May 26, 2022

SUPPORTING DOCUMENTATION

Application for State Permit to Operate

Prepared for:

SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION 701 Daniel Webster Highway Merrimack, New Hampshire 03054

Prepared by:

C.T. MALE ASSOCIATES 50 Century Hill Drive Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Project No: 16.6235

© Copyright 2022 c.t. Male associates engineering, surveying, architecture, landscape architecture & geology, d.p.c.

SUPPORTING DOCUMENTATION APPLICATION FOR NHDES STATE PERMIT TO OPERATE SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	PROC	ESS DESCRIPTION	3
3.0	AIR E	MISSIONS	5
	3.1	RTO Operation	5
	3.2	Facility Capture System Improvements	6
	3.3	Air Pollution Control Equipment Monitoring Plan	7
4.0	DEPC	SITION MODELING	8
	4.1	Compliance with RSA 125-C:10-e (PFOA & PFOS)	8
	4.2	Compliance with Env-A 1400 (RTAP)	9
5.0	CONI	FIDENTIALITY JUSTIFICATION	11

FIGURES:

Figure 1:	Site Location Map	(Topographic Map)
Figure 1:	Site Location Map	(Topographic Map

ATTACHMENTS:

Attachment A:	Air Pe	ermit Application Forms				
	A.1	NHDES Form ARD-1				
	A.2	NHDES Form ARD-3: PCE01 (Stacks 1A & 1B) and Attachments				
	A.3	NHDES Form ARD-3: Antenna Covering Process Area				
	A.4	4 NHDES Form ARD-7: Fire Pump				
	A.5	NHDES Form ARD-7: Generator				
Attachment B:	Emiss	ions Calculations				
	B.1	Tower Coater Calculations (Unchanged from 2/25/22 Submission)				
	B.2	Antenna Fabrication Calculations				

CONFIDENTIAL SUPPORTING DOCUMENTATION APPLICATION FOR NHDES STATE PERMIT TO OPERATE SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION

TABLE OF CONTENTS (continued)

- B.3 Combustion Calculations (Unchanged from 9/15/19 Submission)
- B.4 2021 Tower Coater Summary (Unchanged from 2/25/22 Submission)
- B.5 RTAP/HAP Summary
- B.6 PFOA/PFOS Calculations Summary (Unchanged from 12/27/21 Submission)
- B.7 Scaling Factor Determination for Tower Coating Operations
- Attachment C: Air Dispersion and Deposition Modeling Prepared by Barr Engineering (Unchanged from 12/27/21 Submission)

1.0 INTRODUCTION

C.T. Male Associates Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C. (C.T. Male) has prepared the attached application for a New Hampshire Department of Environmental Services (NHDES) State Permit to Operate and supporting documents for the Saint-Gobain Performance Plastics Corporation (Saint-Gobain) facility located at 701 Daniel Webster Highway in Merrimack, Hillsborough County, New Hampshire (see Figure 1). The NHDES Facility Identification Number is 3301100165, and the facility currently operates under Temporary Permit TP-0256, which was issued on February 11, 2020, and was extended on June 29, 2021. The current Temporary Permit expires on August 31, 2022. Copies of application forms are included in Attachment A.

The Saint-Gobain facility primarily manufactures polytetrafluoroethylene (PTFE) coated fiberglass and Kevlar[®] fabrics and PTFE films. The fabrics are manufactured for a variety of chemical and weather resistant applications. The facility also includes an antenna covering process. The antenna cover operations include manual application of adhesives to the fabric for bonding to other pieces of fabric or to metal frames.

In response to a determination by NHDES pursuant to NH Statute Chapter 125-C:10-e, *Requirements for Air Emissions of Perfluorinated Compounds Impacting Soil and Water*, Saint-Gobain installed a Regenerative Thermal Oxidizer (RTO) in 2021 to control PFC¹ and precursor emissions associated with the facility's coating operations.

Subsequent to the Temporary Permit issued in February 2020, Saint-Gobain submitted an Application for Significant Amendment of Temporary Permit TP-0256 on December 18, 2021, in part in response to the NHDES November 18, 2021 Letter of Deficiency regarding the operation of the RTO, which is incorporated herein².

¹- "Perfluorinated compounds" or "PFCs" as defined in RSA 125-C:10-e(I)(d) means the list of compounds identified in paragraph 1.1 of Environmental Protection Agency Document #: EPA/600/R-08/092 Method 537. "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", Version 1.1 (September 2009).

² - Saint-Gobain also submitted additional information to respond to NHDES' requests for additional information on January 27, 2022 and February 25, 2022, which are incorporated herein.

Due to the completion of RTO and related systems construction including the RTO Bypass stack, and the upcoming expiration date for Temporary Permit TP-0256 of August 31, 2022, Saint-Gobain is submitting this application for a State Permit to Operate. It is noted that the application presents the most up-to-date equipment information, and no significant changes have been made to the facility operations beyond what is currently listed in TP-0256 and the information included in the submissions through February 25, 2022.

2.0 PROCESS DESCRIPTION

During production of the coated fiberglass fabrics, the fiberglass cloth is coated with a PTFE dispersion, which includes an organic surfactant. The fiberglass cloth is passed through a coater dip pan filled with the aqueous PTFE resin emulsion and surfactant. The fabric is then passed through a heating tower where the coating is sintered onto the fabric. Each coating tower has dedicated multiple curing zones. Each tower is divided into three temperature zones that: remove water, volatilize the surfactant, and sinter the resin. The production of film products includes the same sequence of steps, however rather than a fiberglass cloth, the PTFE coating is temporarily applied to a reusable polyamide or stainless steel carrier belt. The film coating is then removed and the carrier belts are reused.

Under normal operations, the exhaust from all coating towers as well as smaller equipment (Chemsil, MTM, Step Press/Laminator and Heat Clean) is routed to the RTO control device. The ductwork associated with the RTO routes the exhaust for all of the existing process equipment, with the exception of the antenna fabrication process to provide control of PFC and precursor emissions associated with the facility's coating operations. The original emission points and associated exhaust equipment have been retired as part of the RTO installation project in 2021. A summary of the emission units which exhaust to the RTO is as follows:

Emission Unit ID	Device Name
EU01	Tower MA
EU02	Tower MB
EU03	Tower MC
EU04	Tower MR
EU05	Tower MD
EU06	Tower QX
EU07	20" SBC
EU08	20" Coater
EU12	Tower MG
EU13	Tower MP
EU15	Tower MQ

C.T. MALE ASSOCIATES

Emission Unit ID	Device Name
EU16	Tower MS
EU22	R&D Coater
EU23	Chemsil Coater
EU24	MTM
EU25	Step Press/Laminator
EU26	Heat Clean

In addition to the primary coating towers, the RTO receives exhaust from a variety of smaller production activities. The Chemsil coats and dries silicone onto fiberglass through thermally treating a solid paste without the addition of solvent. There are several pieces of post-processing equipment utilized at the facility after material has concluded running on the coating towers. The MTM and Step Press/Laminator are pieces of equipment which utilize heat to perform operations which laminate or otherwise affix coated fabric and films. In each case, the equipment's operation does not include the addition of solvents or other chemicals. The Heat Clean source is an oven used for cleaning by heating, and similarly does not involve the addition of solvents or other chemicals. None of these operations utilize solvents or other chemicals, and as such the release of volatiles/RTAP/HAP is not expected. However, each of these sources is exhausted to the RTO control device in order to maximize the collection and control of PFC by minimizing the potential for fugitive releases from facility operations.

The antenna fabrication process (EU17) includes manual application of adhesives to the fabric for bonding to other pieces of fabric or to metal frames. Detailed calculations relating to the antenna fabrication process are included in Attachment B.2. Saint-Gobain currently tracks the usage of materials in the antenna fabrication area. This operation includes up to 8 products, inclusive of 6 adhesive products, as well as two solvents which may be used as needed to clean/prepare surfaces for adhesive application. This area typically operates on a 1 shift schedule, 5 days per week. This operation, as well as the existing combustion activities listed in Attachment B.3 (backup power generation unit, fire pump, and natural gas fired heating systems) do not exhaust via the RTO or RTO bypass stack, as there is not PFC emissions expected from these operations.

3.0 AIR EMISSIONS

The coating operations currently utilize a wide variety of coating products and formulations. Although the RTO was installed specifically to control PFC, the unit will also control VOCs present in the exhaust streams from the towers. An understanding of the actual and potential process related emissions has been obtained using a variety of data sources. These methods are further described below. Emission calculations for the materials which are exhausted from the RTO are included in Attachment B.1.

Regulated Toxic Air Pollutants (RTAP)

Saint-Gobain and C.T. Male reviewed Safety Data Sheets for all products currently in the inventory tracking system for products used in Coating Tower operations at the facility (±166 materials). Of these materials, 22 contain RTAP and/or HAP, and 13 of those products were used in 2021. Within the calculations in Attachment B.1, the data utilizes the maximum concentration listed on each SDS whenever a range is given that has defined upper and lower limits.

As was done in previous submissions, this approach yields the annual RTAP available for release on an annual basis. In order to estimate potential annual emissions, a scaling factor was developed to extrapolate full production across all product lines. Details of the scaling factor development are included in Attachment B.7 and are used in VOC/HAP/RTAP potential emission estimates.

PFC and Fluorides

For the PFC and Fluorides emission estimates, the calculated values are based on stack test results from the "Results of the September 7-10, 2021 Regenerative Thermal Oxidizer Compliance Tests at the Saint-Gobain Performance Plastics in Merrimack, New Hampshire" report prepared by Barr Engineering. Form ARD-3 Section IV.A Supplement includes specific information relative to the PFC and Fluoride emissions.

3.1 RTO Operation

A Best Available Control Technology (BACT) Analysis previously determined that the use of RTO technology to control the target pollutant emissions for the sources

identified in this application was BACT given that certain nominal operating conditions are met. After the approval and installation of the RTO, operational testing was performed to derive values for these operating conditions, which are listed as permit requirements in the current Temporary Permit:

- The active combustion chamber of the RTO shall be maintained at a minimum temperature of 1,832°F (1,000°C), based on an hourly block average; and
- The inlet flowrate to the RTO shall not exceed 70,000 SCFM.

Saint-Gobain also completed stack testing to assess post-control emissions for PFOA and PFOS. The stack test report ("Results of the September 7-10, 2021 Regenerative Thermal Oxidizer Compliance Tests at Saint-Gobain Performance Plastics in Merrimack, New Hampshire" prepared by Barr Engineering Co.) describes the facility's operating conditions at the time of the testing. The operating conditions at the facility during the stack test were in excess of normal operating conditions with respect to the amount of material processed and the PFC content of the material and met the required operating conditions of Env-A 802.10. Emission rates for PFOA and PFOS were measured at the inlet and outlet of the RTO.

Stack testing of the RTO also determined that emissions of HF from the RTO are in compliance with the RTAP requirements and no additional add-on control device for the RTO exhaust is needed for HF control. In generating HF emission estimates for the RTO Bypass stack, the analysis herein assumes that the HF emissions measured at the RTO outlet during the performance testing would instead be emitted through the bypass stack. This assumption is a conservative over-representation of HF emissions from the bypass stack, because the bypass does not thermally destroy any PFCs within the combustion chambers of the RTO. The stack test results are utilized within these emission calculations, which are presented in Attachment B.8.

3.2 Facility Capture System Improvements

Extensive evaluation of the towers was undertaken in 2018 to determine how to maximize the collection of fugitive emissions inside the facility building and modifications subsequently occurred in several areas for this purpose. At the time of the 2021 stack testing, negative pressure was confirmed relative to operation of the

sources exhausting to the RTO to maximize the capture of potential fugitive emissions as referenced within the summary of the September 2021 RTO testing.

3.3 Air Pollution Control Equipment Monitoring Plan

Saint-Gobain has prepared an Air Pollution Control Equipment Monitoring Plan, which was submitted to NHDES in February 2022. Operation of the RTO will continue under this Monitoring Plan as part of operations under the State Permit to Operate.

4.0 DEPOSITION MODELING

Barr Engineering has previously submitted Air Deposition Modeling on behalf of Saint-Gobain regarding operation of the RTO and bypass stack in the December 18, 2021 Application for a Significant Modification to TP-0256. The modeling was completed to derive the maximum allowable number of hours during which the RTO could be operated in bypass mode for any 12-month period. The modeling indicated that the facility would be able to comply with NH Statute Chapter 125-C:10-e relative to HF, APFO, PFOA and PFOS if the bypass stack was used up to 4,145 hours in a 12-month period. A copy of the Air Dispersion and Deposition Modeling Summary prepared by Barr Engineering and previously submitted in December 2021 is included as Attachment C.

4.1 Compliance with RSA 125-C:10-e (PFOA & PFOS)

PFOA and PFOS emission rates for the bypass stack air deposition modeling were taken from the September 2021 stack testing emissions at the RTO inlet because these would be the emission rates directly from the bypass stack outlet in the event of brief unavoidable periods of RTO malfunction. A deposition modeling scenario was performed at both the maximum flowrate (57,500 SCFM as measured during the September 2021 stack testing) and expected average operating flowrate (50,000 SCFM)using the contaminant emission rate (on a mass per unit time basis) from the September 2021 stack test. Under actual operations with reduced flow, the mass per unit time emission rate would be expected to be lower than the level from the September 2021 stack test and as such the emissions of PFOA and PFOS are conservatively overestimated in these calculations.

The deposition modeling provides a unit impact rate (UIR) for each modeled receptor, which describes the amount of deposition at that location. The maximum UIR from the entire modeled area is then used to calculate the maximum allowable annual emissions based on the maximum allowable concentration infiltrating to groundwater for each contaminant. The maximum annual hours at which the bypass stack can operate while not exceeding the maximum allowable annual emissions can then be calculated based on the ratio of the maximum allowable annual emissions to the annual emission rate from the 2021 stack testing. The table below details the key values in calculating the

annual operating hours. For a full explanation of the calculations and additional intermediate steps, see Table 3 in Appendix C.

Contaminant	Maximum Concentration Infiltrating to Groundwater (μg/m ³)	Maximum Unit Impact Rate (g/m²/yr per g/s)	Maximum Annual Emission Rate (lb/yr)	Annual Emission Rate from 2021 Stack Tests (lb/yr)	Allowable Annual Operating Hours (hr)	
Modeling Scenario at 70,000 CFM Bypass Stack Flowrate						
PFOA	<3.4	1.47	<0.085	0.18	4,145	
PFOS <4.4		1.47	<0.110	0.0024	8,760	
	Modeling Scenario at 50,000 CFM Bypass Stack Flowrate					
PFOA	<3.4	1.35	<0.093	0.18	4,509	
PFOS	<4.4	1.35	<0.120	0.0024	8,760	

As demonstrated by the air deposition modeling, the bypass could operate for a maximum of 4,145 hours per year without causing or contributing to an exceedance of groundwater or surface water quality standards.

4.2 Compliance with Env-A 1400 (RTAP)

Air dispersion modeling was also performed in 2021 to address the RTAP compounds HF and APFO from the bypass stack. APFO emissions were estimated from the PFOA 2021 stack emissions using a ratio of the compounds' molecular weights.

The HF emission rates for purposes of air dispersion modeling were taken from the 2021 stack testing rates measured at the RTO outlet. This estimate is a conservative approach, as HF emissions at the RTO outlet (i.e., those presented in the model as being discharged from the RTO bypass stack) are presumed to be higher than emissions from the RTO bypass stack due to the expected thermal conversion of PFCs to HF within the RTO.

The results from the air dispersion modeling found that the concentrations were well below the RTAP AAL for both HF and APFO, as shown in the table below. Therefore, the RTO bypass annual operating hours discussed in Section 3.1 would comply with the Env-A 1400 24-hour and Annual AAL. For a full explanation of the calculations, see Table 4 in Appendix C.

C.T. MALE ASSOCIATES

Contaminant	Maximum 24-hr Concentration (μg/m³)	24-hr AAL (μg/m³)	% of 24-hr AAL	Maximum Annual Concentration (µg/m³)	Annual AAL (µg/m³)	% of Annual AAL
	Modeling Scenario at 70,000 CFM Bypass Stack Flowrate					
HF	0.061	1.5	4.1%	0.0092	0.98	0.94%
APFO	1.4E-05	0.05	0.0%	2.1E-06	0.024	0.0%
	Modeling Scenario at 50,000 CFM Bypass Stack Flowrate					
HF	0.061	1.5	4.1%	0.0091	0.98	0.93%
APFO	1.4E-05	0.05	0.0%	2.1E-06	0.024	0.0%

5.0 CONFIDENTIALITY JUSTIFICATION

Saint-Gobain is submitting this confidentiality justification with regards to specific proprietary process data which is included within this supporting documentation. This confidentiality justification identifies what information is protected proprietary and confidential business information. The Confidential Business Information that we seek to be protected is found in Attachments A.2, B.1, B.2 and B.4, each of which contains information on specific raw materials used at the facility.

