Annual Production / 2000 =	9.30E-01 lbs/hour 4.07E+00 TPY	4.07E+00 TPY	9.30E-01 4.07E+00
			1.012.00
Hexane (E.F.)	9.20E-04 lbs/ton	9.20E-04 lbs/ton	
x Hourly production rate =	2.76E-01 lbs/hour	2.76E-01 lbs/hour	2.76E-01
x Annual Production / 2000 =	1.21E+00 TPY	1.21E+00 TPY	1.21E+00
Isooctane (2,2,4-trimethylpentane) (E.F.)	4.00E-05 lbs/ton	4.00E-05 lbs/ton	
x Hourly production rate =	1.20E-02 lbs/hour	1.20E-02 lbs/hour	1.20E-02
x Annual Production / 2000 =	5.26E-02 TPY	5.26E-02 TPY	5.26E-02
Methyl chloroform (E.F.)	4.80E-05 lbs/ton	4.80E-05 lbs/ton	
x Hourly production rate =	1.44E-02 lbs/hour	1.44E-02 lbs/hour	1.44E-02
x Annual Production / 2000 =	6.31E-02 TPY	6.31E-02 TPY	6.31E-02
Toluene (E.F.)	1.50E-04 lbs/ton	2.90E-03 lbs/ton	
x Hourly production rate =	4.50E-02 lbs/hour	8.70E-01 lbs/hour	8.70E-01
x Annual Production / 2000 =	1.97E-01 TPY	3.81E+00 TPY	3.81E+00

Xylene (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.00E-04 lbs/ton 6.00E-02 lbs/hour 2.63E-01 TPY	2.00E-04 lbs/ton 6.00E-02 lbs/hour 2.63E-01 TPY	6.00E-02 2.63E-01
PAH HAPs			
2-Methylnaphthalene (E.F.)	7.40E-05 lbs/ton	1.70E-04 lbs/ton	
x Hourly production rate =	2.22E-02 lbs/hour	5.10E-02 lbs/hour	5.10E-02
x Annual Production / 2000 =	9.72E-02 TPY	2.23E-01 TPY	2.23E-01
/=			
Acenaphthene (E.F.)	1.40E-06 lbs/ton	1.40E-06 lbs/ton	
x Hourly production rate =	4.20E-04 lbs/hour	4.20E-04 lbs/hour	4.20E-04
x Annual Production / 2000 =	1.84E-03 TPY	1.84E-03 TPY	1.84E-03
Acenaphthylene (E.F.)	8.60E-06 lbs/ton	2.20E-05 lbs/ton	
x Hourly production rate =	2.58E-03 lbs/hour	6.60E-03 lbs/hour	6.60E-03
x Annual Production / 2000 =	1.13E-02 TPY	2.89E-02 TPY	2.89E-02
Anthracene (E.F.)	2.20E-07 lbs/ton	3.10E-06 lbs/ton	
x Hourly production rate =	6.60E-05 lbs/hour	9.30E-04 lbs/hour	9.30E-04
x Annual Production / 2000 =	2.89E-04 TPY	4.07E-03 TPY	4.07E-03
Benzo(a)anthracene (E.F.)	2.10E-07 lbs/ton	2.10E-07 lbs/ton	
x Hourly production rate =	6.30E-05 lbs/hour	6.30E-05 lbs/hour	6.30E-05
x Annual Production / 2000 =	2.76E-04 TPY	2.76E-04 TPY	2.76E-04
,,,	202 01 1	2	
Benzo(a)pyrene (E.F.)	9.80E-09 lbs/ton	9.80E-09 lbs/ton	
x Hourly production rate =	2.94E-06 lbs/hour	2.94E-06 lbs/hour	2.94E-06
x Annual Production / 2000 =	1.29E-05 TPY	1.29E-05 TPY	1.29E-05
Benzo(b)fluoranthene (E.F.)	1.00E-07 lbs/ton	1.00E-07 lbs/ton	
x Hourly production rate = x Annual Production / 2000 =	3.00E-05 lbs/hour	3.00E-05 lbs/hour	3.00E-05 1.31E-04
x Annual Floduction / 2000 -	1.31E-04 TPY	1.31E-04 TPY	1.31E-04
Benzo(e)pyrene (E.F.)	1.10E-07 lbs/ton	1.10E-07 lbs/ton	
x Hourly production rate =	3.30E-05 lbs/hour	3.30E-05 lbs/hour	3.30E-05
x Annual Production / 2000 =	1.45E-04 TPY	1.45E-04 TPY	1.45E-04
Denze(a h i)nendene (E E)	4.00E-08 lbs/ton	4.00E-08 lbs/ton	
Benzo(g,h,i)perylene (E.F.) x Hourly production rate =	1.20E-05 lbs/hour	1.20E-05 lbs/hour	1.20E-05
x Annual Production / 2000 =	5.26E-05 TPY	5.26E-05 TPY	5.26E-05
X Annual 1 Toduction / 2000 -	3.202-03 11 1	3.202-03 11 1	5.202-03
Benzo(k)fluoranthene (E.F.)	4.10E-08 lbs/ton	4.10E-08 lbs/ton	
x Hourly production rate =	1.23E-05 lbs/hour	1.23E-05 lbs/hour	1.23E-05
x Annual Production / 2000 =	5.39E-05 TPY	5.39E-05 TPY	5.39E-05
	1.80E-07 lbs/ton	1.80E-07 lbs/ton	
Chrysene (E.F.) x Hourly production rate =	5.40E-05 lbs/hour	5.40E-07 lbs/hour	5.40E-05
x Annual Production / 2000 =	2.37E-04 TPY	2.37E-04 TPY	2.37E-04
X / IIIIdal Foddolloll / 2000	2.072 01 11 1	2.072 01 11 1	2.012.01
Fluoranthene (E.F.)	6.10E-07 lbs/ton	6.10E-07 lbs/ton	
x Hourly production rate =	1.83E-04 lbs/hour	1.83E-04 lbs/hour	1.83E-04
x Annual Production / 2000 =	8.02E-04 TPY	8.02E-04 TPY	8.02E-04
Fluorene (E.F.)	3.80E-06 lbs/ton	1.10E-05 lbs/ton	
x Hourly production rate =	1.14E-03 lbs/hour	3.30E-03 lbs/hour	3.30E-03
x Annual Production / 2000 =	4.99E-03 TPY	1.45E-02 TPY	1.45E-02
,,, unidal () oldenon, 2000			
Indeno(1,2,3-cd)pyrene (E.F.)	7.00E-09 lbs/ton	7.00E-09 lbs/ton	
x Hourly production rate =	2.10E-06 lbs/hour	2.10E-06 lbs/hour	2.10E-06
x Annual Production / 2000 =	9.20E-06 TPY	9.20E-06 TPY	9.20E-06
Naphthalene (E.F.)	9.00E-05 lbs/ton	6.50E-04 lbs/ton	
x Hourly production rate =	2.70E-02 lbs/hour	1.95E-01 lbs/hour	1.95E-01
x Annual Production / 2000 =	1.18E-01 TPY	8.54E-01 TPY	8.54E-01
			0.012-01
Perylene (E.F.)	8.80E-09 lbs/ton	8.80E-09 lbs/ton	
x Hourly production rate =	2.64E-06 lbs/hour	2.64E-06 lbs/hour	2.64E-06
x Annual Production / 2000 =	1.16E-05 TPY	1.16E-05 TPY	1.16E-05
Phenanthrene (E.F.)	7.60E-06 lbs/ton	2.30E-05 lbs/ton	
x Hourly production rate =	2.28E-03 lbs/hour	6.90E-03 lbs/hour	6.90E-03
x Annual Production / 2000 =	9.99E-03 TPY	3.02E-02 TPY	3.02E-02

Pyrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	5.40E-07 lbs/ton 1.62E-04 lbs/hour 7.10E-04 TPY	3.00E-06 lbs/ton 9.00E-04 lbs/hour 3.94E-03 TPY	9.00E-04 3.94E-03
Dioxins Total TCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	9.30E-13 lbs/ton 2.79E-10 lbs/hour 1.22E-09 TPY	2.79E-10 1.22E-09
Total PeCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	2.20E-11 lbs/ton 6.60E-09 lbs/hour 2.89E-08 TPY	6.60E-09 2.89E-08
Total HxCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.20E-11 lbs/ton 3.60E-09 lbs/hour 1.58E-08 TPY	3.60E-09 1.58E-08
Total HpCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.90E-11 lbs/ton 5.70E-09 lbs/hour 2.50E-08 TPY	5.70E-09 2.50E-08
Total PCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	7.90E-11 lbs/ton 2.37E-08 lbs/hour 1.04E-07 TPY	2.37E-08 1.04E-07
Furans Total TCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	3.70E-12 lbs/ton 1.11E-09 lbs/hour 4.86E-09 TPY	1.11E-09 4.86E-09
Total PeCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	8.40E-11 lbs/ton 2.52E-08 lbs/hour 1.10E-07 TPY	2.52E-08 1.10E-07
Total HxCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.30E-11 lbs/ton 3.90E-09 lbs/hour 1.71E-08 TPY	3.90E-09 1.71E-08
Total HpCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.00E-11 lbs/ton 3.00E-09 lbs/hour 1.31E-08 TPY	3.00E-09 1.31E-08
Total PCDD/PCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.20E-10 lbs/ton 3.60E-08 lbs/hour 1.58E-07 TPY	3.60E-08 1.58E-07
METALS			
Antimony (E.F.)	1.80E-07 lbs/ton	1.80E-07 lbs/ton	
x Hourly production rate = x Annual Production / 2000 =	5.40E-05 lbs/hour 2.37E-04 TPY	5.40E-05 lbs/hour 2.37E-04 TPY	5.40E-05 2.37E-04
Arsenic (E.F.)	5.60E-07 lbs/ton	5.60E-07 lbs/ton	
x Hourly production rate = x Annual Production / 2000 =	1.68E-04 lbs/hour 7.36E-04 TPY	1.68E-04 lbs/hour 7.36E-04 TPY	1.68E-04 7.36E-04
Beryllium (E.F.)	0.00E+00 lbs/ton	0.00E+00 lbs/ton	
x Hourly production rate = x Annual Production / 2000 =	0.00E+00 lbs/hour 0.00E+00 TPY	0.00E+00 lbs/hour 0.00E+00 TPY	0.00E+00 0.00E+00
Cadmium (E.F.)	4.10E-07 lbs/ton	4.10E-07 lbs/ton	
x Hourly production rate = x Annual Production / 2000 =	1.23E-04 lbs/hour 5.39E-04 TPY	1.23E-04 lbs/hour 5.39E-04 TPY	1.23E-04 5.39E-04
Chromium (E.F.) x Hourly production rate = x Annual Production / 2000 =	5.50E-06 lbs/ton 1.65E-03 lbs/hour 7.23E-03 TPY	5.50E-06 lbs/ton 1.65E-03 lbs/hour 7.23E-03 TPY	1.65E-03 7.23E-03
Cobalt (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.60E-08 lbs/ton 7.80E-06 lbs/hour 3.42E-05 TPY	2.60E-08 lbs/ton 7.80E-06 lbs/hour 3.42E-05 TPY	7.80E-06 3.42E-05
Hexavalent chromium (E.F.) x Hourly production rate = x Annual Production / 2000 =	4.50E-07 lbs/ton 1.35E-04 lbs/hour 5.91E-04 TPY	4.50E-07 lbs/ton 1.35E-04 lbs/hour 5.91E-04 TPY	1.35E-04 5.91E-04

Lead (E.F.) x Hourly production rate = x Annual Production / 2000 =	6.20E-07 lbs/ton 1.86E-04 lbs/hour 8.15E-04 TPY	1.50E-05 lbs/ton 4.50E-03 lbs/hour 1.97E-02 TPY	4.50E-03 1.97E-02
Manganese (E.F.) x Hourly production rate = x Annual Production / 2000 =	7.70E-06 lbs/ton 2.31E-03 lbs/hour 1.01E-02 TPY	7.70E-06 lbs/ton 2.31E-03 lbs/hour 1.01E-02 TPY	2.31E-03 1.01E-02
Mercury (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.40E-07 lbs/ton 7.20E-05 lbs/hour 3.15E-04 TPY	2.60E-06 lbs/ton 7.80E-04 lbs/hour 3.42E-03 TPY	7.80E-04 3.42E-03
Nickel (E.F.) x Hourly production rate = x Annual Production / 2000 =	6.30E-05 lbs/ton 1.89E-02 lbs/hour 8.28E-02 TPY	6.30E-05 lbs/ton 1.89E-02 lbs/hour 8.28E-02 TPY	1.89E-02 8.28E-02
Phosphorus (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.80E-05 lbs/ton 8.40E-03 lbs/hour 3.68E-02 TPY	2.80E-05 lbs/ton 8.40E-03 lbs/hour 3.68E-02 TPY	8.40E-03 3.68E-02
Selenium (E.F.) x Hourly production rate = x Annual Production / 2000 =	3.50E-07 lbs/ton 1.05E-04 lbs/hour 4.60E-04 TPY	3.50E-07 lbs/ton 1.05E-04 lbs/hour 4.60E-04 TPY	1.05E-04 4.60E-04
Aggregate sum of all HAPs	0.0054 lbs/ton 1.61 lbs/hour 7.07 TPY	0.0088 lbs/ton 2.65 lbs/hour 11.62 TPY	2.65 11.62

UNIT 2 - HOT OIL HEATER

Emission factors for the criteria pollutants were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) Emission factors for HAPs while burning natural gas were obtained from AP-42, Section 1.4, Natural Gas Combustion, (Table 1.4-3 and Table 1.4-4) (7/98).