This supporting documentation contains proprietary process data and information, the release of which may jeopardize the competitive position of Saint-Gobain. Specifically, all documentation regarding raw materials utilized, products produced, manufacturing techniques, line speeds, application rates, and production capacity are being claimed as confidential business information and each of those pages in Attachments B and C are marked as such in accordance with Env-C 208.

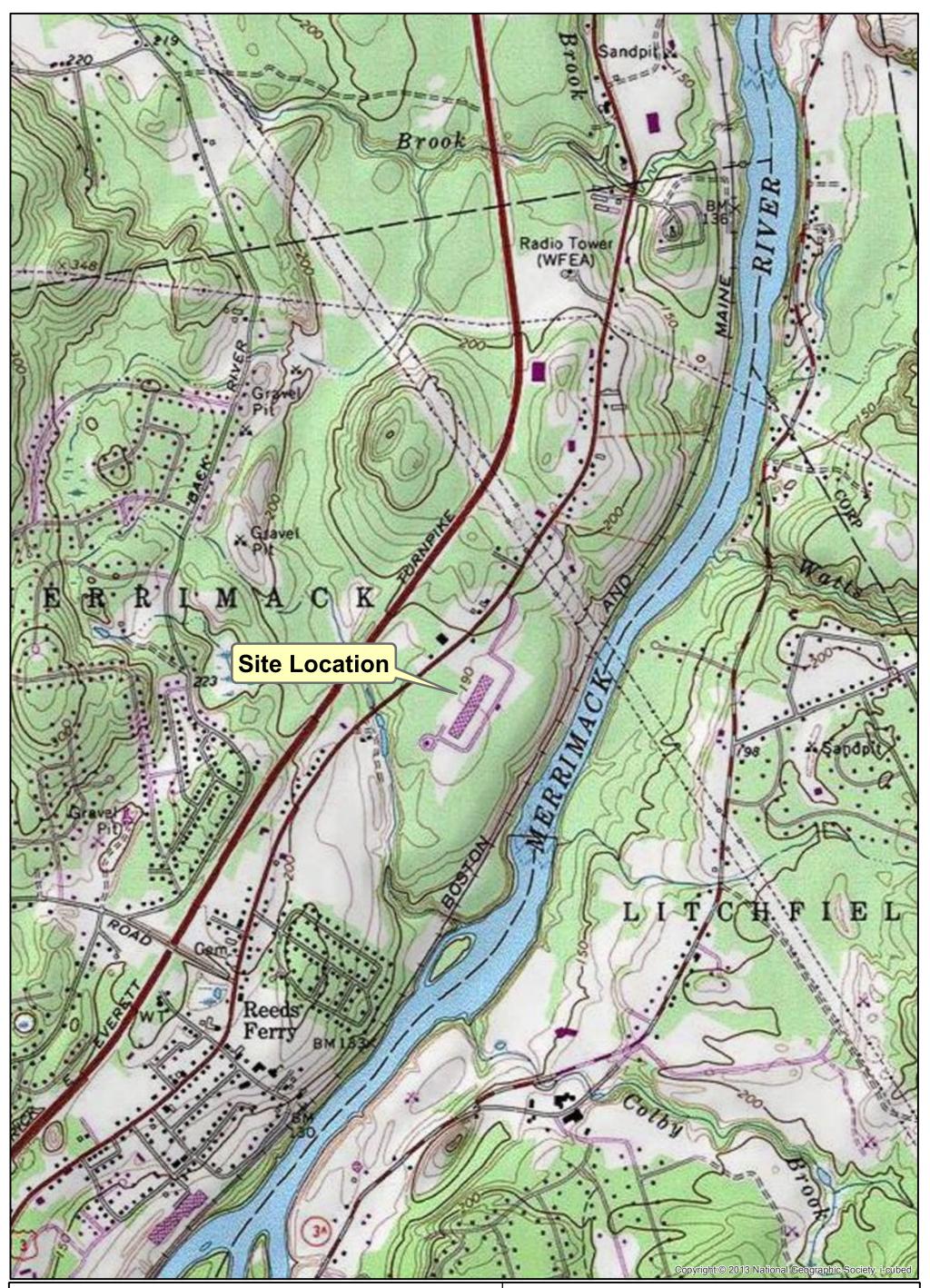
Factors Pertaining to Whether or Not a Trade Secret Exists

Saint-Gobain offers the following information to demonstrate that a trade secret exists:

(a) The request for confidentiality contains information which is not known outside of the business of Saint-Gobain, its affiliated companies, its customers or companies with which Saint-Gobain has executed a confidentiality agreement.

(b) The information being considered a trade secret is known only by Saint-Gobain employees, the employees of affiliated companies, and the employees of companies with which Saint-Gobain has executed a confidentiality agreement, and only to the extent that they have the technical training and knowledge to understand how the operations work.

(c) Saint-Gobain restricts access and guards the secrecy of the information considered as trade secrets to its management level staff and personnel requiring access. Files and other documents containing information pertaining to trade secrets are maintained in secure locations at the company's management offices. Saint-Gobain protects the confidentiality of this information by requiring confidentiality agreements with consultants retained to provide services associated with the work.


(d) Saint-Gobain has invested significant time and money in the research and development of its processes. These designs represent the product they sell to their customers. If this information were in the public domain Saint-Gobain would lose its competitive advantage.

(e) Saint-Gobain has expended significant resources in market research, contract negotiation and site development which are contingent on being able to produce the products.

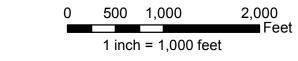

(f) Saint-Gobain does not allow the use of documents or designs without written permission. If Saint-Gobain did not authorize the release of this information it could not be properly acquired and therefore would be difficult or illegal to obtain.

Figure 1

Site Location Map (Topographic Map)

Project Number: 16.6126 Data Source: USGS Projection: NH State Plane NAD 83 (ft.) Date: March 3, 2016 File: MerrimackSiteUSGS11x17.mxd GIS: CHay

Map Note: The locations and features depicted on this map are approximate and do not represent a field survey.

Site Location Map 701 Daniel Webster Highway

Town of Merrimack

Hillsborough County, New Hampshire

C.T. MALE ASSOCIATES

ENGINEERING, SURVEYING, ARCHITECTURE & LANDSCAPE ARCHITECTURE, D.P.C 50 CENTURY HILL DRIVE, LATHAM, NEW YORK 12110 (518) 786-7400 * FAX (518) 786-7299 * WWW.CTMALE.COM

Attachment A

Air Permit Application Forms

<u>Attachment A.1</u> NHDES Form ARD-1

ARD-1 FORM GENERAL FACILITY INFORMATION

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

This ARD-1 General Facility Information form shall be submitted with every application for an air permit,

except for a Permit by Notification (PBN).

1. TYPE OF FACILITY ¹					
🗌 Title V 🛛 🛛 Non-Title	V 🗌 Unknown				
2. TYPE OF PERMIT ²					
Temporary Permit (Consti	ruction) 🛛 🖂 State Pe	ermit to Ope	erate	Title V Operating Permit	
General State Permit	Limitatio	on on Poter	ntial to Emit (Env-A 6	25)	
3. TYPE OF APPLICATION ³					
New R	enewal 🗌 Modifica	ation	🗌 Admini	strative Amendment	
4. FACILITY INFORMATION					
FACILITY NAME ⁴ : Saint-Gobai	n Performance Plastics Corp.		AFS NUMBER ⁵ : 3302	1100165	
PHYSICAL ADDRESS: 701 Dani	iel Webster Highway				
TOWN/CITY: Merrimack			STATE: NH	ZIP: 03054	
GOVERNMENT FACILITY COD	E ⁶ : 0				
5. BUSINESS INFORMATION	AS REGISTERED WITH SECRETA	ARY OF STA	TE (If applicable)		
REGISTERED NAME: Saint-Gobain Performance Plastics Corp.					
REGISTERED ADDRESS: 701 D	REGISTERED ADDRESS: 701 Daniel Webster Highway				
TOWN/CITY: Merrimack	TOWN/CITY: Merrimack STATE: NH ZIP: 03054				
6. PARENT CORPORATION INFORMATION (If applicable)					
PARENT CORPORATION NAM	E: Saint-Gobain Corporation				
MAILING ADDRESS: 20 Moore	es Road				
TOWN/CITY: Malvern	TOWN/CITY: Malvern STATE: PA ZIP: 19355				
7. MAJOR ACTIVITY OR PRODUCT DESCRIPTION List all activities performed at this facility and provide SIC and/or NAICS Code(s).					
SIC Code	Activity Description	N	AICS Code	Activity Description	
2221	Woven Fiber Glass				
2296	Industrial Fabrics				
2851	Fluoropolymer Films				

At a minimum, please provide contact information below for Responsible Official, Prepared Application, Technical, and Invoicing contacts. Make as many copies of this page as necessary in order to include all contacts that you wish to associate with the application. Multiple people can be assigned one role; multiple roles can be assigned to one person.

3. RESPONSIBLE OFFICIAL INFORMATION				
RESPONSIBLE OFFICIAL NAME ⁷ : David Calentine				
TITLE: Plant Manager				
COMPANY NAME: Saint-Gobain Performance Plastics Corp.				
MAILING ADDRESS: 701 Daniel Webster Highway				
TOWN/CITY: Merrimack STATE: NH ZIP: 03054				
MAIL ADDRESS: David.Calentine@saint-gobain.com				
TELEPHONE NUMBER: 603-420-1267 EXTENSION:				
AX NUMBER:				
ROLES: Responsible Official Technical Invoicing Legal Emissions				
Prepared Application Corporate Owner/Operator Consultant				
9. ADDITIONAL CONTACT INFORMATION				
CONTACT NAME: William Kempskie				
TITLE: EHS Manager				
COMPANY NAME: Saint-Gobain Performance Plastics Corporation				
MAILING ADDRESS: 701 Daniel Webster Highway				
TOWN/CITY: Merrimack STATE: NH ZIP: 03054				
EMAIL ADDRESS: William.kempskie@saint-gobain.com				
TELEPHONE NUMBER: 603-420-1387 EXTENSION:				
AX NUMBER:				
ROLES: Responsible Official Technical Invoicing Legal Emissions				
Prepared Application Corporate Owner/Operator Consultant	_			
LO. ADDITIONAL CONTACT INFORMATION				
CONTACT NAME: Daniel Reilly				
TITLE: Division Manager, Environmental Services				
COMPANY NAME: C.T. Male Associates				
MAILING ADDRESS: 50 Century Hill Drive				
TOWN/CITY: Latham STATE: NY ZIP: 12110				
EMAIL ADDRESS: d.reilly@ctmale.com				
TELEPHONE NUMBER: 518-786-7400 EXTENSION:				
FAX NUMBER: 518-786-7299				
ROLES: Responsible Official Technical Invoicing Legal Emissions				
Prepared Application Corporate Owner/Operator Consultant				

11. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Optical	Legal 🗌 Legal	Emissions
12. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Optical	Legal 🗌 Legal	Emissions
13. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Optical	Legal Derator Consultant	Emissions

Total HAP

PFOA

PFOS

Individual HAP

14. FACILITY-WIDE EMISSIONS				
POLLUTANT ⁸	POTENTIAL TPY	ACTUAL TPY		
VOC	<50	TOTAL = 2.1 TONS PER YEAR		

TOTAL = 0.13 TONS PER YEAR

0.018 lb/yr; 0.000009 ton/yr

LARGEST = 0.08 TONS PER YEAR

0.0006 lb/yr; 0.0000003 ton/yr

For ALL APPLICATIONS except Administrative Amendments, General State Permits, and Limitations on Potential to Emit:

Please include calculations used in determining emissions and include any non-permitted emission devices.

<0.45 lb/yr; 0.000225 ton/yr

<0.57 lb/yr; 0.000285 ton/yr

<25

<10

15. FO	15. FOR NEW APPLICATIONS OR IF CHANGES ARE MADE – PLEASE INCLUDE:				
	A copy of the USGS map, property identified, which shows the facility's location.				
	A site plan to scale of the facility showing:				
	1. The locations of all emission points;				
	2. The dimensions of all buildings and tiers, including roof heights; and				
	3. The facility's property boundary and any security features (fences, walls, etc.).				

16. FOR TITL	E V PERMIT A	PPLICATIONS – PLEASE INCLUDE: ⁹
Included in Application	Previously Submitted and Unchanged	
		A. Identification and details of limitations on source operation, or any work practice standards affecting emissions for all regulated pollutants.
		 B. Information required by any other applicable requirement of the Act, including, but not limited to, information related to stack height limitations developed pursuant to section 123 of the federal Clean Air Act (42 U.S.C. §7401).
		C. A citation and description of state and federal air pollution control regulations and requirements applicable to each emission unit.
		D. A narrative description or reference to test methods used or required for initial compliance demonstration with each applicable regulation.
		E. Any additional information required to be provided pursuant to the Act or to determine applicability of any other requirements of the Act.
		F. A written explanation of proposed exemptions.
		G. Any information required to be provided to the director pursuant to the Act in order to evaluate alternative operating scenarios, or to define permit terms and conditions.
		H. A list of all equipment and devices located at the source classified as insignificant activities pursuant to Env-A 600, including appropriate sizing data for equipment and devices which are exempt from permitting requirements based on their process ratings, fuel consumption rate, or both.

16. CONTINU	JED - FOR TITLE V PERMIT APPLICATIONS – PLEASE INCLUDE: ¹⁰
Included in	
Application	
	 Compliance plan information containing: A narrative description of the compliance status of the source with respect to all applicable requirements; A narrative statement of methods used to determine continued compliance, including a description
	of monitoring, recordkeeping and reporting requirements and test methods; 3. A statement indicating the source's compliance status with an applicable enhanced monitoring and compliance certification requirements specified in Env-A 800;
	4. A statement that the source shall continue to comply with all applicable requirements;5. A statement that the source shall meet all applicable requirements that will become effective during the permit term on a timely basis;
	A compliance schedule stating all applicable requirements with which the source is not in compliance, consistent with the following:
	 The compliance schedule shall incorporate the requirements of and be at least as stringent as that contained in any judicial consent decree or administrative order to which the source is subject;
	b. Such compliance schedule shall be supplemental to, and not sanction non-compliance with, the applicable requirements on which it is based; and
	c. The compliance schedule shall include the following statements and schedules:
	 A narrative description of how the source shall achieve compliance with such requirements;
	ii. A schedule of remedial measures, including an enforceable sequence of actions with milestones leading to compliance with any applicable requirements for which the source shall be in non-compliance with at the time of permit issuance; and
	iii. A schedule for submission of certified progress reports no less frequently than every 6 months.
	For sources deemed in compliance with all applicable requirements, a certified statement signed by a responsible official stating:
	"The undersigned certifies that, based on information and belief formed after reasonable inquiry, the source is in compliance with all applicable regulations"; and
	 A schedule for submission of compliance certifications during the permit term, to be submitted annually or more frequently as specified by the underlying applicable requirement.
	J. For sources subject to Title IV of the Act, the compliance plan requirements, specified in (I.) above, shall apply to and be included in the acid rain portion of a compliance plan for an affected source, except as specifically superseded by regulations promulgated under Title IV of the Act with regard to the schedule and method(s) the source will use to achieve compliance with the acid rain emission limitations.
	K. In addition to the forms required pursuant to Env-A 1700, sources subject to Title IV of the Act shall use the nationally standardized forms for the acid rain portions of the Title V operating permit application, pursuant to 40 CFR 72.30.

This section of the form must be completed and signed by the Responsible Official only.

17.	17. CERTIFICATIONS						
	I certify that the applicant, or the owner or operator the applicant represents, has right, title, or interest in all of the property that is proposed for development or use because the owner or operator owns, leases, or has binding options to purchase all of the property proposed for development or use.						
	I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the information submitted in this document and all of its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.						
18.	RESPONSIBLE OFFICIAL INFORMATION AND SIGNATURE						
RESI	PONSIBLE OFFICIAL NAME: David Calentine						
TITL	E: Plant Manager						
	Dav. e C C 5/26/22						
RES	PONSIBLE OFFICIAL'S SIGNATURE	DATE:					

ARD-1 GENERAL FACILITY INFORMATION INSTRUCTIONS

- 1 A list of Title V facilities in NH can be found to the NHDES website. Most facilities are Non-Title V. Check Unknown if you are unsure.
- Temporary Permit = New Construction at Existing or New Facility
 State Permit to Operate = Existing Non-Title V Facilities
 Title V Operating Permit = Existing Title V Facilities
 GSP = General State Permit
 Limitation on Potential to Emit = Small Facilities requesting coverage under Env-A 625
- New = New devices at facility, change in operation at Existing facility or New facility never permitted before Renewal = Renewal of any permit type Modification = Currently permitted by non-expired permit and wants to make amendment/modification to information contained in permit. This includes adding/removing devices covered by GSP.
 Administrative Amendment = changes in ownership or responsible official.
- 4 Facility Name = Trade Name or Doing Business As
- 5 AFS number is assigned by NHDES and is a 10-digit number starting with 33 (example 3300100001).