Emission factors for HAPs while burning no. 2 fuel oil were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) and AP-42, Section 1.3 Fuel Oil Compusition (Table 1.3-10) (5/10)

		a heating value of 140,000 BTU/gallon.	Maximum
Fuel	Natural gas	#2 Oil	
Maximum fuel firing rate	1,840 cuft/hour	13.14 GPH	
Hours of Operation	8,760 Hrs/Year	8,760 Hrs/Year	
Annual Fuel Usage	16.1 MMSCF	115,131 Gallons	
Nitrogen Oxides			
Emission Factor	100 lbs/MMscf	20 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.18 lbs/hour	0.26 lbs/hour	0.26
x Annual Fuel Usage/2000 =	0.81 TPY	1.15 TPY	1.15
Sulfur Dioxide			
Emission Factor	0.6 lbs/MMscf	0.213 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.00 lbs/hour	0.00
x Annual Fuel Usage/2000 =	0.005 TPY	0.01 TPY	0.01
Carbon Monoxide			
Emission Factor	84 Lbs/MMscf	5.0 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.15 lbs/hour	0.07 lbs/hour	0.15
x Annual Fuel Usage/2000 =	0.68 TPY	0.29 TPY	0.68
Volatile Organic Compounds			
Emission Factor	5.5 lbs/MMscf	0.34 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.01 lbs/hour	0.00 lbs/hour	0.01
x Annual Fuel Usage/2000 =	0.04 TPY	0.02 TPY	0.04

Emission Factor1.9 lbs/MMscf1.8 lbs/1000 galx Hourly Fuel Usage/2000 =0.00 lbs/hour0.02 lbs/hourx Annual Fuel Usage/2000 =0.02 TPY0.10 TPYHAPs

Acenaphthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	5.30E-07 lbs/gal	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour	6.97E-06 lbs/hour	7.0E-06
x Annual Fuel Usage/2000 =	1.45E-08 TPY	3.05E-08 TPY	3.1E-08

0.02

0.10

Acenaphthylene			
Emission Factor	1.80E-06 Lbs/MMCuFt	2.00E-07 lbs/gal	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour	2.63E-06 lbs/hour	2.6E-06
x Annual Fuel Usage/2000 =	1.45E-08 TPY	1.15E-08 TPY	1.5E-08
_			
Anthracene			
Emission Factor	2.40E-06 Lbs/MMCuFt	1.80E-07 lbs/gal	
x Hourly Fuel Usage/2000 =	4.42E-09 lbs/hour	2.37E-06 lbs/hour	2.4E-06
x Annual Fuel Usage/2000 =	1.93E-08 TPY	1.04E-08 TPY	1.9E-08
Benz(a)anthracene Emission Factor		NA	
	1.80E-06 Lbs/MMCuFt 3.31E-09 lbs/hour	NA	3.3E-09
x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.45E-08 TPY		3.3E-09 1.5E-08
X Allildar i del Osage/2000 -	1.45E-06 TF1		1.52-00
Benzene			
Emission Factor	2.10E-03 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.86E-06 lbs/hour		3.9E-06
x Annual Fuel Usage/2000 =	1.69E-05 TPY		1.7E-05
Benzo(a)pyrene			
Emission Factor	1.20E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	2.21E-09 lbs/hour		2.2E-09
x Annual Fuel Usage/2000 =	9.67E-09 TPY		9.7E-09
Benzo(b)fluoranthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	1.00E-07 lbs/gal 1.31E-06 lbs/hour	1 25 06
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 1.45E-08 TPY	5.76E-09 TPY	1.3E-06 1.5E-08
x Annual Fuel Usage/2000 =	1.45E-06 1F f	5.76E-09 TPT	1.5E-06
Benzo(g, h, i)perylene			
Emission Factor	1.20E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	2.21E-09 lbs/hour		2.2E-09
x Annual Fuel Usage/2000 =	9.67E-09 TPY		9.7E-09
5			
Benzo(k)fluoranthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour		3.3E-09
x Annual Fuel Usage/2000 =	1.45E-08 TPY		1.5E-08
Chrysene			
Emission Factor	1.80E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour		3.3E-09
x Annual Fuel Usage/2000 =	1.45E-08 TPY		1.5E-08
Dibenzo(a, h)anthracene			
Emission Factor	1.20E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	2.21E-09 lbs/hour		2.2E-09
x Annual Fuel Usage/2000 =	9.67E-09 TPY		9.7E-09
	0.012 00 11 1		0.12.00
Fluoranthene			
Emission Factor	3.00E-06 Lbs/MMCuFt	4.40E-08 lbs/gal	
x Hourly Fuel Usage/2000 =	5.52E-09 lbs/hour	5.78E-07 lbs/hour	5.8E-07
x Annual Fuel Usage/2000 =	2.42E-08 TPY	2.53E-09 TPY	2.4E-08
Fluorene			
Emission Factor	2.80E-06 Lbs/MMCuFt	3.20E-08 lbs/gal	
x Hourly Fuel Usage/2000 =	5.15E-09 lbs/hour	4.21E-07 lbs/hour	4.2E-07
x Annual Fuel Usage/2000 =	2.26E-08 TPY	1.84E-09 TPY	2.3E-08
Formaldehyde			
Emission Factor	2.60E-02 Lbs/MMCuFt	3.50E-06 lbs/gal	
x Hourly Fuel Usage/2000 =	4.78E-05 lbs/hour	4.60E-05 lbs/hour	4.8E-05
x Annual Fuel Usage/2000 =	2.10E-04 TPY	2.01E-07 TPY	2.1E-04
			51
2-Methylnaphthalene			
Emission Factor	2.40E-05 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	4.42E-08 lbs/hour		4.4E-08
x Annual Fuel Usage/2000 =	1.93E-07 TPY		1.9E-07
Naphthalene			
Emission Factor	6.10E-04 Lbs/MMCuFt	1.70E-05 lbs/gal	
x Hourly Fuel Usage/2000 =	1.12E-06 lbs/hour	2.23E-04 lbs/hour	2.2E-04

x Annual Fuel Usage/2000 =	4.92E-06 TPY	9.79E-07 TPY	4.9E-06
Phenanthrene Emission Factor	1.70E-05 Lbs/MMCuFt		
x Hourly Fuel Usage/2000 =	3.13E-08 lbs/hour	4.90E-06 lbs/gal 6.44E-05 lbs/hour	6.4E-05
x Annual Fuel Usage/2000 =	1.37E-07 TPY	2.82E-07 TPY	2.8E-07
X Alliluar i del Osage/2000 -	1.37E-07 TF1	2.022-07 171	2.86-07
Pyrene			
Émission Factor	5.00E-06 Lbs/MMCuFt	3.20E-08 lbs/gal	
x Hourly Fuel Usage/2000 =	9.20E-09 lbs/hour	4.21E-07 lbs/hour	4.2E-07
x Annual Fuel Usage/2000 =	4.03E-08 TPY	1.84E-09 TPY	4.0E-08
Toluene			
Emission Factor	3.40E-03 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	6.26E-06 lbs/hour 2.74E-05 TPY		6.3E-06 2.7E-05
x Annual Fuel Usage/2000 =	2.74E-03 TF1		2.7E-03
HxCDD			
Emission Factor	NA	6.20E-12 lbs/gal	
x Hourly Fuel Usage/2000 =		8.15E-11 lbs/hour	8.1E-11
x Annual Fuel Usage/2000 =		3.57E-13 TPY	3.6E-13
HpCDD			
Emission Factor	NA	2.00E-11 lbs/gal	
x Hourly Fuel Usage/2000 =		2.63E-10 lbs/hour	2.6E-10
x Annual Fuel Usage/2000 =		1.15E-12 TPY	1.2E-12
OCDD			
Emission Factor	NA	1.60E-10 lbs/gal	
x Hourly Fuel Usage/2000 =		2.10E-09 lbs/hour	2.1E-09
x Annual Fuel Usage/2000 =		9.21E-12 TPY	9.2E-12
TCDF			
Emission Factor	NA	3.30E-12 lbs/gal	
x Hourly Fuel Usage/2000 =		4.34E-11 lbs/hour	4.3E-11
x Annual Fuel Usage/2000 =		1.90E-13 TPY	1.9E-13
PeCDF			
Emission Factor	NA	4.80E-13 lbs/gal	
x Hourly Fuel Usage/2000 =		6.31E-12 lbs/hour	6.3E-12
x Annual Fuel Usage/2000 =		2.76E-14 TPY	2.8E-14
HxCDF			
Emission Factor	NA	2.00E-12 lbs/gal	
x Hourly Fuel Usage/2000 =		2.63E-11 lbs/hour	2.6E-11
x Annual Fuel Usage/2000 =		1.15E-13 TPY	1.2E-13
HpCDF			
Emission Factor	NA	9.70E-12 lbs/gal	
x Hourly Fuel Usage/2000 =		1.27E-10 lbs/hour	1.3E-10
x Annual Fuel Usage/2000 =		5.58E-13 TPY	5.6E-13
1, 2, 3, 4, 6, 7, 8-HpCDF	NA		
Emission Factor	NA	3.50E-02 lbs/gal	
x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =		4.60E-01 lbs/hour 2.01E-03 TPY	4.6E-01 2.0E-03
Annual Tuel Osage/2000 -		2.012-00 11 1	2.02-03
OCDF			
Emission Factor	NA	1.20E-11 lbs/gal	
x Hourly Fuel Usage/2000 =		1.58E-10 lbs/hour	1.6E-10
x Annual Fuel Usage/2000 =		6.91E-13 TPY	6.9E-13
Metals			
Arsenic			
Emission Factor	2.00E-04 Lbs/MMCuFt	5.60E-06 lbs/10^6 Btu	
x Hourly Fuel Usage/2000 =	3.68E-07 lbs/hour	7.36E-05 lbs/hour	7.4E-05
x Annual Fuel Usage/2000 =	1.61E-06 TPY	3.22E-07 TPY	1.6E-06
_			
Beryllium			
Emission Factor	1.20E-05 Lbs/MMCuFt	4.20E-07 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	2.21E-08 lbs/hour	5.52E-06 lbs/hour	5.5E-06
x Annual Fuel Usage/2000 =	9.67E-08 TPY	2.42E-08 TPY	9.7E-08

Cadmium

Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.10E-03 Lbs/MMCuFt 2.02E-06 lbs/hour 8.87E-06 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 2.42E-08 TPY	5.5E-06 8.9E-06
Chromium Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.40E-03 Lbs/MMCuFt 2.58E-06 lbs/hour 1.13E-05 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 2.42E-08 TPY	5.5E-06 1.1E-05
Cobalt Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	8.40E-05 Lbs/MMCuFt 1.55E-07 lbs/hour 6.77E-07 TPY	1.26E-06 lbs/1000 gal 1.66E-05 lbs/hour 7.25E-08 TPY	1.7E-05 6.8E-07
Lead Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	0.00E+00 Lbs/MMCuFt 0.00E+00 lbs/hour 0.00E+00 TPY	8.40E-07 lbs/1000 gal 1.10E-05 lbs/hour 4.84E-08 TPY	1.1E-05 4.8E-08
Manganese Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.80E-04 Lbs/MMCuFt 6.99E-07 lbs/hour 3.06E-06 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 2.42E-08 TPY	5.5E-06 3.1E-06
Mercury Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.60E-04 Lbs/MMCuFt 4.78E-07 lbs/hour 2.10E-06 TPY	2.10E-06 lbs/1000 gal 2.76E-05 lbs/hour 1.21E-07 TPY	2.8E-05 2.1E-06
Nickel Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.10E-03 Lbs/MMCuFt 3.86E-06 lbs/hour 1.69E-05 TPY	NA	3.9E-06 1.7E-05
Selenium Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour 1.93E-07 TPY	NA	4.4E-08 1.9E-07
Total HAPs	6.94E-05 lbs/hour 3.04E-04 TPY	4.60E-01 lbs/hour 2.02E-03 TPY	4.6E-01 2.0E-03

Total Facility Wide Emissions (Lbs/Hour)

	<u>NOx</u>	<u>SO2</u>	<u>CO</u>	VOC	<u>PM10</u>	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	16.5	3.3	39.0	9.6	6.9	2.65	3.60
UNIT NO. 2 - HOT OIL HEATER	<u>0.26</u>	0.00	<u>0.15</u>	<u>0.01</u>	<u>0.02</u>	<u>0.46</u>	<u>N/A</u>
TOTAL FACILITY WIDE (LBS/HOUR)	16.76	3.30	39.15	9.61	6.92	3.11	3.60

Total Facility Wide Emissions (TPY)

	NOx	<u>SO2</u>	<u>co</u>	VOC	<u>PM10</u>	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	72.3	14.5	170.8	42.0	30.2	11.62	15.77
UNIT NO. 2 - HOT OIL HEATER	<u>1.15</u>	<u>0.01</u>	0.68	<u>0.04</u>	<u>0.10</u>	0.002	<u>N/A</u>
TOTAL FACILITY WIDE (TPY)	73.42	14.47	171.50	42.09	30.33	11.63	15.77

PROPOSED POTENTIAL EMISSION CALCULATIONS

Emission factors for NOx, CO, VOC, PM10, SO2, and HAPs were taken from the latest version of AP-42, Section 11.1 Hot Mix Asphalt Plants (3/04). Restrictions are for a total of 500,000 TPY of product.