6	0 = Facility is not government owned	3 = Source owned by the County
	1 = Source owned by the Federal Government	4 = Source owned by the Municipality
	2 = Source owned by the State	5 = Source owned by the District

7 Responsible Official:

For a corporation = President, Secretary, treasurer, or vice-president in charge of a principal business function For a partnership = General partner or proprietor For a municipality = Principal executive officer or ranking elected official

- 8 For Title V sources, include facility wide emissions of filterable PM, filterable PM₁₀, filterable PM_{2.5}, condensable PM, SO₂, NO_x, CO, NMVOCs, Pb (if appropriate), HAPs, and CO₂e.
- 9 If any of the information requested in Section 16 A-H was submitted in a previous Title V Operating Permit application and has **not** changed, it can be incorporated by reference in the renewal application package. This previous information must be <u>clearly</u> referenced in the renewal application package and must <u>accurately</u> reflect current operations at the facility. If any changes have occurred at the facility or if changes are proposed in the renewal application package, new information must be provided. The information requested in Section 16 I-K must be completed based on <u>current</u> operations at the facility. Due to the time sensitive nature of this required information, incorporation by reference in the application package is **not** allowed.

Attachment A.2

NHDES Form ARD-3: PCE01 (Stacks 1A & 1B) and Attachments

ARD-3 FORM INFORMATION REQUIRED FOR PERMITS FOR A UNIT OF PROCESSING OR MANUFACTURING EQUIPMENT

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I. EQUIPMENT INFORMATION – Complete a separate form for each Emission Unit.

Emission Unit Description: PCE01 (Stacks 1A & 1B)

		Maximum	Maximum				
		Raw	Finished				Hours of
	Manufacturer	Material	Material				Operation
Process/	Model #	Process	Process	Manufacture	Installation		per day and
Device	Serial #	Rate	Rate	Date ¹	Date ¹	Stack #	days/yr
Paint Booth							3 hr/day;
#3	N/A	8 gal/hr	N/A	1997	1999	#1	250 days/yr
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Ex)	(Example)
Metal	Consumat Model C12						9 hr/day;
Furnace #2	S/N: 2569	N/A	500 lbs/hr		2002	#5	300 days/yr
(Example)	(Example)	(Example)	(Example)	2002 (Example)	(Example)	(Ex)	(Example)
See Attached							

Process Description - Please provide a brief description of each process performed (attach additional pages as needed):

EU01-EU08, EU12, EU13 EU15, & EU16 - Coating operations for paper, fabric, film, or foil; EU22, research and development coating operations for paper, fabric, film, or foil; EU23 - Chemsil Coater coats and dries silicone onto fiberglass through thermally treating a solid paste without the addition of solvent; EU24 & EU25 - MTM and Step Press/Laminator utilize heat to laminate or otherwise affix coated fabrics and films; EU26 - Heat Clean oven used for cleaning by heating.

A. Parts Washers/Solvent Degreasers

Not Applicable

Process/Device	Manufacturer & Model #	Capacity (gal)	Solvent Used	# Solvent Changes per Year
Degreaser #2	Safety-Kleen Model 16	16 gal (Example)	Recycled 150 Solvent	2
(Example)	(Example)		(Example)	(Example)

B. Coatings, Solvents, and Inks Entering Process – Use additional sheets if necessary

Not Applicable

Process/ Device	Raw Material or Chemical Compound	Potential Usage (gal or lb per hour and per year)		Density (lb/gal)	Percent VOC ² (wt %)	Percent HAP ³ (wt %)	Potential VOC emissions (Ib/yr)	Potential HAP emissions (lb/yr)
Paint	Black Enamel							
Booth	#5693	13 gal/hr	1360 gal/yr	7.5 lb/gal	67.96%	13.17%	6,932 lb/yr	1,343 lb/yr
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)
See Attached								
results are	example of the based on test re he substrate rat	esults; if con	trol equipmen	t was taken	into accoun	t; if conditio		

Coati	ng Application	Method:					
Air-	n Volume-Low Assisted Airless ow Coating Tee	s Spray		Electrostatic Airless Spray Other (speci	/ 🛛 🖾 C	inc-Arc Spray)ip Coat	
C. Amou	int of Liquid V	Waste Discau					
D. Stack	Information	[00.03,					
Are mu	e equipped wit Itiple units con identify other a	nected to this	s stack? 🗌 Ye	es 🗌 No (If) es 🔀 No	ves, provide dat	a for each stack)
Stack	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ⁴	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted ⁵ (Yes - Type/No)	Exhaust Orientation ⁶	Stack Monitor (Yes/No) and Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 ℉ (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	No (Example)
1A (Main RTO Stack)	60 ft.	6 ft.	350∘F	100,000 ACFM	No	Vertical	No
1B (RTO Bypass Stack)	63.52 ft.	5 ft.	236∘F	76,900 ACFM	No	Horizontal	Yes - Open/Closed Monitor

Hours per day: _up to 24 Days per year: up to 365

II. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPs) – Env-A 1400

Do any of the devices or processes emit any of the RTAPs listed in Env-A 1400? $\hfill Yes \hfill No$

If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

III. SUPPLEMENTAL FUEL USAGE INFORMATION

- Not Applicable
- A. Fuel Information (List each fuel utilized by the devices)

Device	Fuel Type	Heat Value ⁷	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
Thermal Oxidizer (Example)	#2 Fuel Oil (Example)	140,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	1.2 (Example)	MMBtu/hr (Example)
See Attached								

B. Air Pollutant Emissions from Combustion

Pollutant	Emission Factor	Units	Emission Factor Source ⁸	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP	See Attached						
PM ₁₀							
NO _x							
VOC							
СО							
SO ₂							
Other (specify)							
Provide an exam	ple of the calcu	lations use	ed to determine u	ncontrolled air	pollutant em	issions, if appli	cable:
Calculations detail	ed in attachment.						

Note: If process utilizes more than one Supplemental Fuel Burning Device, provide all six pollutant emissions information for each device. Use additional pages if necessary.

IV. POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the devices utilize more than one type of pollution control equipment, provide data for each type of equipment.

Device	Type of ControlDeviceDevice		Model and Serial Number of Control Device (if known)	Pollutant(s) Controlled by Device
Metal Furnace #2 (Example)	Baghouse #2 (Example)	Ultra-Flow Inc. (Example)	2400 CFM Small Dust Collector Serial #: N/A (Example)	TSP (Example)
Paint Spray Booth (Example)	Filter (Example)	Paint Arrestors (Example)	3100 Series (Example)	Zinc Chromate (Example)
PCE01 Regenerative Thermal Oxidizer		Air Clear	Thermgen 3 Canister RTO Serial No. 64504J5	PFOA and PFOS

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

A. Controlled Air Pollution Emissions (list emissions that result <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁹	Actual (lb/hr)	Potential (Ib/hr)	Actual (tpy)	Potential (tpy)		
See Attached									
Provide an exam	ple of the calcu	lations us	sed to determine o	controlled air po	ollutant emiss	sions, if applica	ble:		
Provide an example of the calculations used to determine controlled air pollutant emissions, if applicable: Calculations detailed in attachment									

NHDES-A-02-003d

ARD-3 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Manufacture Date or Installation Date, you may use 01/01/year. Manufacture Date refers to the date the emission unit was originally produced. Installation Date refers to the date the emission unit is installed at the facility.
- 2 Volatile Organic Compound, as defined in Env-A 100.
- 3 Hazardous Air Pollutant, as defined in section 112 of the 1990 Clean Air Act Amendments.
- 4 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 5 Flapper valves and other devices which do not restrict the vertical exhaust flow while the device is operating are not considered obstructions or restrictions.
- 6 Examples of Exhaust Orientation: Vertical, Horizontal, Downward <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 7 <u>Liquid Fuels</u> Ultra-Low Sulfur Diesel (ULSD) #2 Fuel Oil Kerosene Other – Liquid
 - <u>Gaseous Fuels</u> Natural Gas Propane (LPG) Gasoline Other (Gaseous)

<u>Heat Value</u> 137,000 Btu/gal 140,000 Btu/gal 135,000 Btu/gal Obtain from Fuel Supplier

- <u>Heat Value</u> 1,020 Btu/cubic foot 94,000 Btu/gal 130,000 Btu/gal Obtain from Fuel Supplier
- 8 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate

Section I. Equipment Information

Process/ Device	Manufacturer Model # Serial #	Maximum Raw Material Process Rate [sq. ft/hr]	Maximum Finished Material Process Rate	Manufacture Date	Installation Date	Stack #	Hours of Operation ¹ [hr/yr]
MA Tower (EU01)	N/A	6,000	N/A	N/A	1994	1A/1B	3,595
MB Tower (EU02)	N/A	17,500	N/A	N/A	1998	1A/1B	1,491
MC Tower (EU03)	N/A	9,200	N/A	N/A	1998	1A/1B	3,483
MR Tower (EU04)	N/A	9,200	N/A	N/A	2002	1A/1B	3,147
MD Tower (EU05)	N/A	9,200	N/A	N/A	1999	1A/1B	3,108
QX Tower (EU06)	N/A	6,000	N/A	N/A	1989	1A/1B	3,795
20" SBC (EU07)	N/A	500	N/A	N/A	1986	1A/1B	600
20" Coater (EU08)	N/A	500	N/A	N/A	1986	1A/1B	552
MG Tower (EU12)	N/A	4,375	N/A	N/A	2002	1A/1B	832
MP Tower (EU13)	N/A	4,375	N/A	N/A	2002	1A/1B	1,420
MQ Tower (EU15)	N/A	1,100	N/A	N/A	2002	1A/1B	2,859
MS Tower (EU16)	N/A	2,300	N/A	N/A	2002	1A/1B	3,792
R&D Coater (EU22)	N/A	2,600	N/A	N/A	N/A	1A/1B	458
Chemsil Coater (EU23)	N/A	3,800	N/A	N/A	N/A	1A/1B	N/A
MTM (EU24)	N/A	5,000	N/A	N/A	N/A	1A/1B	N/A
Step Press/ Laminator (EU25)	N/A	4,800	N/A	N/A	N/A	1A/1B	N/A
Heat Clean (EU26)	N/A	N/A	N/A	N/A	N/A	1A/1B	N/A

¹ 3-year average based on 2019-2021 annual operating hours per process/device.

Section I.B. Coatings, Solvents, and Inks Entering Process

(All product tracking is done based on total usage and is not tracked per Emission Unit/Tower)

Raw Material	2021 Usage [Ib.]	Potential Usage [lb.] ¹	Percent VOC	Percent HAP	Potential VOC emissions [lb/yr] ²	Potential HAP emissions [lb/yr] ²
Product #1	0	0	100.0%	24.00%	0	0
Product #2	0	0	100.0%	0%	0	0
Product #3	0	0	100.0%	0%	0	0
Product #4	0	0	100.0%	0%	0	0
Product #5	41	171	0%	0%	0	0
Product #6	74	310	100.0%	0%	310.1	0
Product #7	104	437	0%	0%	0	0
Product #8	10	42	100.0%	0%	42.11	0
Product #9	0	0	100.0%	0%	0	0
Product #10	906	3,817	0%	0%	0	0
Product #11	0	0	100.0%	0%	0	0
Product #12	0	0	100.0%	0%	0	0
Product #13	0	0	100.0%	0%	0	0
Product #14	0	0	100.0%	0%	0	0
Product #15	0	0	100.0%	0%	0	0
Product #16	2,750	11,579	0%	0%	0	0
Product #17	0	0	100.0%	25.10%	0	0
Product #18	293	1,234	0%	3.10%	0	38.25
Product #19	0	0	0%	0%	0	0
Product #20	171	718	0%	0%	0	0
Product #21	82	346	0%	0%	0	0
Product #22	0	0	100.0%	0%	0	0
Product #23	0	0	100.0%	0%	0	0
Product #24	103	434	0%	0%	0	0
Product #25	0	0	100.0%	100.0%	0	0
Product #26	14	58	100.0%	1.00%	57.86	0.58
Product #27	0	0	100.0%	0%	0	0
Product #28	0	0	100.0%	0%	0	0
Product #29	15	64	100.0%	0%	63.58	0
Product #30	0	0	100.0%	0%	0	0
Product #31	0	0	100.0%	0%	0	0
Product #32	5	19	100.0%	0.10%	19.50	0
Product #33	0	0	100.0%	47.30%	0	0
Product #34	0	0	100.0%	0%	0	0
Product #35	0	0	100.0%	0%	0	0
Product #36	756	3,182	0%	0%	0	0
Product #37	0	0	100.0%	0%	0	0
Product #38	0	0	100.0%	30.10%	0	0
Product #39	0	0	100.0%	12.30%	0	0
Product #40	0	0	100.0%	0%	0	0
Product #41	0	0	100.0%	0%	0	0
Product #42	0		100.0%	0%	0	0
Product #43	0		100.0%	0%	0	0

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

Raw Material	2021 Usage [lb.]	Potential Usage [lb.] ¹	Percent VOC	Percent HAP	Potential VOC emissions [lb/yr] ²	Potential HAP emissions [lb/yr] ²
Product #44	0	0	0%	0%	0	0
Product #45	0	0	100.0%	0%	0	0
Product #46	0	0	100.0%	0%	0	0
Product #47	0	0	100.0%	0%	0	0
Product #48	0	0	100.0%	0%	0	0
Product #49	0	0	100.0%	0%	0	0
Product #50	0	0	100.0%	0%	0	0
Product #51	0	0	100.0%	0%	0	0
Product #52	0	0	100.0%	0%	0	0
Product #53	0	0	100.0%	0%	0	0
Product #54	0	0	100.0%	0%	0	0
Product #55	0	0	100.0%	0%	0	0
Product #56	0	0	100.0%	0%	0	0
Product #57	0	0	100.0%	0%	0	0
Product #58	0	0	100.0%	0%	0	0
Product #59	0	0	100.0%	0%	0	0
Product #60	0	0	100.0%	0%	0	0
Product #61	0	0	100.0%	0%	0	0
Product #62	0	0	100.0%	0%	0	0
Product #63	0	0	100.0%	0%	0	0
Product #64	0	0	100.0%	0%	0	0
Product #65	0	0	100.0%	0%	0	0
Product #66	0	0	100.0%	0%	0	0
Product #67	0	0	100.0%	0%	0	0
Product #68	0	0	100.0%	0%	0	0
Product #69	0	0	100.0%	0%	0	0
Product #70	0	0	100.0%	0%	0	0
Product #71	0	0	100.0%	0%	0	0
Product #72	1,615	6,800	0%	3.00%	0	204.0
Product #73	631	2,656	0%	3.00%	0	79.68
Product #74	3,877	16,325	0%	0%	0	0
Product #75	0	0	100.0%	0%	0	0
Product #76	0	0	100.0%	0%	0	0
Product #77	0	0	100.0%	0%	0	0
Product #78	3,227	13,588	0%	0%		0
Product #79	0	0	100.0%	0%	0	0
Product #80	0	0	100.0%	0%		0
Product #81	52	220	100.0%	0%		0
Product #82	0	0	100.0%	0%		0
Product #83	200	842	100.0%	0%		0
Product #84	304	1,280	0%	0%		0
Product #85	0	0	100.0%	0%		0
Product #86	0	0	100.0%	0%		0
Product #87	0	0	100.0%	0%		0
Product #88	778	-	100.0%	0%		0

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

Raw Material	2021 Usage [lb.]	Potential Usage [lb.] ¹	Percent VOC	Percent HAP	Potential VOC emissions [lb/yr] ²	Potential HAP emissions [lb/yr] ²
Product #89	0	0	100.0%	0%	0	0
Product #90	269	1,132	0%	0%	0	0
Product #91	429	1,807	0%	0%	0	0
Product #92	75,221	316,734	0%	0%	0	0
Product #93	1,201	5,055	0%	0%	0	0
Product #94	0	0	100.0%	0.30%	0	0
Product #95	25	106	100.0%	0.10%	106.0	0
Product #96	18	77	100.0%	0%	76.63	0
Product #97	676	2,848	0%	0%	0	0
Product #98	570,966	2,404,176	0%	0.010%	0	240.4
Product #99	14,242	59,968	0%	0%	0	0
Product #100	12,582	52,981	0%	0.010%	0	5.30
Product #101	0	0	100.0%	0.010%	0	0
Product #102	0	0	100.0%	0%	0	0
Product #103	22	95	100.0%	0%	94.59	0
Product #104	0	0	100.0%	0%	0	0
Product #105	0	0	100.0%	0%	0	0
Product #106	92	387	100.0%	0%	387.0	0
Product #107	0	0	100.0%	0%	0	0
Product #108	5,537	23,316	0%	0%	0	0
Product #109	0	0	100.0%	0%	0	0
Product #110	315	1,326	0%	0%	0	0
Product #111	0	0	100.0%	25.00%	0	0
Product #112	2,094	8,815	10.00%	0.10%	881.5	8.82
Product #113	77,593	326,720	0%	0%	0	0
Product #114	0	0	100.0%	0%	0	0
Product #115	371	1,563	0%	0.10%	0	2
Product #116	0	0	100.0%	0%	0	0
Product #117	440	1,853	0%	0%	0	0
Product #118	0	0	100.0%	0%	0	0
Product #119	0	0	100.0%	0%	0	0
Product #120	0	0	100.0%	0%	0	0
Product #121	110	464	0%	0%	0	0
Product #122	441	1,856	0%	0%	0	0
Product #123	110	464	100.0%	0%	464.1	0
Product #124	55	232	100.0%	0%	232.1	0
Product #125	26	108	100.0%	30.00%	107.8	32.34
Product #126	0	0	100.0%	0%	0	0
Product #127	88	372	100.0%	0%	371.9	0
Product #128	0	0	100.0%	0%	0	0
Product #129	9	38	100.0%	0%	38	0
Product #130	0	0	100.0%	0%	0	0
Product #131	0	0	100.0%	0%	0	0
Product #132	0	0	100.0%	0%	0	0
Product #133	717	3,017	0%	0%	0	0

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

Raw Material	2021 Usage [lb.]	Potential Usage [lb.] ¹	Percent VOC	Percent HAP	Potential VOC emissions [lb/yr] ²	Potential HAP emissions [lb/yr] ²
Product #134	165	696	100.0%	0%	696.3	0
Product #135	1,112	4,682	0%	0%	0	0
Product #136	0	0	100.0%	0%	0	0
Product #137	0	0	100.0%	0%	0	0
Product #138	0	0	100.0%	0%	0	0
Product #139	0	0	0%	0%	0	0
Product #140	0	0	0%	0%	0	0
Product #141	13,393	56,396	0%	0%	0	0
Product #142	13	57	100.0%	0%	56.76	0
Product #143	0	0	0%	0%	0	0
Product #144	362	1,524	100.0%	0%	1524	0
Product #145	1,903	8,015	0%	0%	0	0
Product #146	0	0	100.0%	0%	0	0
Product #147	451	1,898	0%	0%	0	0
Product #148	0	0	100.0%	0%	0	0
Product #149	16	66	100.0%	0%	65.69	0
Product #150	0	0	100.0%	0%	0	0
Product #151	0	0	100.0%	0%	0	0
Product #152	26	111	100.0%	0%	111.2	0
Product #153	613	2,581	0%	0%	0	0
Product #154	127	535	0%	0%	0	0
Product #155	298	1,255	100.0%	0%	1255	0
Product #156	0	0	100.0%	0.010%	0	0
Product #157	47	199	0%	0%	0	0
Product #158	0	0	100.0%	0%	0	0
Product #159	857	3,609	100.0%	0%	3609	0
Product #160	1,029	4,335	0%	0%	0	0
Product #161	3,330	14,022	3.00%	3.00%	420.6	420.6
Product #162	165,958	698,803	0%	0%	0	0
Product #163	19	82	100.0%	0.0016%	81.73	0
Product #164	794	3,343	0%	0.0016%	0	0
Product #165	11,520	48,507	0%	0.0016%	0	0.78
Product #166	11,520	48,507	0%	0.0016%	0	0.78

¹ - Potential Usage (lb/yr) = 2021 Annual Usage (lb/yr) * (1 / 23.5% Utilization in 2021)
 2021 Utilization (%) = 2021 Total Combined Coating Tower Operating Hours / (Combined Possible Tower Hours {8,760 hr/yr per Tower})

² - Potential Annual VOC/HAP Emissions (lb/yr) = Potential Usage (lb/yr) x % Total VOC or HAP All VOC/HAP emissions are pre-control values, 2021 stack testing indicated a 77% VOC DRE.

Section III.A. Fuel Information

Device	Fuel Type	Heat Value [Btu/ft ³]	Sulfur Content (%)	Maximum Fuel Flow Rate [ft3/hr]	Maximum Output [MMBtu/hr]
MA Tower (EU01)	Natural Gas	1,020	N/A	3,824	3.9
MB Tower (EU02)	Natural Gas	1,020	N/A	7,353	7.5
MC Tower (EU03)	Natural Gas	1,020	N/A	4,412	4.5
MR Tower (EU04)	Natural Gas	1,020	N/A	4,412	4.5
MD Tower (EU05)	Natural Gas	1,020	N/A	8,824	9
QX Tower (EU06)	Natural Gas	1,020	N/A	7,353	7.5
20" SBC (EU07)	Electric	N/A	N/A	N/A	N/A
20" Coater (EU08)	Electric	N/A	N/A	N/A	N/A
MG Tower (EU12)	Natural Gas	1,020	N/A	5,882	6
MP Tower (EU13)	Natural Gas	1,020	N/A	7,353	7.5
MQ Tower (EU15)	Natural Gas	1,020	N/A	4,412	4.5
MS Tower (EU16)	Natural Gas	1,020	N/A	4,412	4.5
R&D Coater (EU22)	Natural Gas	1,020	N/A	1,961	2
Chemsil Coater (EU23)	Electric	N/A	N/A	N/A	N/A
MTM (EU24)	Natural Gas	1,020	N/A	2,941	3
Step Press/ Laminator (EU25)	Electric	N/A	N/A	N/A	N/A
Heat Clean (EU26)	Natural Gas	1,020	N/A	1,471	1.5
RTO Burner "A"	Natural Gas	1,020	N/A	8,627	8.8
RTO Burner "B"	Natural Gas	1,020	N/A	8,627	8.8

Section III.B. Air Pollutant Emissions from Combustion

Pollutant	Emission Factor ¹ [lb/MMSCF]	Emission Factor ² [lb/MMBTU]	Actual/Potential ³ [lb/hr]	Actual⁴ [tpy]	Potential⁵ [tpy]
PM (total)	7.6	0.0075	0.62	0.33	2.73
SO ₂	0.6	0.00059	0.049	0.026	0.22
NO _x	100	0.098	8.19	4.28	35.86
СО	84	0.082	6.88	3.59	30.12
VOC	5.5	0.0054	0.45	0.24	1.97

Based on Combined heat input rating for Towers and RTO burner = 83.5 MMBtu/hr

¹ Natural gas emission factors for small boilers as found in Tables 1.4-1 and 1.4-2 of AP-42, Chapter 1.4, July 1998

² Per AP-42, "To convert from lb/10⁶ scf to lb/MMBtu, divide by 1,020."

³ Actual & Potential [lb/hr] = Sum of Max Output (from III.A.) [MMBTU/hr] x Emission Factor [lb/MMBTU]

⁴ Actual 2021 emissions for combustion operations calculated using measured natural gas usage.

⁵ Potential [tpy] = Potential [lb/hr] x 8760 [hr/yr] x 1/2000 [ton/lb]

Section IV.A. Controlled Air Pollution Emissions

Pollutant	Controlled Emission Factor ¹ [%]	Actual ² [lb/hr]	Potential ³ [lb/hr]	Actual ⁴ [tpy]	Potential⁵ [tpy]
PFOA	92	1.64E-06	2.06E-05	8.84E-06	4.65E-05
PFOS	75	6.80E-08	2.77E-07	3.16E-07	7.31E-07
Hydrogen Fluoride as F*	N/A	1.21E-02	1.21E-02	5.19E-02	5.30E-02

¹ RTO Destruction/Removal Efficiency (DRE) from September 2021 stack test results.

² Controlled emissions measured at the RTO outlet from the September 2021 stack test results.

³ Uncontrolled emissions measured at the RTO inlet from the September 2021 stack test results. Potential emissions are equal to the actual emissions when the RTO bypass stack is operating.

⁴ Max. Actual for PFOA/PFOS (tpy) = (175 hr/yr x potential (lb/hr)) + (8,585 hr/yr x actual (lb/hr))/2,000 lb/ton Actual for HF (tpy) = (actual (lb/hr) x 8,585 hr/yr)/2,000 lb/ton

Monitoring plan indicates facility will track bypass minutes and flow.

Actual for PFOA/PFOS (tpy) = Bypass Minutes x Flow to RTO at time of bypass (cfm) x PFOA or PFOS Emission Rate (lb/dscf)

⁵ Potential for PFOA/PFOS (tpy) = (4,145 hr/yr x potential (lb/hr)) + (4,615 hr/yr x actual (lb/hr))/2,000 lb/ton Potential for HF (tpy) = (actual (lb/hr) x 8,760 hr/yr)/2,000 lb/ton

* Hydrogen fluoride is not controlled by the RTO but is a byproduct of operation of the RTO in treating

Attachment A.3

NHDES Form ARD-3: Antenna Covering Process Area

ARD-3 FORM INFORMATION REQUIRED FOR PERMITS FOR A UNIT OF PROCESSING OR MANUFACTURING EQUIPMENT

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I. EQUIPMENT INFORMATION – Complete a separate form for each Emission Unit.

Emission Unit Description: EU17 (Antenna Cover Fabrication Area)

Process/ Device	Manufacturer Model # Serial #	Maximum Raw Material Process Rate	Maximum Finished Material Process Rate	Manufacture Date ¹	Installation Date ¹	Stack #	Hours of Operation per day and days/yr
Paint Booth							3 hr/day;
#3	N/A	8 gal/hr	N/A	1997	1999	#1	250 days/yr
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Ex)	(Example)
Metal Furnace #2 (Example)	Consumat Model C12 S/N: 2569 (Example)	N/A (Example)	500 lbs/hr (Example)	2002 (Example)	2002 (Example)	#5 (Ex)	9 hr/day; 300 days/yr (Example)
EU17	N/A	N/A	N/A	N/A	1993	2 (three identical stacks)	8hr/day; 260day/yr

Process Description - Please provide a brief description of each process performed (attach additional pages as needed):

EU17 is an Antenna Cover Fabrication Area which exhausts to the atmosphere through three (3) identical stacks together identified as Stack #2.

A. Parts Washers/Solvent Degreasers

Not Applicable

Process/Device	Manufacturer & Model #	Capacity (gal)	Solvent Used	# Solvent Changes per Year
Degreaser #2	Safety-Kleen Model 16	16 gal (Example)	Recycled 150 Solvent	2
(Example)	(Example)		(Example)	(Example)

B. Coatings, Solvents, and Inks Entering Process – Use additional sheets if necessary

Not Applicable

Process/ Device	Raw Material or Chemical Compound	(gal or lb	tial Usage per hour and r year)	Density (Ib/gal)	Percent VOC ² (wt %)	Percent HAP ³ (wt %)	Potential VOC emissions (lb/yr)	Potential HAP emissions (lb/yr)		
Paint	Black Enamel									
Booth	#5693	13 gal/hr	1360 gal/yr	7.5 lb/gal	67.96%	13.17%	6,932 lb/yr	1,343 lb/yr		
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)		
See Attached										
results are	Provide an example of the calculations used to determine total potential VOC and HAP emitted. Indicate if the results are based on test results; if control equipment was taken into account; if conditions exist where solvents remain in the substrate rather than complete volatilization, transfer efficiency, etc.:									

e Attached							
Coating	Application I	Method:					
Air-As	/olume-Low Pr ssisted Airless S v Coating Tech	Spray	A	lectrostatic sirless Spray Other (specify	· · · =	nc-Arc Spray p Coat blication	
C. Amoun	t of Liquid W	aste Discarc	led:				
		gal/yr tons/y	r				
D. Stack In	formation						
Are multi	equipped with ple units conne entify other de	ected to this	stack? 🗌 Ye	es 🗌 No (If) es 🔀 No	yes, provide dat	a for each stack)
Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ⁴	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted ⁵ (Yes - Type/No)	Exhaust Orientation ⁶	Stack Monitor (Yes/No) and Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 ℉ (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	No (Example)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

Hours per day: up to 24 Days per year: up to 365

II. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPs) – Env-A 1400

Do any of the devices or processes emit any of the RTAPs listed in Env-A 1400? $\hfill Yes$ $\hfill No$

airpermitting@des.nh.gov or phone (603) 271-1370 PO Box 95, Concord, NH 03302-0095 www.des.nh.gov If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

III. SUPPLEMENTAL FUEL USAGE INFORMATION

- Not Applicable
- A. Fuel Information (List each fuel utilized by the devices)

Device	Fuel Type	Heat Value ⁷	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
Thermal Oxidizer (Example)	#2 Fuel Oil (Example)	140,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	1.2 (Example)	MMBtu/hr (Example)

B. Air Pollutant Emissions from Combustion

Pollutant	Emission Factor	Units	Emission Factor Source ⁸	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP							
PM ₁₀							
NO _x							
VOC							
СО							
SO ₂							
Other (specify)							
Provide an exam	ple of the calcu	lations use	ed to determine u	ncontrolled air	pollutant em	nissions, if appli	cable:

Note: If process utilizes more than one Supplemental Fuel Burning Device, provide all six pollutant emissions information for each device. Use additional pages if necessary.

IV. POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the devices utilize more than one type of pollution control equipment, provide data for each type of equipment.

Device	Type of Control	Manufacturer of	Model and Serial Number of	Pollutant(s) Controlled
	Device	Control Device	Control Device (if known)	by Device
Metal Furnace #2 (Example)	Baghouse #2 (Example)	Ultra-Flow Inc. (Example)	2400 CFM Small Dust Collector Serial #: N/A (Example)	TSP (Example)
Paint Spray	Filter	Paint Arrestors	3100 Series	Zinc Chromate
Booth (Example)	(Example)	(Example)	(Example)	(Example)

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

A. Controlled Air Pollution Emissions (list emissions that result <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁹	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
Provide an exam	ple of the calcu	lations us	sed to determine o	controlled air po	ollutant emiss	sions, if applica	ble:

ARD-3 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Manufacture Date or Installation Date, you may use 01/01/year. Manufacture Date refers to the date the emission unit was originally produced. Installation Date refers to the date the emission unit is installed at the facility.
- 2 Volatile Organic Compound, as defined in Env-A 100.
- 3 Hazardous Air Pollutant, as defined in section 112 of the 1990 Clean Air Act Amendments.
- 4 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 5 Flapper valves and other devices which do not restrict the vertical exhaust flow while the device is operating are not considered obstructions or restrictions.
- 6 Examples of Exhaust Orientation: Vertical, Horizontal, Downward <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 7 <u>Liquid Fuels</u> Ultra-Low Sulfur Diesel (ULSD) #2 Fuel Oil Kerosene Other – Liquid
 - <u>Gaseous Fuels</u> Natural Gas Propane (LPG) Gasoline Other (Gaseous)

<u>Heat Value</u> 137,000 Btu/gal 140,000 Btu/gal 135,000 Btu/gal Obtain from Fuel Supplier

- <u>Heat Value</u> 1,020 Btu/cubic foot 94,000 Btu/gal 130,000 Btu/gal Obtain from Fuel Supplier
- 8 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate

Attachment A.4

NHDES Form ARD-7: Fire Pump

ARD-7 FORM INFORMATION REQUIRED FOR PERMITS FOR ENGINES AND TURBINES

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

١. FUEL BURNING EQUIPMENT INFORMATION – Complete a separate form for each emission unit.

A. Emission Unit Description:

Clarke Fire Pump Model JU4H-UFAD58

		ive in en ibre		
🛛 Reciprocating I	nternal Combustion Engine	Combustion Turb	ine	
🔄 Rich Burn	<u>Use:</u> Emergency			
2-Stroke	Non-Emergency	2015		
4-Stroke	Demand Response	Date Construction Cor	nmenced ¹	
Dual-fuel	Other	2015	N/A	
		Installation Date ¹	Manufactu	re Date ¹
John Deere		4045		
Manufacturer		Model Number		
PE4045L273937		1.2		MMBtu/hr
Serial Number		Maximum Gross Heat	Input Rate	
	🔀 gal/hr			🔀 bhp
8.7	mmcf/hr	110		🗌 bkW
Maximum Fuel Flow Ra	ate	Maximum Engine Out	out Rating	
EPA Certified Not to	o Exceed Limits? If yes, provide EF	A Certification Sheet.		

B. Stack Information

Is emission unit equipped with multiple stacks? Yes X No (If yes, provide data for each stack) Are multiple units connected to this stack?