UNIT NO. 1 - DRUM MIX PLANT	Primary Fuel	Back-up fuel	Maximum
Fuel	Natural gas	No. 2 oil	
Sulfur Content	nil	0.0015 %	
Burner Rating Maximum Fuel Firing Rate	82.5 MMBTU/hour 80,882 cuft/hr	82.5 MMBTU/hour 589 Gal/Hr	
Higher Heating Value	1,020 BTU/scf	140,000 BTU/gallon	
Production (Tons/Hour)	300 TPH	300 TPH	
Annual Production (Tons/Year)	500,000 TPY	500,000 TPY	500,000
Nitrogen Oxides (NO _x)			
Emission Factor	0.026 Lbs/ton	0.055 Lbs/ton	40.50
x Hourly production rate = x Annual Production/2000 =	7.8 lbs/hour 6.50 TPY	16.5 lbs/hour 13.75 TPY	16.50 13.75
Sulfur Dioxide (SO ₂)			
Emission Factor	0.0034 Lbs/ton	0.011 Lbs/ton	
x Hourly production rate =	1.0 lbs/hour	3.3 lbs/hour	3.30
x Annual Production/2000 =	0.85 TPY	2.75 TPY	2.75
Carbon Monoxide (CO)			
Emission Factor	0.13 Lbs/ton	0.13 Lbs/ton	
x Hourly production rate =	39.0 lbs/hour	39.0 lbs/hour	39.00
x Annual Production/2000 =	32.5 TPY	32.5 TPY	32.50
Volatile Organic Compounds (VOC)			
Emission Factor	0.032 Lbs/ton	0.032 Lbs/ton	
x Hourly production rate =	9.6 lbs/hour	9.6 lbs/hour	9.60
x Annual Production/2000 =	8.00 TPY	8.00 TPY	8.00
Particulate Matter (PM10)			
Emission Factor	0.023 Lbs/ton	0.023 Lbs/ton	
x Hourly production rate = x Annual Production/2000 =	6.9 lbs/hour 5.75 TPY	6.9 lbs/hour 5.75 TPY	6.90 5.75
X Annual Floudetion/2000 -	J.73 IF1	3.73 TFT	5.15
Asphalt fumes			
Emission Factor	0.012 Lbs/ton	0.012 Lbs/ton	2.60
x Hourly production rate = x Annual Production/2000 =	3.6 lbs/hour 3.00 TPY	3.6 lbs/hour 3.00 TPY	3.60 3.00
,,, unidal 1 1000000, #2000			
HAPs			
Non-PAH HAPs Benzene (E.F.)	3.90E-04 lbs/ton	3.90E-04 lbs/ton	
x Hourly production rate =	1.17E-01 lbs/hour	1.17E-01 lbs/hour	1.17E-01
x Annual Production / 2000 =	9.75E-02 TPY	9.75E-02 TPY	9.75E-02
Ethylbenzene (E.F.) x Hourly production rate =	2.40E-04 lbs/ton 7.20E-02 lbs/hour	2.40E-04 lbs/ton 7.20E-02 lbs/hour	7.20E-02
x Annual Production / 2000 =	6.00E-02 TPY	6.00E-02 TPY	6.00E-02
			0.001 01
Formaldehyde (E.F.)	3.10E-03 lbs/ton	3.10E-03 lbs/ton	0.005.07
x Hourly production rate =	9.30E-01 lbs/hour	9.30E-01 lbs/hour	9.30E-01 7.75E 01
x Annual Production / 2000 =	7.75E-01 TPY	7.75E-01 TPY	7.75E-01
Hexane (E.F.)	9.20E-04 lbs/ton	9.20E-04 lbs/ton	
x Hourly production rate =	2.76E-01 lbs/hour	2.76E-01 lbs/hour	2.76E-01
x Annual Production / 2000 =	2.30E-01 TPY	2.30E-01 TPY	2.30E-01
Isooctane (2,2,4-trimethylpentane) (E.F.)	4.00E-05 lbs/ton	4.00E-05 lbs/ton	
x Hourly production rate =	1.20E-02 lbs/hour	1.20E-02 lbs/hour	1.20E-02
x Annual Production / 2000 =	1.00E-02 TPY	1.00E-02 TPY	1.00E-02
Methyl chloroform (E.F.)	4.80E-05 lbs/ton	4.80E-05 lbs/ton	
x Hourly production rate =	1.44E-02 lbs/hour	1.44E-02 lbs/hour	1.44E-02
x Annual Production / 2000 =	1.20E-02 TPY	1.20E-02 TPY	1.20E-02
Toluene (E.F.)	1.50E-04 lbs/ton	2.90E-03 lbs/ton	
x Hourly production rate =	4.50E-02 lbs/hour	8.70E-01 lbs/hour	8.70E-01
x Annual Production / 2000 =	3.75E-02 TPY	7.25E-01 TPY	7.25E-01

Xylene (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.00E-04 lbs/ton 6.00E-02 lbs/hour 5.00E-02 TPY	2.00E-04 lbs/ton 6.00E-02 lbs/hour 5.00E-02 TPY	6.00E-02 5.00E-02
PAH HAPs 2-Methylnaphthalene (E.F.) x Hourly production rate = x Annual Production / 2000 =	7.40E-05 lbs/ton 2.22E-02 lbs/hour 1.85E-02 TPY	1.70E-04 lbs/ton 5.10E-02 lbs/hour 4.25E-02 TPY	5.10E-02 4.25E-02
Acenaphthene (E.F.) x Hourly production rate = x Annual Production / 2000 =	1.40E-06 lbs/ton 4.20E-04 lbs/hour 3.50E-04 TPY	1.40E-06 lbs/ton 4.20E-04 lbs/hour 3.50E-04 TPY	4.20E-04 3.50E-04
Acenaphthylene (E.F.) x Hourly production rate = x Annual Production / 2000 =	8.60E-06 lbs/ton 2.58E-03 lbs/hour 2.15E-03 TPY	2.20E-05 lbs/ton 6.60E-03 lbs/hour 5.50E-03 TPY	6.60E-03 5.50E-03
Anthracene (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.20E-07 lbs/ton 6.60E-05 lbs/hour 5.50E-05 TPY	3.10E-06 lbs/ton 9.30E-04 lbs/hour 7.75E-04 TPY	9.30E-04 7.75E-04
Benzo(a)anthracene (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.10E-07 lbs/ton 6.30E-05 lbs/hour 5.25E-05 TPY	2.10E-07 lbs/ton 6.30E-05 lbs/hour 5.25E-05 TPY	6.30E-05 5.25E-05
Benzo(a)pyrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	9.80E-09 lbs/ton 2.94E-06 lbs/hour 2.45E-06 TPY	9.80E-09 lbs/ton 2.94E-06 lbs/hour 2.45E-06 TPY	2.94E-06 2.45E-06
Benzo(b)fluoranthene (E.F.) x Hourly production rate = x Annual Production / 2000 =	1.00E-07 lbs/ton 3.00E-05 lbs/hour 2.50E-05 TPY	1.00E-07 lbs/ton 3.00E-05 lbs/hour 2.50E-05 TPY	3.00E-05 2.50E-05
Benzo(e)pyrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	1.10E-07 lbs/ton 3.30E-05 lbs/hour 2.75E-05 TPY	1.10E-07 lbs/ton 3.30E-05 lbs/hour 2.75E-05 TPY	3.30E-05 2.75E-05
Benzo(g,h,i)perylene (E.F.) x Hourly production rate = x Annual Production / 2000 =	4.00E-08 lbs/ton 1.20E-05 lbs/hour 1.00E-05 TPY	4.00E-08 lbs/ton 1.20E-05 lbs/hour 1.00E-05 TPY	1.20E-05 1.00E-05
Benzo(k)fluoranthene (E.F.) x Hourly production rate = x Annual Production / 2000 =	4.10E-08 lbs/ton 1.23E-05 lbs/hour 1.03E-05 TPY	4.10E-08 lbs/ton 1.23E-05 lbs/hour 1.03E-05 TPY	1.23E-05 1.03E-05
Chrysene (E.F.) x Hourly production rate = x Annual Production / 2000 =	1.80E-07 lbs/ton 5.40E-05 lbs/hour 4.50E-05 TPY	1.80E-07 lbs/ton 5.40E-05 lbs/hour 4.50E-05 TPY	5.40E-05 4.50E-05
Fluoranthene (E.F.) x Hourly production rate = x Annual Production / 2000 =	6.10E-07 lbs/ton 1.83E-04 lbs/hour 1.53E-04 TPY	6.10E-07 lbs/ton 1.83E-04 lbs/hour 1.53E-04 TPY	1.83E-04 1.53E-04
Fluorene (E.F.) x Hourly production rate = x Annual Production / 2000 =	3.80E-06 lbs/ton 1.14E-03 lbs/hour 9.50E-04 TPY	1.10E-05 lbs/ton 3.30E-03 lbs/hour 2.75E-03 TPY	3.30E-03 2.75E-03
Indeno(1,2,3-cd)pyrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	7.00E-09 lbs/ton 2.10E-06 lbs/hour 1.75E-06 TPY	7.00E-09 lbs/ton 2.10E-06 lbs/hour 1.75E-06 TPY	2.10E-06 1.75E-06
Naphthalene (E.F.) x Hourly production rate = x Annual Production / 2000 =	9.00E-05 lbs/ton 2.70E-02 lbs/hour 2.25E-02 TPY	6.50E-04 lbs/ton 1.95E-01 lbs/hour 1.63E-01 TPY	1.95E-01 1.63E-01
Perylene (E.F.) x Hourly production rate = x Annual Production / 2000 =	8.80E-09 lbs/ton 2.64E-06 lbs/hour 2.20E-06 TPY	8.80E-09 lbs/ton 2.64E-06 lbs/hour 2.20E-06 TPY	2.64E-06 2.20E-06
Phenanthrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	7.60E-06 lbs/ton 2.28E-03 lbs/hour 1.90E-03 TPY	2.30E-05 lbs/ton 6.90E-03 lbs/hour 5.75E-03 TPY	6.90E-03 5.75E-03