Yes 🕅 No

(If yes, identify other emission units or devices on this stack:)

Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ²	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted ³ (Yes - Type/No)	Exhaust Orientation ⁴	Stack Monitor (Yes/No) and Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 ℉ (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	Yes – CEM for PM (Example)
EU20	12 ft	0.33 ft	1021∘F	379 acfm	No	Vertical	No

C. Hours of Operation

Hours per day: _up to 24 Days per year: up to 500 hr/yr

II. FUEL USAGE INFORMATION (List each fuel utilized by the emission unit)

Fuel Type	Heat Value⁵	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
ULSD (Example)	137,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	2.74 (Example)	MMBtu/hr (Example)
ULSD	137,000	Btu/gal	0.0015	8.7	gal/hr	1.2	MMBtu/hr

III. UNCONTROLLED AIR POLLUTANT EMISSIONS (list emissions that result from the burning of each fuel utilized by the emission unit prior to add on controls – use additional sheets if necessary)

Pollutant	Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP							
PM10	0.0704566	lb/MM BTU	EPA Tier 3 Limit	0.08	0.08	0.02	0.37
NO _x	0.9394212	lb/MM BTU	EPA Tier 3 Limit	1.13	1.13	0.3	4.94
VOC	0.9394212	lb/MM BTU	EPA Tier 3 Limit	1.13	1.13	0.3	4.94
со	1.1742765	lb/MM BTU	EPA Tier 3 Limit	1.41	1.41	0.4	6.17
SO ₂	0.0015	lb/MM BTU	15 ppm Sulfur Limit	1.8E-3	1.8E-3	4.5E-4	0.0079
Other (specify)							

Provide an example of the calculations used to determine uncontrolled air pollutant emissions, if applicable:

Emission factors listed are in lb/MMBTU

Emission factors for VOC and NOx each assumed to be total of Tier 3 Limit for NMHC + NOx (Tier 3 limits in g/kw-hr = 4.0 for NOx+NMHC; 5.0 for CO; and 0.3 for PM. Conversion Factor from g/kw-hr to g/hp-hr = 0.7457

Hourly Emissions (lb/hr) = (Max. Firing Rate {MMBtu/hr}) * (Emission Factor {lb/MBTU}) Potential Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr) Annual Emission (lbs/yr) = Unit Firing Rate (MMBtu/hr) * 500 (hr/year) * Emission Factor (lb/MMBTU)

500 hour per year Annual Limit established in Env-A 600

IV. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPs) – Env-A 1400

Does the emission unit burn a non-exempt fuel⁷ and emit any of the RTAPs listed in Env-A 1400? \Box Yes \bigotimes No

If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

V. POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the emission unit utilizes more than one type of pollution control equipment, provide data for each type of equipment.

A. Type of Equipment

Type of Control Device	Manufacturer of Control Device	Model and Serial Number of Control Device (if known)	Pollutant(s) Controlled by Device
Oxidation Catalyst (Example)	DCL International, Inc. (Example)	DC 18012 CC Serial #: N/A (Example)	CO and HAPs (Example)

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

B. Controlled Air Pollution Emissions (list emissions that result from the burning of each fuel utilized by the emission unit <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP							
PM ₁₀							

NO _x				
VOC				
СО				
SO ₂				
Other (specify)				

Provide an example of the calculation	is used to determine un	controlled air pollutant	t emissions, if applicable:

ARD-7 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Date Construction Commenced, Manufacture Date or Installation Date, you may use 01/01/year. The exception is for calendar years 2006 and 2007, where a month and year are required to determine rule applicability. Date Construction Commenced refers to the date the owner or operator has entered into a contractual obligation to undertake and complete a continuous program of construction, reconstruction, or modification of the emission unit. Manufacture Date refers to the date the emission unit was originally produced. Installation Date refers to the date the emission unit is installed at the facility.
- 2 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 3 Flapper valves and other devices which do not restrict the vertical exhaust flow while the emission unit is operating are not considered obstructions or restrictions.
- Examples of Exhaust Orientation: Vertical, Horizontal, Downward
 <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack

5	Liquid Fuels	<u>Heat Value</u>
	Ultra-Low Sulfur Diesel (ULSD)	137,000 Btu/gal
	#2 Fuel Oil	140,000 Btu/gal
	Kerosene	135,000 Btu/gal
	Other – Liquid	Obtain from Fuel Supplier

<u>Gaseous Fuels</u>	<u>Heat Value</u>
Natural Gas	1,020 Btu/cubic foot
Propane (LPG)	94,000 Btu/gal
Gasoline	130,000 Btu/gal
Other (Gaseous)	Obtain from Fuel Supplier

- 6 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - EPA Certified Not To Exceed Limits (i.e. Tier II engine submit specifications sheet or certification for documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate
- 7 Fuels exempt from Env-A 1400 include:
 - Virgin Petroleum Products (#2, #4, or #6 fuel oil, gasoline, kerosene, jet fuel, etc.)
 - Coal
 - Natural Gas
 - Propane
 - Biofuels as defined in Env-A 1401.03(b)
 - Biomass as defined in Env-A 1401.03(c)

MODELS

JU4H-UFADW8 JU4H-UFADY8 JU4H-UFAD98

FM-UL-cUL APPROVED RATINGS BHP/KW

*

FIRE PUMP ENGINES

BKE®

JU4H MODEL	17	60		TED			2400		US-EPA (NSPS) Available Until	
UFAD58	110	82		>					No Expiration	
UFADPO	121	90	125	93	130	97	130	97	No Expiration	
UFADR0	113	84	136	101	140	104	140	104	No Expiration	
UFADW8	144	107		1			1.42		No Expiration	
UFADY8	157	117			-			8.4	No Expiration	
UFAD98	175	131			201		e Yeler		No Expiration	

 USA EPA (NSPS) Tier 3 Emissions Certified Off-Road (40 CFR Part 89) and NSPS Stationary (40 CFR Part 60 Sub Part IIII). Meet EU Stage IIIA emission levels.

All Models available for Export

JU4H-UFAD58

JU4H-UFADP0

JU4H-UFADR0

Picture shown represents JU4H-TRWA engine model

SPECIFICATIONS

18.4

			JU4H MO	DELS		
ITEM	UFAD58	UFADP0	UFADR0	UFADW8	UFADY8	UFAD98
Number of Cylinders			4			
Aspiration	7		TRWA			
Rotation*			CW			and a story
Overall Dimensions In. (mm)	59.9 (1523) H x 44.4 (1127) L x 37.3 (949) W					
Crankshaft Centerline Height – in. (mm)	14 (356)					
Weight – Ib (kg)	1490 (676)					
Compression Ratio	19.0:1					
Displacement – cu. in. (l)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		275 (4.5	5)	1	
Engine Type			Stroke Cycle – Inlin	e Construction		
Bore & Stroke – in. (mm)			4.19 x 5.00 (10	6 x 127)		
Installation Drawing			D630	-		1
Wiring Diagram AC			C07651			
Wiring Diagram DC	C071367, C072146, C071361					
Engine Series	John Deere 4045 Series Power Tech E					
Speed Interpolation			N/A			

Abbreviations: CW - Clockwise TRWA - Turbocharged with Raw Water Aftercooling N/A Not Available L - Length W - Width H - Height

*Rotation viewed from Heat Exchanger / Front of engine

CERTIFIED POWER RATING

- · Each engine is factory tested to verify power and performance.
- \bullet FM-UL power ratings are shown at specific speeds, Clarke engines can be applied at these single rated RPM settings with a speed adjustment of \pm 50 RPM.

ENGINE RATINGS BASELINES

- Engines are to be used for stationary emergency standby fire pump service only. Engines are to be tested in accordance with NFPA 25.
- Engines are rated at standard SAE conditions of 29.61 in. (752.1 mm) Hg barometer and 77°F (25°C) inlet air temperature [approximates 300 ft. (91.4 m) above sea level] by the testing laboratory (see SAE Standard J 1349).
- A deduction of 3 percent from engine horsepower rating at standard SAE conditions shall be made for diesel engines for each 1000 ft. (305 m) altitude above 300 ft. (91.4 m)
- A deduction of 1 percent from engine horsepower rating as corrected to standard SAE conditions shall be made for diesel engines for every 10°F (5.6°C) above 77°F (25°C) ambient temperature.

JU4H-UFAD58 JU4H-UFADP0 JU4H-UFADR0 JU4H-UFADW8

JU4H-UFADY8 JU4H-UFAD98

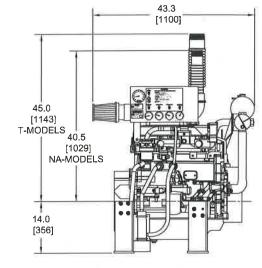
ENGINE EQUIPMENT

EQUIPMENT	STANDARD	OPTIONAL
Air Cleaner	Direct Mounted, Washable, Indoor Service with Drip Shield	Disposable, Drip Proof, Indoor Service Outdoor Type, Single or Two Stage (Cyclonic)
Alarms	Overspeed Alarm & Shutdown, Low Oil Pressure, Low & High Coolant Temperature, Low Raw Water Flow, High Raw Water Temperature	Low Coolant Level, Low Oil Level, Oil Filter Differential Pressure, Fuel Filter Differential Pressure, Air Filter Restriction
Alternator	12V-DC, 42 Amps with Poly-Vee Belt and Guard	24V-DC, 40 Amps with Poly-Vee Belt and Guard
Coupling	Bare Flywheel	UL Listed Driveshaft and Guard, JU4H-UFAD58, P0, R0, W8, Y8 - CDS30-S1; JU4H-UFAD98 CDS-50
Electronic Control Module	12V-DC, Energized to Stop, Primary ECM always Powered on	24V-DC, Energized to Stop, Primary ECM always Powered on
Engine Heater	115V-AC, 1000 Watt	230V-AC, 1000 Watt
Exhaust Flex Connection	SS Flex, NPT(M) Connection, 4"	SS Flex, 150# ANSI Flanged Connection, 5"
Exhaust Protection	Metal Guards on Manifolds and Turbocharger	and the second of the second
Flywheel Housing	SAE #3	
Flywheel Power Take Off	11.5" SAE Industrial Flywheel Connection	
Fuel Connections	Fire Resistant, Flexible, USA Coast Guard Approved Supply and Return Lines	SS, Braided, cUL Listed, Supply and Return Lines
Fuel Filter	Primary Filter with Priming Pump	
Fuel Injection System	High Pressure Common Rail	
Governor, Speed	Dual Electronic Control Modules	
Heat Exchanger	Tube and Shell Type, 60 PSI (4 BAR), NPT(F) Connections – Sea Water Compatible	The second second second
Instrument Panel	Multimeter to Display English and Metric, Tachometer, Hourmeter, Water Temperature, Oil Pressure and One (1) Voltmeter with Toggle Switch, Front Opening	
Junction Box	Integral with Instrument Panel; For DC Wiring Interconnection to Engine Controller	
Lube Oil Cooler	Engine Water Cooled, Plate Type	
Lube Oil Filter	Full Flow with By-Pass Valve	
Lube Oil Pump	Gear Driven, Gear Type	
Manual Start Control	On Instrument Panel with Control Position Warning Light	
Overspeed Control	Electronic, Factory Set, Not Field Adjustable	
Raw Water Cooling Loop w/Alarms	Galvanized	Seawater, All 316SS, High Pressure
Raw Water Cooling Loop Solenoid Operation	Automatic from Fire Pump Controller and from Engine Instrument Panel (for Horizontal Fire Pump Applications)	Not Supplied (for Vertical Turbine Fire Pump Applications)
Run – Stop Control	On Instrument Panel with Control Position Warning Light	
Starters	Two (2) 12V-DC	Two (2) 24V-DC
Throttle Control	Adjustable Speed Control by Increase/Decrease Button, Tamper Proof in Instrument Panel	and the second second second
Nater Pump	Centrifugal Type, Poly-Vee Belt Drive with Guard	and the second

Abbreviations : DC - Direct Current, AC - Alternating Current, SAE - Society of Automotive Engineers, NPT(F) - National Pipe Tapered Thread (Female), NPT(M) - National Pipe Tapered Thread (Male), ANSI - American National Standards Institute, SS - Stainless Steel

Fire Protection Products, Inc. CLARKE' 100 Progress Place, Cincinnati, Ohio 45246 United States of America Tel +1-513-475-FIRE(3473) Fax +1-513-771-8930 www.clarkefire.com

MODEL NOMENCLATURE (10 Digit Models) UF A D RO JU4H Power Curve Number John Deere Base Engine 350 Series -US EPA Tier 3 Certified 4 Cylinder Built in USA UL Listed and FM Approved


Heat Exchanger Cooled

CLARKE UK, Ltd. Grange Works, Lomond Rd., Coatbridge, ML5-2NN United Kingdom Tel +44-1236-429946 Fax +44-1236-427274 www.clarkefire.com

Specifications and information contained in this brochure subject to change without notice.

C133220 revT 11JAN16

JU4H-UF58 JU4H-UF50 JU4H-UF52

JU4H-UF50 OVERALL WIDTH 29.0 [735]

FM-UL-CUL APPROVED RATINGS BHP/KW

JU4H		RATED SPEED								
MODEL	14	70	17	60	21	00	23	50	26	00
UF10			41	31	51	38	55	41		
UF12							55	41	59	44
UF20			60	45	67	50	72	54		
UF22							72	54	75	56
UF30			64	48	79	59	85	63		
UF32		1.			<u>8</u>		85	63	85	63
UFH8	63	47	73	54					8 - ² -	
UFHO		112	73	54	88	66	98	73		
UFH2			1				98	73	99	74
UF40			94	70	`105	78	106	79	1.2	
UF42						1	106	79	106	79
UF58	79	59	110	82						
UF50			110	82	130	<u>9</u> 7	127	<i>9</i> 5		
UF52		1					127	<i>9</i> 5	127	95

All engine models and ratings are USA EPA emissions compliant per NSPS (40 CFR Part 60 Sub Part IIII)

SPECIFICATIONS

a Martine Martine 2 1	JU4H MODELS						
ITEM	UF10/12	UF20/22	UF30/32	UFH8/H0/H2	UF40/42	UF58/50/52	
Number of Cylinders				4		Sec. 1	
Aspiration	N	IA	A Cay and	Test			
Rotation*		Clockwise (CW)					
Weight - Ib (kg)	910	(413)		935 (4	124)	And and a second	
Compression Ratio	17.	17.6:1 17.0:1					
Displacement - cu. in. (l)		275 (4.5)					
Engine Type		4 Stroke Cycle - Inline Construction					
Bore & Stroke - in. (mm)		4.19 x 5.00 (106 x 127)					
Installation Drawing			D - 534 - US	D - 545 - UK			
Wiring Diagram		C07575 (DC Engine Wiring) C07651 (AC Heater Wiring)					
Engine Series		John Deere 4045 Series					

Abbreviations: CW - Clockwise NA - Naturally Aspirated T - Turbocharged

*Rotation viewed from Heat Exchanger / Front of engine • Engine intended for Indoor use or inside weatherproof enclosure only

† ENGINE RATINGS BASELINES

• Engines are rated at standard SAE conditions of 29.61 in. (7521 mm) Hg barometer and 77°F (25°C) inlet air temperature [approximates 300 ft. (91.4 m) above sea level] by the testing laboratory (see SAE Standard J 1349).

• A deduction of 3 percent from engine horsepower rating at standard SAE conditions shall be made for diesel engines for each 1000 ft. (305 m) altitude above 300 ft. (91.4 m).

- A deduction of 1 percent from engine horsepower rating as corrected to standard SAE conditions shall be made for diesel engines for every 10°F (5.6°C) above 77°F (25°C) ambient temperature.

• Note: Engines are not to be used for continuous duty. Engines are to be used only for stationary emergency standby fire pump service. According to NFPA 25 engines are to be tested 30 minutes per week at no pump flow and full pump flow once per year.

CERTIFIED POWER AT ANY SPEED

• Although FM-UL Certified BHP ratings are shown at specific speeds, Clarke engines can be applied at any intermediate speed. To determine the intermediate certified power, make a linear interpolation from the Clarke FM-UL certified power curve. Contact Clarke or your Pump OEM representative to obtain details.