Pyrene (E.F.) x Hourly production rate = x Annual Production / 2000 =	5.40E-07 lbs/ton 1.62E-04 lbs/hour 1.35E-04 TPY	3.00E-06 lbs/ton 9.00E-04 lbs/hour 7.50E-04 TPY	9.00E-04 7.50E-04
Dioxins Total TCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	9.30E-13 lbs/ton 2.79E-10 lbs/hour 2.33E-10 TPY	2.79E-10 2.33E-10
Total PeCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	2.20E-11 lbs/ton 6.60E-09 lbs/hour 5.50E-09 TPY	6.60E-09 5.50E-09
Total HxCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.20E-11 lbs/ton 3.60E-09 lbs/hour 3.00E-09 TPY	3.60E-09 3.00E-09
Total HpCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.90E-11 lbs/ton 5.70E-09 lbs/hour 4.75E-09 TPY	5.70E-09 4.75E-09
Total PCDD (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	7.90E-11 lbs/ton 2.37E-08 lbs/hour 1.98E-08 TPY	2.37E-08 1.98E-08
Furans Total TCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	3.70E-12 lbs/ton 1.11E-09 lbs/hour 9.25E-10 TPY	1.11E-09 9.25E-10
Total PeCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	8.40E-11 lbs/ton 2.52E-08 lbs/hour 2.10E-08 TPY	2.52E-08 2.10E-08
Total HxCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.30E-11 lbs/ton 3.90E-09 lbs/hour 3.25E-09 TPY	3.90E-09 3.25E-09
Total HpCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.00E-11 lbs/ton 3.00E-09 lbs/hour 2.50E-09 TPY	3.00E-09 2.50E-09
Total PCDD/PCDF (E.F.) x Hourly production rate = x Annual Production / 2000 =	NA	1.20E-10 lbs/ton 3.60E-08 lbs/hour 3.00E-08 TPY	3.60E-08 3.00E-08
METALS			
Antimony (E.F.) x Hourly production rate = x Annual Production / 2000 =	1.80E-07 lbs/ton 5.40E-05 lbs/hour 4.50E-05 TPY	1.80E-07 lbs/ton 5.40E-05 lbs/hour 4.50E-05 TPY	5.40E-05 4.50E-05
Arsenic (E.F.) x Hourly production rate = x Annual Production / 2000 =	5.60E-07 lbs/ton 1.68E-04 lbs/hour 1.40E-04 TPY	5.60E-07 lbs/ton 1.68E-04 lbs/hour 1.40E-04 TPY	1.68E-04 1.40E-04
Beryllium (E.F.) x Hourly production rate = x Annual Production / 2000 =	0.00E+00 lbs/ton 0.00E+00 lbs/hour 0.00E+00 TPY	0.00E+00 lbs/ton 0.00E+00 lbs/hour 0.00E+00 TPY	0.00E+00 0.00E+00
Cadmium (E.F.) x Hourly production rate = x Annual Production / 2000 =	4.10E-07 lbs/ton 1.23E-04 lbs/hour 1.03E-04 TPY	4.10E-07 lbs/ton 1.23E-04 lbs/hour 1.03E-04 TPY	1.23E-04 1.03E-04
Chromium (E.F.) x Hourly production rate = x Annual Production / 2000 =	5.50E-06 lbs/ton 1.65E-03 lbs/hour 1.38E-03 TPY	5.50E-06 lbs/ton 1.65E-03 lbs/hour 1.38E-03 TPY	1.65E-03 1.38E-03
Cobalt (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.60E-08 lbs/ton 7.80E-06 lbs/hour 6.50E-06 TPY	2.60E-08 lbs/ton 7.80E-06 lbs/hour 6.50E-06 TPY	7.80E-06 6.50E-06
Hexavalent chromium (E.F.) x Hourly production rate = x Annual Production / 2000 =	4.50E-07 lbs/ton 1.35E-04 lbs/hour 1.13E-04 TPY	4.50E-07 lbs/ton 1.35E-04 lbs/hour 1.13E-04 TPY	1.35E-04 1.13E-04