					MODELS
		JU4H-UF20	JU4H-UF32	JU4H-UFH2	JU4H-UF58
FIRE PUMP ENGINES	JU4H-UF10	JU4H-UF22	JU4H-UFH8	JU4H-UF40	JU4H-UF50
	JU4H-UF12	JU4H-UF30	JU4H-UFH0	JU4H-UF42	JU4H-UF52

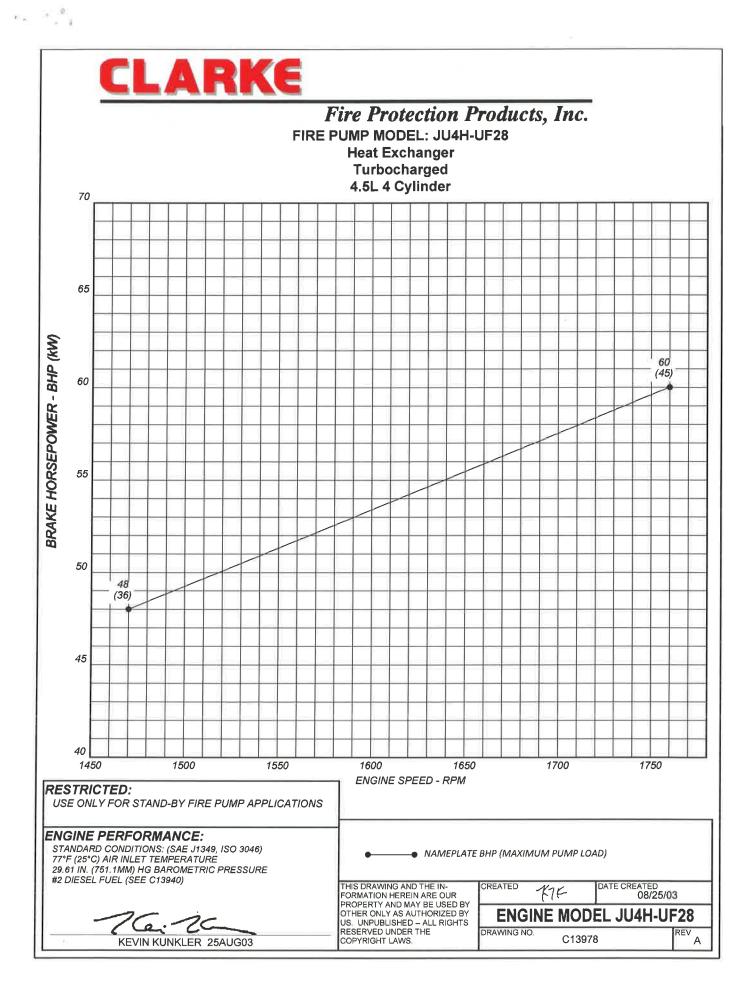
ENGINE EQUIPMENT

EQUIPMENT	STANDARD	OPTIONAL
Air Cleaner	Direct Mounted, Washable, Indoor Service	Disposable, Drip proof, Indoor Service, Outdoor Type
Alternator	12V-DC, 42 Amps; w/Belt Guard	24V-DC, 40 Amps; w/Belt Guard
Exhaust Protection	Blankets on UF10/12, UF20/22, Metal Guards on Manifolds & Turbo on UF30/32, UFH8/H0/H2, UF40/42, UF50/52/58	
Coupling	Bare Flywheel	UL-Drive Shaft & Guard, UF10/12, UF20/22 - CDS10-SC; UF30/32, UFH8/H0/H2, UF40/42 - CDS20-SC; UF58/50/52 - CDS30-S1
Exhaust Flex Connection	SS Flex, NPT, 3" NA, SS Flex, NPT, 4" T	SS Flex, 150# Flange, 4" & 5"
Flywheel Housing	S.A.E. #3	
Flywheel Power Take Off	11.5" S.A.E. Industrial Flywheel Connection	
Fuel Connections	Fire Resistant Flexible Supply & Return Lines	
Fuel Filter	Primary Filter w/priming pump	
Fuel Injection System	Stanadyne Direct Injection	
Engine Heater	120V-AC, 1500 Watt	240V-AC, 1500 Watt
Governor, Speed	Constant Speed, Mechanical	
Heat Exchanger	Tube & Shell Type, 60 PSI w/NPTF Connections	
Instrument Panel	English & Metric, Tachometer, Hourmeter, Water Temperature, Oil Pressure & Two (2) Voltmeters	
Junction Box	Integral with Instrument Panel; For DC Wiring Interconnection to Engine Controller	
Lube Oil Cooler	Engine Water Cooled, Plate Type	A STATISTICS AND THE REAL PROPERTY AND A STATISTICS AND A
Lube Oil Filter	Full Flow w/By-Pass Valve	
Lube Oil Pump	Gear Driven, Gear Type	
Manual Start Controls	On Instrument Panel	
Overspeed Control	Electronic w/Reset & Test on Instrument Panel	
Raw Water Solenoid Opera- tion	Automatic from Engine Controller & from Instrument Panel	
Run-Stop Control	On Instrument Panel With Control Position Warning Light	
Run Solenoid	12V-DC Energized to Run	24V-DC Energized to Run 12V-DC Energized to Stop 24V-DC Energized to Stop
Starters	Two (2) 12V-DC	Two (2) 24V-DC
Throttle Control	Adjustable Speed Control, Tamper Proof	
Water Pump	Poly-Vee Belt Drive w/Guard	

MODEL NOMENCLATURE: (8 Digit Models)

JU4H-UF10 JU4H-UF10 John Deere Base Engine J 250 Series J 4 Cylinders Heat Exchanger Cooled

Power Curve Number FM Approved UL Listed



CLARKE Fire Protection Products, Inc. 3133 E. Kemper Rd., Cincinnati, Ohio 45241 United States of America Tel +1-513-771-2200 Fax +1-513-771-0726 www.clarkefire.com

CLARKE UK, Ltd. Grange Works, Lomond Rd., Coatbridge, ML5-2NN United Kingdom Tel +44-1236-429946 Fax +44-1236-427274 www.clarkefire.com

C13600 1.2 5/09

Specifications and information contained in this brochure subject to change without notice.

JU4H-UF28 INSTALLATION & OPERATION DATA USA Production

Basic Engine Description

Basic Engine Description		
Engine Manufacturer	John Deere	Co.
Ignition Type		n (Diesel)
Number of Cylinders	4	
Bore and Stroke - in.(mm)		5.00(127)
Displacement - in. ³ (L)	275 (4.5)	
Compression Ratio		
Valves per cylinder - Intake		
Exhaust		
Combustion System		ion
Engine Type		
Aspiration		
Firing Order (CW Rotation)		
Charge Air Cooling Type		
Rotation (Viewed from Front) - Clockwise		
Counter-Clockwise		۹
Engine Crankcase Vent System		0
Installation Drawing.		
installation Drawing.	D-330	
<u>Cooling System</u>	<u>1470</u>	<u>1760</u>
Engine H₂O Heat -Btu/sec.(kW)		19 (20)
Engine Radiated Heat - Btu/sec.(kW)	• •	13 (14)
Heat Exchanger Minimium Flow	10(11)	13(14)
	C (00)	e (00)
60°F (15°C) Raw H₂O - gal/min. (L/min.)	. ,	6 (23)
95°F (35°C) Raw H₂O - gal/min. (L/min.)	7 (27)	8 (30)
Heat Exchanger Maximum Cooling H2O		
Inlet Pressure - bar (lb./in²) (kPa)	4 (60) (400)	
Flow - gal./min (L/min.)		
Thermostat, Start to Open - °F (°C)		
Fully Opened - °F (°C)		
Engine Coolant Capacity - qt. (L)		
Coolant Pressure Cap - Ib./in ² (kPa)		
Maximum Engine H₂0 Temperature - °F (°C)		
Minimum Engine H₂0 Temperature - °F (°C)	160 (71)	
<u>Electric System - DC</u>		
System Voltage (Nominal)	12	24
Battery Capacity for Ambients Above 32°F (0°C)		
Voltage (Nominal)		24
Qty. per Battery Bank		2
SAE size per J537	4D-640	4D-640
CCA @ 0°F (-18°C)	640	640
Reserve Capacity - Minutes	285	285
Battery Cable Circuit*, Max Resistance - ohm	0.0012	0.0012
Battery Cable Minimum Size		
0 -120 in. Circuit* Length	00	00
121 - 160 in. Circuit* Length		000
161 - 200 in. Circuit* Length		0000
Charging Alternator Output - Amp		40
Starter Cranking Amps - @ 60°F (15°C)		250
*Positive and Negative Cables Combine		

JU4H-UF28 INSTALLATION & OPERATION DATA (Continued) USA Production

Exhaust System	<u>1470</u>	<u>1760</u>
Exhaust Flow - ft. ³ /min. (m ³ /min.)	348 (9.9)	379 (10.7)
Exhaust Temperature - °F (°C)	1025 (609)	1021 (5 4 9)
Maximum Allowable Back Pressure - in. H ₂ 0 (kPa)	30 (7.4)	
Minimum Exhaust Pipe Dia in. (mm)**	3 (76)	
Fuel System		

Fuel Consumption - gal./hr. (L/hr.)	2.5 (9.5)	3.8 (14.4)
Fuel Return - gal./hr. (L/hr)		
Total Supply Fuel Flow - gal./hr (L/hr.)	9.9 (37.5)	11.7 (44.4)
Fuel Pressure - lb./in. ² (kPa)	3-6 (21-41))
Minimum Line Size - Supply - in. (mm)	.50 (12.7) \$	Sch. 40 - Black Iron
Minimum Line Size - Return - in. (mm)	.375 (9.5) \$	Sch. 40 - Black Iron
Maximum Allowable Fuel Pump Suction		
With Clean Filter - in. H ₂ 0 (mH ₂ 0)	31 (0. 8)	
Maximum Allowable Fuel Head above Fuel pump, Supply or Retrun - m(ft).	1.4 (4.5)	
Fuel Filter Micron Size		

Heater System

Jacket Water Heater	
Wattage (Nominal)	1500
Voltage - AC, 1P	115 (+5%, -10%)
Optional Voltage - AC, 1P	230 (+5%, -10%)

Induction Air System

Induction All System			
Air Cleaner Type	Indoors Serv	ice Only - Wash	nable
Air Intake Restriction Maximum Limit			
Dirty Air Cleaner - in. H ₂ 0 (kPa)	5 (1.2)		
Clean Air Cleaner - in. H ₂ 0 (kPa)	1 (0.2)		
Engine Air Flow - ft. ³ /min. (m ³ /min.)	127 (3.6)	140 (4.0)	
Maximum Allowable Temperature (Air To Engine Inlet) - °F (°C)***	130 (54)		

Lubrication System

Oil Pressure - normal - lb./in. ² (kPa)	35-50 (241-345)
In Pan Oil Temperature - °F (°C)	220-245 (104-118)
Oil Pan Capacity - High - qt. (L)	
Low - qt. (L)	
Total Oil Capacity with Filter - gt. (L).	

Performance

BMEP - Ib./in. ² (kPa)	103 (711)	98 (677)
Piston Speed - ft./min. (m/min.)	1226 (374)	1467 (447)
Mechanical Noise - dB(A) @ 1m	C131603	
Power Curve	C131082	

** Based On Nominal System. Flow Analysis Must Be Done To Assure Adherance To System Limitations. (Minimum Exhaust pipe Diameter is based on 15 feet of pipe, one elbow, and a silencer pressure drop no greter than one half the max. allowable back pressure.)

*** Review For Power Deration If Air Entering Engine Exceeds °77F (25°C)

JU4H & JU6H ENGINE MODELS **ENGINE MATERIALS AND CONSTRUCTION**

Air Cleaner

Туре	Indoor Usage Only
	Oiled Fabric Pleats
Material	Surgical Cotton
	Aluminum Mesh

Air Cleaner - Optional

Туре	Canister
Material	Pleated Paper
Housing	Enclosed

Camshaft

Cast Iron
Chill Hardened
In Block
Gear, Spur
Ground

Charge Air Cooler (JU6H-60,62,68,74,84, ADK0, AD58, ADNG, ADN0, ADQ0, ADR0, AAQ8, AARG, ADP8, ADP0, ADT0, AD88, ADR8, AD98, ADS0, ADW8, ADX8, AD98 only) Type.....Raw Water Cooled

Materials (in contact with raw water)

Tubes	 90/10 CU/NI
Headers	 36500 Muntz
Covers	 83600 Red Brass
Plumbing	 316 Stainless Steel/ Brass
	90/10 Silicone

Coolant Pump

Type.....Centrifugal Drive..... Poly Vee Belt

Coolant Thermostat

Type.....Non Blocking Qty......1

Connecting Rod

Type.....I-Beam Taper Material..... Forged Steel Alloy

Crank Pin Bearings

Type..... Precision Half Shell Number.....1 Pair Per Cylinder Material.....Wear-Guard

Crankshaft

Material.....Forged Steel Type of Balance......Dynamic

Cylinder Block

Туре	One Piece with
	Non-Siamese Cylinders
Material	Annealed Gray Iron

Cylinder Head

Туре	Slab 2 Valve
Material	Annealed Gray Iron

Cylinder Liners

Type..... Centrifugal Cast, Wet Liner Material..... Alloy Iron Plateau, Honed

Valves

Туре	Poppet
Arrangement	Overhead Valve
Number/Cylinder	1 intake
	1 exhaust
Operating Mechanism	Mechanical Rocker Arm
Type of Lifter	Large Head
Valve Seat Insert	Replaceable

Fuel Pump

Type.....Diaphragm Drive..... Cam Lobe

Heat Exchanger (USA)

Type..... Tube & Shell Materials Tube& Headers..... Copper Shell.....Copper Electrode.....Zinc

Heat Exchanger (UK)

Туре	Tube & Bundle	э
Materials		
Tube& Headers	Copper	
Shell	Aluminum	

Injection Pump

Туре	Rotary
Drive	Gear

Lubrication Cooler

Type.....Plate

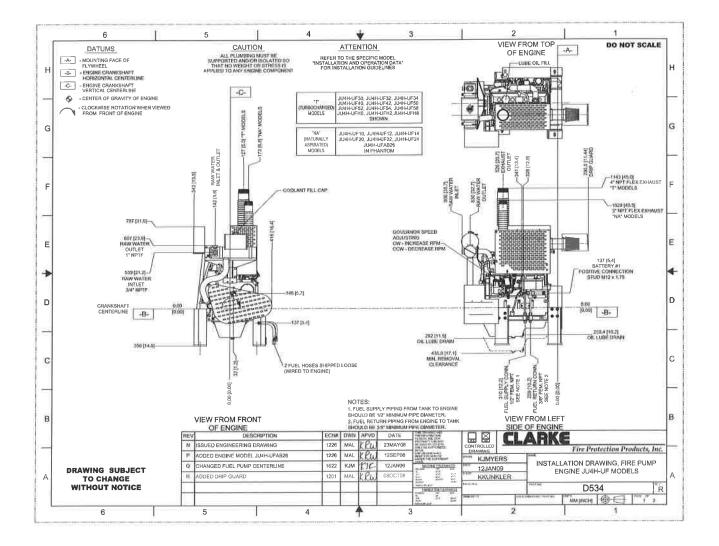
Lubrication Pump

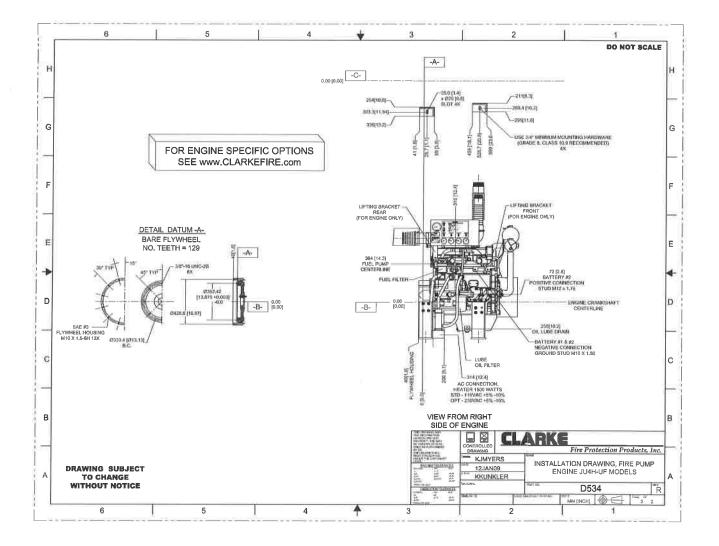
Туре	Gear
Drive	Gear

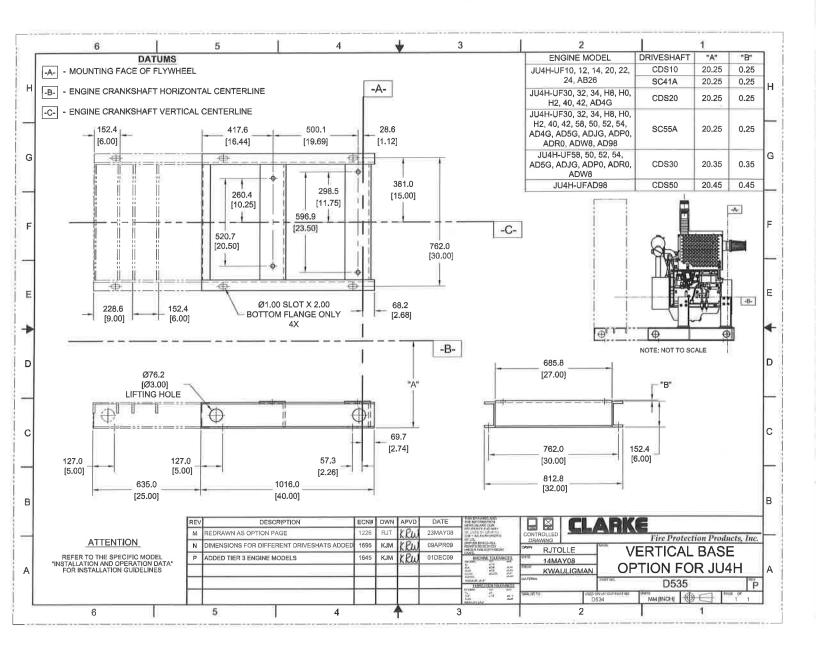
Main Bearings

Туре	Precision Half Shells
Material	Steel Backed-Aluminum Lined

Piston


Type and Material	Aluminum Alloy with Reinforced
	Top Ring Groove
Cooling	Oil Jet Spray


Piston Pin


Type..... Full Floating - Offset

Piston Rings

Number/Piston	3
Тор	Keystone Barrel Faced -
	Plasma Coated
Second	Tapered Cast Iron
Third	Double Rail Type
	w/Expander Spring

JU4H-UF28 FIRE PUMP DRIVER EMISSION DATA FOR EPA NSPS (4)

4 Cylinders Four Cycle Lean Burn Turbocharged

500 PPM SULFUR #2 DIESEL FUEL								
		FUEL	GRAMS / HP- HR				EXHAUST	
RPM	BHP ⁽¹⁾	P ⁽¹⁾ GAL/HR (L/HR)	NMHC	NOx	со	PM ⁽²⁾	°F (°C)	CFM (m ³ /min)
1760	60	3.8 (14.4)	0.39	5.41	0.87	0.24	1021 (549)	379 (10.7)

4045T Base Model Engine Manufactured by John Deere Co.