Lead (E.F.) x Hourly production rate = x Annual Production / 2000 =	6.20E-07 lbs/ton 1.86E-04 lbs/hour 1.55E-04 TPY	1.50E-05 lbs/ton 4.50E-03 lbs/hour 3.75E-03 TPY	4.50E-03 3.75E-03
Manganese (E.F.) x Hourly production rate = x Annual Production / 2000 =	7.70E-06 lbs/ton 2.31E-03 lbs/hour 1.93E-03 TPY	7.70E-06 lbs/ton 2.31E-03 lbs/hour 1.93E-03 TPY	2.31E-03 1.93E-03
Mercury (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.40E-07 lbs/ton 7.20E-05 lbs/hour 6.00E-05 TPY	2.60E-06 lbs/ton 7.80E-04 lbs/hour 6.50E-04 TPY	7.80E-04 6.50E-04
Nickel (E.F.) x Hourly production rate = x Annual Production / 2000 =	6.30E-05 lbs/ton 1.89E-02 lbs/hour 1.58E-02 TPY	6.30E-05 lbs/ton 1.89E-02 lbs/hour 1.58E-02 TPY	1.89E-02 1.58E-02
Phosphorus (E.F.) x Hourly production rate = x Annual Production / 2000 =	2.80E-05 lbs/ton 8.40E-03 lbs/hour 7.00E-03 TPY	2.80E-05 lbs/ton 8.40E-03 lbs/hour 7.00E-03 TPY	8.40E-03 7.00E-03
Selenium (E.F.) x Hourly production rate = x Annual Production / 2000 =	3.50E-07 lbs/ton 1.05E-04 lbs/hour 8.75E-05 TPY	3.50E-07 lbs/ton 1.05E-04 lbs/hour 8.75E-05 TPY	1.05E-04 8.75E-05
Aggregate sum of all HAPs	1.61 lbs/hour 1.35 TPY	2.65 lbs/hour 2.21 TPY	2.65 2.21

UNIT 2 - HOT OIL HEATER

Emission factors for the criteria pollutants were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04)

Emission factors for HAPs while burning natural gas were obtained from AP-42, Section 1.4, Natural Gas Combustion, (Table 1.4-3 and Table 1.4-4) (7/98).

Emission factors for HAPs while burning no. 2 fuel oil were obtained from AP-42, Section 11.1 (Table 11.1-13) (3/04) and AP-42, Section 1.3, Fuel Oil Combustion, (Table 1.3-10) (5/10).

Based on unrestricted operation of 24 hours/day or operation for 365 days/year (8760 hours/year). Natural gas is based on a heating value of 1020 BTU/scf, ULSD is based on a heating value of 140,000 BTU/gallon.

Hatara gab ib babba on a noating ve			<u>inaxinani</u>
Fuel Maximum fuel firing rate	Natural gas 1,840 cuft/hour	#2 Oil 13.14 GPH	
Hours of Operation Annual Fuel Usage	4,745 Hrs/Year 8.7 MMSCF	4,745 Hrs/Year 62,363 Gallons	
Nitrogen Oxides			
Emission Factor	100 lbs/MMscf	20 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.18 lbs/hour	0.26 lbs/hour	0.26
x Annual Fuel Usage/2000 =	0.44 TPY	0.62 TPY	0.62
Sulfur Dioxide			
Emission Factor	0.6 lbs/MMscf	0.213 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.00 lbs/hour	0.00
x Annual Fuel Usage/2000 =	0.003 TPY	0.01 TPY	0.01
Carbon Monoxide			
Emission Factor	84 Lbs/MMscf	5.0 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.15 lbs/hour	0.07 lbs/hour	0.15
x Annual Fuel Usage/2000 =	0.37 TPY	0.16 TPY	0.37
Volatile Organic Compounds			
Emission Factor	5.5 lbs/MMscf	0.34 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.01 lbs/hour	0.00 lbs/hour	0.01
x Annual Fuel Usage/2000 =	0.02 TPY	0.01 TPY	0.02
Particulate Matter 10 (PM10)			
Emission Factor	1.9 lbs/MMscf	1.8 lbs/1000 gal	
x Hourly Fuel Usage/2000 =	0.00 lbs/hour	0.02 lbs/hour	0.02
x Annual Fuel Usage/2000 =	0.01 TPY	0.06 TPY	0.06
HAPs			
Acenaphthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	5.30E-07 lbs/gal	7 05 00
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour	6.97E-06 lbs/hour	7.0E-06
x Annual Fuel Usage/2000 =	7.86E-09 TPY	1.65E-08 TPY	1.7E-08

Maximum

Acenaphthylene			
Emission Factor x Hourly Fuel Usage/2000 =	1.80E-06 Lbs/MMCuFt 3.31E-09 lbs/hour	2.00E-07 lbs/gal 2.63E-06 lbs/hour	2.6E-06
x Annual Fuel Usage/2000 =	7.86E-09 TPY	6.24E-09 TPY	7.9E-09
X Ainuar i dei Osage/2000 -	7.002-03 11 1	0.242-03 11 1	7.32-03
Anthracene			
Emission Factor	2.40E-06 Lbs/MMCuFt	1.80E-07 lbs/gal	
x Hourly Fuel Usage/2000 =	4.42E-09 lbs/hour	2.37E-06 lbs/hour	2.4E-06
x Annual Fuel Usage/2000 =	1.05E-08 TPY	5.61E-09 TPY	1.0E-08
Benz(a)anthracene			
Emission Factor	1.80E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour		3.3E-09
x Annual Fuel Usage/2000 =	7.86E-09 TPY		7.9E-09
_			
Benzene			
Emission Factor	2.10E-03 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.86E-06 lbs/hour		3.9E-06
x Annual Fuel Usage/2000 =	9.17E-06 TPY		9.2E-06
Denze (a)ni mene			
Benzo(a)pyrene Emission Factor	1.20E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	2.21E-09 lbs/hour	NA	2.2E-09
, ,	5.24E-09 TPY		5.2E-09
x Annual Fuel Usage/2000 =	5.24E-09 TF1		5.2E-09
Benzo(b)fluoranthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	1.00E-07 lbs/gal	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour	1.31E-06 lbs/hour	1.3E-06
x Annual Fuel Usage/2000 =	7.86E-09 TPY	3.12E-09 TPY	7.9E-09
X Annuar 1 del Osage/2000 -	7.00E-03 11 1	3.12E-03 11 1	1.3E-03
Benzo(g, h, i)perylene			
Emission Factor	1.20E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	2.21E-09 lbs/hour		2.2E-09
x Annual Fuel Usage/2000 =	5.24E-09 TPY		5.2E-09
x74maar aor 00ago,2000	0.212 00 11 1		0.22 00
Benzo(k)fluoranthene			
Emission Factor	1.80E-06 Lbs/MMCuFt	NA	
x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour		3.3E-09
x Annual Fuel Usage/2000 =	7.86E-09 TPY		7.9E-09
C C			
Chrysene			
Chrysene Emission Factor	1.80E-06 Lbs/MMCuFt	NA	
	1.80E-06 Lbs/MMCuFt 3.31E-09 lbs/hour	NA	3.3E-09
Emission Factor		ΝΑ	3.3E-09 7.9E-09
Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour	ΝΑ	
Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY	NA	
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt	NA	7.9E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour		7.9E-09 2.2E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt		7.9E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour		7.9E-09 2.2E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY	NA	7.9E-09 2.2E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt	NA 4.40E-08 lbs/gal	7.9E-09 2.2E-09 5.2E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt	NA 4.40E-08 lbs/gal	7.9E-09 2.2E-09 5.2E-09
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluorene	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluorene Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluorene Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 =	 3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Formaldehyde Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Formaldehyde Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Formaldehyde Emission Factor	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Formaldehyde Emission Factor x Hourly Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Formaldehyde Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 = X Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	 3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000	 3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04 4.4E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04 4.4E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 =	3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04 4.4E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = Formaldehyde Emission Factor x Hourly Fuel Usage/2000 = X Annual Fuel Usage/2000 =	 3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour 1.05E-07 TPY 	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.88E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04 4.4E-08
Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Dibenzo(a, h)anthracene Emission Factor x Hourly Fuel Usage/2000 = Fluoranthene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 = Fluorene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	 3.31E-09 lbs/hour 7.86E-09 TPY 1.20E-06 Lbs/MMCuFt 2.21E-09 lbs/hour 5.24E-09 TPY 3.00E-06 Lbs/MMCuFt 5.52E-09 lbs/hour 1.31E-08 TPY 2.80E-06 Lbs/MMCuFt 5.15E-09 lbs/hour 1.22E-08 TPY 2.60E-02 Lbs/MMCuFt 4.78E-05 lbs/hour 1.14E-04 TPY 2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour 1.05E-07 TPY 6.10E-04 Lbs/MMCuFt 	NA 4.40E-08 lbs/gal 5.78E-07 lbs/hour 1.37E-09 TPY 3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY 3.50E-06 lbs/gal 4.60E-05 lbs/hour 1.09E-07 TPY NA	7.9E-09 2.2E-09 5.2E-09 5.8E-07 1.3E-08 4.2E-07 1.2E-08 4.8E-05 1.1E-04 4.4E-08 1.0E-07

Phenanthrene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.70E-05 Lbs/MMCuFt 3.13E-08 lbs/hour 7.42E-08 TPY	4.90E-06 lbs/gal 6.44E-05 lbs/hour 1.53E-07 TPY	6.4E-05 1.5E-07
Pyrene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	5.00E-06 Lbs/MMCuFt 9.20E-09 lbs/hour 2.18E-08 TPY	3.20E-08 lbs/gal 4.21E-07 lbs/hour 9.98E-10 TPY	4.2E-07 2.2E-08
Toluene Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.40E-03 Lbs/MMCuFt 6.26E-06 lbs/hour 1.48E-05 TPY	ΝΑ	6.3E-06 1.5E-05
HxCDD Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	6.20E-12 lbs/gal 8.15E-11 lbs/hour 1.93E-13 TPY	8.1E-11 1.9E-13
HpCDD Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	2.00E-11 lbs/gal 2.63E-10 lbs/hour 6.24E-13 TPY	2.6E-10 6.2E-13
OCDD Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	1.60E-10 lbs/gal 2.10E-09 lbs/hour 4.99E-12 TPY	2.1E-09 5.0E-12
TCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	3.30E-12 lbs/gal 4.34E-11 lbs/hour 1.03E-13 TPY	4.3E-11 1.0E-13
PeCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	4.80E-13 lbs/gal 6.31E-12 lbs/hour 1.50E-14 TPY	6.3E-12 1.5E-14
HxCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	2.00E-12 lbs/gal 2.63E-11 lbs/hour 6.24E-14 TPY	2.6E-11 6.2E-14
HpCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	9.70E-12 lbs/gal 1.27E-10 lbs/hour 3.02E-13 TPY	1.3E-10 3.0E-13
1, 2, 3, 4, 6, 7, 8-HpCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	3.50E-02 lbs/gal 4.60E-01 lbs/hour 1.09E-03 TPY	4.6E-01 1.1E-03
OCDF Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	NA	1.20E-11 lbs/gal 1.58E-10 lbs/hour 3.74E-13 TPY	1.6E-10 3.7E-13
Metals Arsenic Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.00E-04 Lbs/MMCuFt 3.68E-07 lbs/hour 8.73E-07 TPY	5.60E-06 lbs/10^6 Btu 7.36E-05 lbs/hour 1.75E-07 TPY	7.4E-05 8.7E-07
Beryllium Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.20E-05 Lbs/MMCuFt 2.21E-08 lbs/hour 5.24E-08 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 1.31E-08 TPY	5.5E-06 5.2E-08
Cadmium Emission Factor	1.10E-03 Lbs/MMCuFt	4.20E-07 lbs/1000 gal	

x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.02E-06 lbs/hour 4.80E-06 TPY	5.52E-06 lbs/hour 1.31E-08 TPY	5.5E-06 4.8E-06
Chromium Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	1.40E-03 Lbs/MMCuFt 2.58E-06 lbs/hour 6.11E-06 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 1.31E-08 TPY	5.5E-06 6.1E-06
Cobalt Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	8.40E-05 Lbs/MMCuFt 1.55E-07 lbs/hour 3.67E-07 TPY	1.26E-06 lbs/1000 gal 1.66E-05 lbs/hour 3.93E-08 TPY	1.7E-05 3.7E-07
Lead Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	0.00E+00 Lbs/MMCuFt 0.00E+00 lbs/hour 0.00E+00 TPY	8.40E-07 lbs/1000 gal 1.10E-05 lbs/hour 2.62E-08 TPY	1.1E-05 2.6E-08
Manganese Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	3.80E-04 Lbs/MMCuFt 6.99E-07 lbs/hour 1.66E-06 TPY	4.20E-07 lbs/1000 gal 5.52E-06 lbs/hour 1.31E-08 TPY	5.5E-06 1.7E-06
Mercury Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.60E-04 Lbs/MMCuFt 4.78E-07 lbs/hour 1.14E-06 TPY	2.10E-06 lbs/1000 gal 2.76E-05 lbs/hour 6.55E-08 TPY	2.8E-05 1.1E-06
Nickel Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.10E-03 Lbs/MMCuFt 3.86E-06 lbs/hour 9.17E-06 TPY	NA	3.9E-06 9.2E-06
Selenium Emission Factor x Hourly Fuel Usage/2000 = x Annual Fuel Usage/2000 =	2.40E-05 Lbs/MMCuFt 4.42E-08 lbs/hour 1.05E-07 TPY	NA	4.4E-08 1.0E-07
Total HAPs	6.94E-05 lbs/hour 1.65E-04 TPY	4.60E-01 lbs/hour 1.09E-03 TPY	4.6E-01 1.1E-03

Total Facility Wide Emissions (Lbs/Hour)

	<u>NOx</u>	<u>SO2</u>	<u>CO</u>	VOC	<u>PM10</u>	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	16.5	3.3	39.0	9.6	6.9	2.65	3.60
UNIT NO. 2 - HOT OIL HEATER	<u>0.26</u>	<u>0.00</u>	<u>0.15</u>	<u>0.01</u>	<u>0.02</u>	<u>0.46</u>	<u>N/A</u>
TOTAL FACILITY WIDE (LBS/HOUR)	16.76	3.30	39.15	9.61	6.92	3.11	3.60

Total Facility Wide Emissions (TPY)

	NOx	<u>SO2</u>	<u>co</u>	VOC	<u>PM10</u>	<u>HAPs</u>	Asphalt Fumes
UNIT NO. 1 - DRUM MIX PLANT	13.8	2.8	32.5	8.0	5.8	2.21	3.00
UNIT NO. 2 - HOT OIL HEATER	0.62	0.01	<u>0.37</u>	0.02	0.06	0.001	<u>N/A</u>
TOTAL FACILITY WIDE (TPY)	14.37	2.76	32.87	8.02	5.81	2.21	3.00