Notes:

- Engines are rated at standard conditions of 29.61in. (7521 mm) Hg barometer and 77°F (25° C) inlet air temperature. (SAE J1349)
- 2) PM is a measure of total particulate matter, including PM₁₀.
- 3) These emissions values have been determined using engine test data with 500 parts per million (PPM) Sulfur content fuel.
- 4) All engine models and ratings are USA EPA emissions compliant per NSPS (40 CFR Part 60 Sub Part IIII)

Disclaimer

- 1. Stationary diesel-fueled compression ignition engines manufactured after July 1, 2006 for installations within U.S. are subject to the proposed EPA new source performance standards (the "NSPS"), Federal Code of Regulations Title 40 Chapter I, part 60.
- 2. The reverse side of this document shows the emissions from this model engine supplied by Clarke Fire Protection Products ("Clarke"). These emissions values are calculated based on an ISO 8178 part 4 D1 cycle weighted average of actual testing.
- 3. Actual test data in the field or other information established by the local air districts or the EPA that show actual emissions from an engine supplied by Clarke in excess of the NSPS limitations could indicate a violation of the NSPS and subject the owner and/or operator of the engine to penalties under federal law. Although Clarke believes that the engines supplied by Clarke comply with the NSPS based on the available data, for the foregoing reasons, Clarke cannot, and does not, guarantee that its engines will comply with the NSPS emission regulations.
- 4. CLARKE MAKES NO WARRANTIES OR GUARANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE, THAT THE ENGINES SUPPLIED BY CLARKE WILL COMPLY WITH THE NSPS. CLARKE ALSO EXPRESSLY DISCLAIMS THAT THE ENGINES SUPPLIED BY CLARKE WILL, IN FACT, COMPLY WITH THE NSPS. IN NO EVENT SHALL CLARKE BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS OR THE ENGINES SUPPLIED BY CLARKE OR FOR INDEMNIFICATION OF BUYER ON ACCOUNT OF ANY CLAIM ASSERTED AGAINST BUYER, OR FOR ANY OTHER DAMAGE OF ANY KIND, WHETHER DIRECT OR INDIRECT, IF THE ENGINES SUPPLIED BY CLARKE DO NOT COMPLY WITH THE NSPS.

8 June 2006

- 10 R (1

<u>Attachment A.5</u> NHDES Form ARD-7: Generator

ARD-7 FORM INFORMATION REQUIRED FOR PERMITS FOR ENGINES AND TURBINES

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

١. FUEL BURNING EQUIPMENT INFORMATION – Complete a separate form for each emission unit.

A. Emission Unit Description:

Kohler Generator Set Model 40REOZJC

🛛 Reciprocating	Internal Combustion Engine	Combustion Turb	ine	
Rich Burn Lean Burn 2-Stroke	Use: Emergency Non-Emergency	2015		
4-Stroke	Demand Response	Date Construction Cor	nmenced ¹	
Dual-fuel	Other	2015	N/A	
		Installation Date ¹	Manufactur	e Date¹
John Deere		4024HF285B		
Manufacturer		Model Number		
SGM32DG5J		0.47		MMBtu/hr
Serial Number		Maximum Gross Heat	Input Rate	
	🔀 gal/hr			🔀 bhp
3.4	mmcf/hr	80		🗌 bkW
Maximum Fuel Flow I	Rate	Maximum Engine Out	put Rating	
EPA Certified Not	to Exceed Limits? If yes, provide EF	A Certification Sheet.		

B. Stack Information

Is emission unit equipped with multiple stacks? Yes X No (If yes, provide data for each stack) Are multiple units connected to this stack?

Yes 🕅 No

(If yes, identify other emission units or devices on this stack:)

Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ²	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted ³ (Yes - Type/No)	Exhaust Orientation ⁴	Stack Monitor (Yes/No) and Description
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 ℉ (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	Yes – CEM for PM (Example)
EU21	6 ft	0.2 ft	1,000∘F	355 acfm	No	Vertical	No

C. Hours of Operation

Hours per day: _up to 24 Days per year: up to 500 hr/yr

II. FUEL USAGE INFORMATION (List each fuel utilized by the emission unit)

Fuel Type	Heat Value⁵	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
ULSD (Example)	137,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	2.74 (Example)	MMBtu/hr (Example)
ULSD	137,000	Btu/gal	0.0015	3.4	gal/hr	0.47	MMBtu/hr

III. UNCONTROLLED AIR POLLUTANT EMISSIONS (list emissions that result from the burning of each fuel utilized by the emission unit prior to add on controls – use additional sheets if necessary)

Pollutant	Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP							
PM10	0.093942	lb/MM BTU	EPA Tier 3 Limit	0.04	0.04	0.01	0.19
NO _x	1.1038199	lb/MM BTU	EPA Tier 3 Limit	0.51	0.51	0.1	2.25
VOC	1.1038199	lb/MM BTU	EPA Tier 3 Limit	0.51	0.51	0.1	2.25
со	1.1742765	lb/MM BTU	EPA Tier 3 Limit	0.55	0.55	0.1	2.40
SO ₂	0.0015	lb/MM BTU	15 ppm Sulfur Limit	0.0007	0.0007	1.7E-4	0.0031
Other (specify)							

Provide an example of the calculations used to determine uncontrolled air pollutant emissions, if applicable:

Emission factors listed are in lb/MMBTU

Emission factors for VOC and NOx each assumed to be total of Tier 3 Limit for NMHC + NOx (Tier 3 limits in g/kw-hr = 4.7 for NOx+NMHC; 5.0 for CO; and 0.4 for PM. Conversion Factor from g/kw-hr to g/hp-hr = 0.7457

Hourly Emissions (lb/hr) = (Max. Firing Rate {MMBtu/hr}) * (Emission Factor {lb/MBTU}) Potential Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr) Annual Emission (lbs/yr) = Unit Firing Rate (MMBtu/hr) * 500 (hr/year) * Emission Factor (lb/MMBTU)

500 hour per year Annual Limit established in Env-A 600

IV. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPs) - Env-A 1400

Does the emission unit burn a non-exempt fuel⁷ and emit any of the RTAPs listed in Env-A 1400? Yes \bigotimes No If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

V. POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the emission unit utilizes more than one type of pollution control equipment, provide data for each type of equipment.

A. Type of Equipment

Type of Control Device	Manufacturer of Control Device	Model and Serial Number of Control Device (if known)	Pollutant(s) Controlled by Device
Oxidation Catalyst (Example)	DCL International, Inc. (Example)	DC 18012 CC Serial #: N/A (Example)	CO and HAPs (Example)

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

B. Controlled Air Pollution Emissions (list emissions that result from the burning of each fuel utilized by the emission unit <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁶	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP							
PM ₁₀							
NO _x							

VOC				
СО				
SO ₂				
Other (specify)				

Provide an example of the calculations used to determine uncontrolled air pollutant emissions, if applicable:

ARD-7 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Date Construction Commenced, Manufacture Date or Installation Date, you may use 01/01/year. The exception is for calendar years 2006 and 2007, where a month and year are required to determine rule applicability. Date Construction Commenced refers to the date the owner or operator has entered into a contractual obligation to undertake and complete a continuous program of construction, reconstruction, or modification of the emission unit. Manufacture Date refers to the date the emission unit was originally produced. Installation Date refers to the date the emission unit is installed at the facility.
- 2 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 3 Flapper valves and other devices which do not restrict the vertical exhaust flow while the emission unit is operating are not considered obstructions or restrictions.
- Examples of Exhaust Orientation: Vertical, Horizontal, Downward
 <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack

5	Liquid Fuels	<u>Heat Value</u>
	Ultra-Low Sulfur Diesel (ULSD)	137,000 Btu/gal
	#2 Fuel Oil	140,000 Btu/gal
	Kerosene	135,000 Btu/gal
	Other – Liquid	Obtain from Fuel Supplier

<u>Gaseous Fuels</u>	<u>Heat Value</u>
Natural Gas	1,020 Btu/cubic foot
Propane (LPG)	94,000 Btu/gal
Gasoline	130,000 Btu/gal
Other (Gaseous)	Obtain from Fuel Supplier

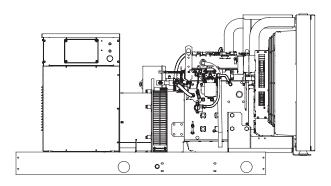
- 6 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - EPA Certified Not To Exceed Limits (i.e. Tier II engine submit specifications sheet or certification for documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate
- 7 Fuels exempt from Env-A 1400 include:
 - Virgin Petroleum Products (#2, #4, or #6 fuel oil, gasoline, kerosene, jet fuel, etc.)
 - Coal
 - Natural Gas
 - Propane
 - Biofuels as defined in Env-A 1401.03(b)
 - Biomass as defined in Env-A 1401.03(c)

Model: 40REOZJC

KOHLER POWER SYSTEMS

208-600 V

Diesel



Tier 3 EPA-Certified for Stationary Emergency Applications

Ratings Range

Standby:	kW kVA
Prime:	kW kVA

60 Hz 33-40 33-50 30-38 30-48

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step.
- The 60 Hz generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- A one-year limited warranty covers all systems and components. Two- and five-year extended warranties are also available.
- Alternator features:
 - The unique Fast-Response [™] II excitation system delivers excellent voltage response and short-circuit capability using a permanent magnet (PM)-excited alternator.
 - The brushless, rotating-field alternator has broadrange reconnectability.
- Other features:
 - Kohler designed controllers for guaranteed system integration and remote communication. See Controllers on page 3.
 - The low coolant level shutdown prevents overheating (standard on radiator models only).
 - Integral vibration isolation eliminates the need for under-unit vibration spring isolators.

Generator Set Ratings

				130°C Standby		105°C Rise Prime Rating	
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps
	120/208	3	60	40/50	139	37/46	128
	127/220	3	60	40/50	131	38/48	125
	120/240	3	60	40/50	120	37/46	111
405	120/240	1	60	33/33	138	30/30	125
4P5	139/240	3	60	40/50	120	38/48	114
	220/380	3	60	35/44	66	32/40	61
	277/480	3	60	40/50	60	38/48	57
	347/600	3	60	40/50	48	38/48	46
4Q5	120/240	1	60	38/38	158	34/34	143
4Q7	120/240	1	60	40/40	167	36/36	150

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Standby Ratings: Standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Prime Power Ratings: At varying load, the number of generator set operating hours is unlimited. A 10% overload capability for this rating 180-3046-1. For limited running time and continuous ratings, consult the factory. Obtain the technical information bulletin (TIB) for a guidelines, complete ratings definitions, and site condition derates. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

Alternator Specifications

Specifications	Alternator		
Manufacturer	Kohler		
Туре	4-Pole, Rotating-Field		
Exciter type	Brushless, Permanent-Magnet		
Leads: quantity, type			
	12, Reconnectable		
	4, 110-120/220-240		
Voltage regulator	Solid State, Volts/Hz		
Insulation:	NEMA MG1		
Material	Class H		
Temperature rise	130°C, Standby		
Bearing: quantity, type	1, Sealed		
Coupling	Flexible Disc		
Amortisseur windings	Full		
Voltage regulation, no-load to full-load	Controller Dependent		
One-step load acceptance	100% of Rating		
Unbalanced load capability	100% of Rated Standby Current		
Peak motor starting kVA:	(35% dip for voltages below)		
480 V 4P5 (12 lead)	140		
240 V 4Q5 (4 lead)	95		

104

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Vacuum-impregnated windings with fungus-resistant epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Fast-Response[™] II brushless alternator with brushless exciter for excellent load response.

Engine

240 V

4Q7 (4 lead)

Engine Specifications Manufacturer Engine model Engine type Cylinder arrangement Displacement, L (cu. in.) Bore and stroke, mm (in.) Compression ratio Piston speed, m/min. (ft./min.) Main bearings: quantity, type Rated rpm Max. power at rated rpm, kWm (BHP) Cylinder head material Crankshaft material Valve material: Intake Exhaust Governor: type, make/model Frequency regulation, no-load to full-load ±0.25% Frequency regulation, steady state

John Deere 4024HF285B 4-Cycle, Turbocharged 4 Inline 2.4 (149) 86 x 105 (3.39 x 4.13) 18.2:1 375 (1230) 5, Replaceable Insert 1800 60 (80) Cast Iron Ductile Iron Chromium-Silicon Steel Stainless Steel JDEC Electronic, Level 18, EUP Isochronous

Fixed

Dry

Engine Electrical System	
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	12
Ampere rating	70
Starter motor rated voltage (DC)	12
Battery, recommended cold cranking amps (CCA):	
Quantity, CCA rating	One, 640
Battery voltage (DC)	12

Fuel

Application Data

Engine Electrical

Fuel System	
Fuel supply line, min. ID, mm (in.)	11.0 (0.44)
Fuel return line, min. ID, mm (in.)	6.0 (0.25)
Max. lift, engine-driven fuel pump, m (ft.)	3.0 (10.0)
Max. fuel flow, Lph (gph)	82 (21.7)
Max. return line restriction, kPa (in. Hg)	35 (10.3)
Fuel prime pump	Manual
Fuel filter	
Secondary	5 Microns @ 98% Efficiency
Water Separator	Yes
Recommended fuel	#2 Diesel

Exhaust

Air cleaner type, all models

Frequency

Exhaust System	
Exhaust manifold type	Dry
Exhaust flow at rated kW, m ³ /min. (cfm)	10.0 (355)
Exhaust temperature at rated kW, dry exhaust, °C (°F)	538 (1000)
Maximum allowable back pressure, kPa (in. Hg)	7.5 (2.2)
Exhaust outlet size at engine hookup, mm (in.)	63.5 (2.5)

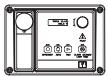
Lubrication

Full Pressure
7.3 (7.7)
8.2 (8.7)
1, Cartridge
Water-Cooled

Application Data

Cooling

Radiator System	
Ambient temperature, °C (°F)*	50 (122)
Engine jacket water capacity, L (gal.)	2.6 (0.7)
Radiator system capacity, including engine, L (gal.)	10.6 (2.8)
Engine jacket water flow, Lpm (gpm)	98 (26)
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	28.4 (1613)
Heat rejected to air charge cooler at rated kW, dry exhaust, kW (Btu/min.)	7.0 (400)
Water pump type	Centrifugal
Fan diameter, including blades, mm (in.)	597 (23.5)
Fan, kWm (HP)	2.9 (3.9)
Max. restriction of cooling air, intake and discharge side of radiator, kPa (in. $\rm H_2O)$	0.125 (0.5)


* Enclosure reduces ambient temperature capability by 5°C (9°F).

Operation Requirements

Air Requirements	
Radiator-cooled cooling air, m ³ /min. (scfm)‡	96 (3400)
Combustion air, m ³ /min. (cfm)	3.7 (130)
Heat rejected to ambient air:	
Engine, kW (Btu/min.)	11.0 (626)
Alternator, kW (Btu/min.)	7.6 (435)
‡ Air density = 1.20 kg/m ³ (0.075 lbm/ft ³)	

Fuel Consumption		
Diesel, Lph (gph) at % load	Standby Rating	
100%	12.9 (3.4)	
75%	9.8 (2.6)	
50%	6.8 (1.8)	
25%	3.4 (0.9)	
Diesel, Lph (gph) at % load	Prime Rating	
Diesel, Lph (gph) at % load	Prime Rating 11.7 (3.1)	
	3	
100%	11.7 (3.1)	
100% 75%	11.7 (3.1) 9.1 (2.4)	

Controllers

Decision-Maker[®] 3000 Controller

Provides advanced control, system monitoring, and system diagnostics for optimum performance and compatibility.

- Digital display and menu control provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or
- serial configurationController supports Modbus® protocol
- Integrated hybrid voltage regulator with ±0.5% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-100 for additional controller features and accessories.

	Construct Galadie	

Decision-Maker[®] 550 Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities.

- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or
- modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-46 for additional controller features and accessories.

Additional Standard Features

- Alternator Protection
- Battery Rack and Cables
- Oil Drain and Coolant Drain w/Hose Barb
- Oil Drain Extension (with narrow skid and enclosure models only)
- Operation and Installation Literature
- Radiator Drain Extension (with enclosure only)

Available Options

Approvals and Listings

- California OSHPD Approval
- CSA Approval
- □ IBC Seismic Certification
- UL2200 Listing

Enclosed Unit

- Sound Enclosure (with enclosed critical silencer)
- Weather Enclosure (with enclosed critical silencer)

Open Unit

- Exhaust Silencer, Critical (kit: PA-324470)
- Flexible Exhaust Connector, Stainless Steel

Fuel System

- Flexible Fuel Lines
- Fuel Pressure Gauge
- Subbase Fuel Tanks

Controller

- Common Failure Relay
- Communication Products and PC Software (Decision-Maker[®] 550 controller only)
- Customer Connection (Decision-Maker® 550 controller only)
- Dry Contact (isolated alarm) (Decision-Maker® 550 controller only)
- Input/Output Module (Decision-Maker® 3000 controller only)
- Remote Annunciator Panel
- Remote Emergency Stop
- Run Relay

Cooling System

- Block Heater, 1000 W, 110-120 V [recommended for ambient temperatures below 0°C (32°F)]
- Radiator Duct Flange

Electrical System

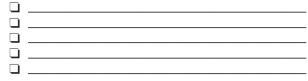
- Alternator Strip Heater
- Battery
- Battery Charger, Equalize/Float Type
- Battery Heater
- Line Circuit Breaker (NEMA type 1 enclosure)
- Line Circuit Breaker with Shunt Trip (NEMA type 1 enclosure)

Paralleling System

- Reactive Droop Compensator
- Remote Speed Adjust Control/Electronic Governor
- Voltage Adjust Control
- Voltage Regulator Relocation
- (Decision-Maker® 550 controller only)

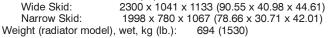
Miscellaneous

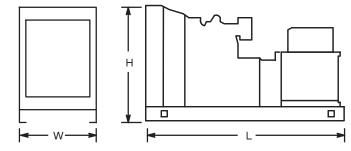
- Air Cleaner, Heavy Duty
- Air Cleaner Restriction Indicator
- Closed Crankcase Vent
- Engine Fluids Added
- Rated Power Factor Testing
- Rodent Guards


Literature

- General Maintenance
- NFPA 110
- Overhaul
- Production

Warranty


- 2-Year Basic
- 5-Year Basic
- 5-Year Comprehensive


Other Options

Dimensions and Weights

Overall Size, L x W x H, mm (in.):

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

G5-315 (40REOZJC) 5/12k

<u>Attachment B</u> Emission Calculations

Attachment B.1

Tower Coater Calculations

Saint-Gobain Performance Plastics Merrimack, NH Facility

Tower Coater Operations - Breakdown of Components of Raw Materials

		-	T	1	n				operation			ponents of Ra		1	1			· ·				1	1	1	
		Ethylopo Glycol	Toluono 109 99	Iconronanol	Formaldohydo E0	Ethanol	1 4 Diovano 122 01	Bonzono 71 42	Polyethyene	Chromic Acid	Tetrafluoro	Methanol 67-56	Acotaldohudo	Ethylopo Ovido	Bropylopo	graphito	aluminum		Methyl othyl Dy	2- rolidinone,	hovono 110 E4	Iron Ovido	Silica-	Manganese	Talc(hydrous
Formula Description & Composition	ID #	Ethylene Glycol 107-21-1	Toluene 108-88 3	Isopropanol 67-63-0	Formaldehyde 50 00-0	64-17-5	1,4-Dioxane 123-91 1	2	Glycol 25322-68	3. Chromic Acid 7738-94-5)	ethylene	1	Acetaldehyde 75-07-0	Ethylene Oxide 75-21-8	Propylene Oxide 75-56-9	graphite 7782-42-5	aluminum 7429-90-5			-methyl-	hexane 110-54- 3	 Iron Oxide 1309-37-1 	Quartz 14808-60	Oxide 1313-13-	magnesium silicate) 14807-96-
			_						3	,	116-14-3									372-50-4	-		7	9	6
		RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP	HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP		RTAP	RTAP	RTAP/HAP	RTAP	RTAP	RTAP/HAP	RTAP
Product #1 Product #2	01	13.00% 0.00%	10.00%	1.00% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #2	03	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #4	04	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #5	05	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #6	06	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #7	07	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #8 Product #9	08	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #10	10	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #11	11	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #12	12	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #13	13	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #14 Product #15	14	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #15	16	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #17	17	30.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	5.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #18	18	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #19	19	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #20	20	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #21 Product #22	21	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #22 Product #23	23	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #24	24	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #25	25	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #26	26	0.00%	0.00%	0.00%	0.00%	1.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #27	27	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #28 Product #29	28	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #29	30	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #31	31	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #32	32	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #33	33	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	27.30%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #34	34	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #35 Product #36	35	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #30	37	0.00%	0.00%	0.00%	0.0004%	0.00%	0.0015%	0.00%	0.00%	0.00%	0.00%	0.00%	0.000%	0.001%	0.0002%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #38	38	0.00%	0.00%	30.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #39	39	0.00%	0.00%	0.00%	0.00%	0.00%	0.30%	0.00%	12.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #40	40	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #41	41	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #42 Product #43	42	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #44	44	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #45	45	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #46	46	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #47	47	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #48 Product #49	48 49	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #49	50	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #51	51	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #52	52	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #53	53	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #54	54	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #55 Product #56	55 56	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #56	57	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #58	58	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%		0.00%	0.00%
Product #59	59	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #60	60	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #61 Product #62	61 62	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #62 Product #63	62	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #64	64	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #65	65	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #66	66	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #67	67	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #68 Product #60	68	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #69 Product #70	69 70	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #70	70	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #72	72	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #73	73	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #74	74	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #75	75	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Deadwart #36	76	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #76 Product #77	77	0.00%		0.0070	0.00%		0.00%																0.00%		0.00%
Product #76 Product #77 Product #78	-	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	
Product #77	77			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #77 Product #78	77 78	0.00%	0.00%															0.00%							0.00% 0.00%
Product #77 Product #78 Product #79 Product #80 Product #81	77 78 79 80 81	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%						
Product #77 Product #78 Product #79 Product #80 Product #81 Product #81	77 78 79 80 81 82	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%													
Product #77 Product #78 Product #79 Product #80 Product #81	77 78 79 80 81	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%						

Saint-Gobain Performance Plastics Merrimack, NH Facility

Tower Coater Operations - Breakdown of Components of Raw Materials

												-	-		-					1	•				
		Ethylopo Chrod	Toluono 109 9	29 Iconronanol	Formaldehyde 50	Ethanol 1,4	1 Diovano 12	2 01 Bonzono 71 43	Polyethyene	Chromic Acid	Tetrafluoro	Methanol 67-5	6 Acotaldobudo	Ethylene Oxide	Bronylono	graphito	aluminum	titanium	Methyl	2- Pyrrolidinone,	hovono 110 E4	- Iron Oxide	Silica-	Manganese	Talc(hydrous magnesium
Formula Description & Composition	ID #	Ethylene Glycol 107-21-1	Toluene 108-8 3	38 Isopropanol 67-63-0	00-0	64-17-5	1 1	3-91· Benzene 71-43 2	Glycol 25322-6	68- 7738-94-5)	ethylene	1	6- Acetaldehyde 75-07-0	75-21-8	Propylene Oxide 75-56-9	graphite 7782-42-5	7429-90-5	dioxide 13463-67-	ethyl ketone 78-	1-methyl-	hexane 110-54 3	1309-37-1	Quartz 14808-60-	Oxide 1313-13-	silicate) 14807-96-
		-							3	,	116-14-3							7	93-3	872-50-4			7	9	6
Product #85	85	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #86 Product #87	87	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #88	88	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #89	89	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #90	90	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #91 Product #92	91	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #92 Product #93	93	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #94	94	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #95	95	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #96	96	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #97 Product #98	97	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #99	99	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #100	100	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #101	101	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #102	102	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #103 Product #104	103 104	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #105	105	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #106	106	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #107	107	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #108 Product #109	108 109	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	65.00% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #109 Product #110	109	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #111	111	25.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #112	112	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #113	113	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #114 Product #115	114 115	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #115 Product #116	115	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #117	117	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #118	118	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #119	119	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	99.00%	0.00%	0.00%	0.00%
Product #120 Product #121	120 121	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00% 98.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #121	121	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #123	123	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	5.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #124	124	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #125	125	0.00%	30.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	30.00%	0.00%	5.00%	0.00%	0.00%	0.00%	0.00%
Product #126 Product #127	126 127	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	6.00% 0.00%	0.00%
Product #128	128	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #129	129	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #130	130	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #131 Product #132	131 132	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #132	132	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	55.00%	0.00%	0.00%	0.00%
Product #134	134	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	33.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #135	135	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #136	136	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%
Product #137 Product #138	137 138	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #139	139	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #140	140	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #141	141	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	90.00%
Product #142 Product #143	142	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #145 Product #144	143	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #145	145	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #146	146	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #147	147	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #148 Product #149	148 149	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #149 Product #150	149	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #151	151	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #152	152	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #153	153	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #154 Product #155	154 155	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #156	155	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #157	157	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #158	158	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #159 Product #160	159	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #160 Product #161	160 161	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	30.00% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #161 Product #162	161	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #163	163	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #164	164	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Product #165 Product #166	165	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	166	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Graphite, Aluminum, Titanium Dioxide, Iron Oxide, Silica-Quartz and Talc were also listed on SDS and are listed RTAP (as respirable portion). As these components are within the liquid formulations, emission of respirable material is not expected and emissions are shown as 0. Tetrafluoroethylene is shown as a component within four raw materials; however the concetration is not listed. The concentration has been estimated at 0.1% to be conservative (if present at 0.1%, the material concentration would need to be listed on the SDS).

Attachment B.2

Antenna Fabrication Calculations

Calculation of Annual VOC/HAP/RTAP Emissions from Antenna Fabrication Activity

Known:

1. Annual usage of each product within area

2. Concentration of components in raw materials per Safety Data Sheets (Maximum of range when listed)

3. Assume all VOC/HAP/RTAP emitted during processing except MDI

4. MDI is not volatile at room temperature and is not expected to be emitted

Annual Product Usage within Area

Product	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Annual Average
	gal/yr										
Antenna Area Material 01	0.61	0.75	4	0.25	0	2	0	0	1.5	5	1.41
Antenna Area Material 02	65.04	87.6	0	48	12	58	20	20	0	0	31.06
Antenna Area Material 03	0	0	0	0	0	0	0	0	0	0	0
Antenna Area Material 04	102	99.96	140.6	110	0	0	0	0	0	0	45.26
Antenna Area Material 05	0	0	28	0	0	0	0	0	0	0	2.80
Antenna Area Material 06	0	0	0	0	0	0	0	0	0	0	0
Antenna Area Material 07	3.25	8.06	3	3	1.5	16	1.25	2.25	1.63	0.63	4.06
Antenna Area Material 08							53	53	36	25.6	41.90
Total Gallons Per Year	170.9	196.37	175.6	161.25	13.5	76	74.25	75.25	39.13	31.23	101.35

Component Information from SDS (Maximum Concentration where Ranges are Listed on SDS)

Product	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	Methylene Diphenyl Isocyanate	voc	Solids
Product	lb/gal	141-78-6	108-88-3	1330-20-7	78-93-3	110-54-3	110-82-7	100-41-4	71-43-2	1317-36-8	101-68-8	N/A	N/A
		RTAP	BOTH	BOTH	RTAP	BOTH	RTAP	BOTH	BOTH	BOTH	BOTH	N/A	N/A
Antenna Area Material 01	7.8	40.0%	30.0%	5.0%	13.0%			1.0%	0.1%			38.7%	25.0%
Antenna Area Material 02	7.2		30.0%		30.0%	5.0%						76.4%	23.4%
Antenna Area Material 03	8		60.0%				1.0%		0.1%	20.0%		76.5%	23.5%
Antenna Area Material 04	7.2		100.0%									100.0%	0.0%
Antenna Area Material 05	6.7				100.0%							100.0%	0.0%
Antenna Area Material 06	8		60.00%							20.0%		76.5%	24.5%
Antenna Area Material 07	7.1				100%						6.30%	86.0%	14.0%
Antenna Area Material 08	7.2		40.00%		40%	1.5%						76.4%	14.0%

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	VOC	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	5	7.8	15.60	11.70	1.95	5.07	0.00	0.00	0.39	0.04	0.00	15.10	9.75	14.08
Antenna Area Material 02	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	0.63	7.1	0.00	0.00	0.00	4.47	0.00	0.00	0.00	0.00	0.00	3.85	0.63	0.00
Antenna Area Material 08	25.6	7.1	0.00	72.70	0.00	72.70	2.73	0.00	0.00	0.00	0.00	138.84	25.45	75.43
A	nnual Emissio	ons (lb/yr) =	15.60	84.40	1.95	82.25	2.73	0.00	0.39	0.04	0.00	157.79	35.82	89.51

2020 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	1.5	7.8	4.68	3.51	0.59	1.52	0.00	0.00	0.12	0.01	0.00	4.53	2.93	4.22
Antenna Area Material 02	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	1.63	7.1	0.00	0.00	0.00	11.57	0.00	0.00	0.00	0.00	0.00	9.95	1.62	0.00
Antenna Area Material 08	36	7.1	0.00	102.24	0.00	102.24	3.83	0.00	0.00	0.00	0.00	195.25	35.78	106.07
A	nnual Emissio	ns (lb/yr) =	4.68	105.75	0.59	115.33	3.83	0.00	0.12	0.01	0.00	209.73	40.33	110.30

2019 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0	7.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 02	20	7.2	0.00	43.20	0.00	43.20	7.20	0.00	0.00	0.00	0.00	110.00	33.70	50.40
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	2.25	7.1	0.00	0.00	0.00	15.98	0.00	0.00	0.00	0.00	0.00	13.74	2.24	0.00
Antenna Area Material 08	53	7.1	0.00	150.52	0.00	150.52	5.64	0.00	0.00	0.00	0.00	287.45	52.68	156.16
	Annual Emissio	ons (lb/yr) =	0.00	193.72	0.00	209.70	12.84	0.00	0.00	0.00	0.00	411.19	88.61	206.56

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0	7.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 02	20	7.2	0.00	43.20	0.00	43.20	7.20	0.00	0.00	0.00	0.00	110.00	33.70	50.40
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	1.25	7.1	0.00	0.00	0.00	8.88	0.00	0.00	0.00	0.00	0.00	7.63	1.24	0.00
Antenna Area Material 08	53	7.1	0.00	150.52	0.00	150.52	5.64	0.00	0.00	0.00	0.00	287.45	52.68	156.16
Ar	nual Emissic	ons (lb/yr) =	0.00	193.72	0.00	202.60	12.84	0.00	0.00	0.00	0.00	405.08	87.62	206.56

2017 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	2	7.8	6.24	4.68	0.78	2.03	0.00	0.00	0.16	0.02	0.00	6.04	3.90	5.63
Antenna Area Material 02	58	7.2	0.00	125.28	0.00	125.28	20.88	0.00	0.00	0.00	0.00	319.00	97.72	146.16
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	16	7.1	0.00	0.00	0.00	113.60	0.00	0.00	0.00	0.00	0.00	97.70	15.90	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A	nnual Emissio	ons (lb/yr) =	6.24	129.96	0.78	240.91	20.88	0.00	0.16	0.02	0.00	422.73	117.52	151.79

2016 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0	7.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 02	12	7.2	0.00	25.92	0.00	25.92	4.32	0.00	0.00	0.00	0.00	66.00	20.22	30.24
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	1.5	7.1	0.00	0.00	0.00	10.65	0.00	0.00	0.00	0.00	0.00	9.16	1.49	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Annual Emissic	ons (lb/yr) =	0.00	25.92	0.00	36.57	4.32	0.00	0.00	0.00	0.00	75.16	21.71	30.24

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0.25	7.8	0.78	0.59	0.10	0.25	0.00	0.00	0.02	0.00	0.00	0.75	0.49	0.70
Antenna Area Material 02	48	7.2	0.00	103.68	0.00	103.68	17.28	0.00	0.00	0.00	0.00	264.00	80.87	120.96
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	110	7.2	0.00	792.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	792.00	0.00	792.00
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	3	7.1	0.00	0.00	0.00	21.30	0.00	0.00	0.00	0.00	0.00	18.32	2.98	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A	nnual Emissio	ons (lb/yr) =	0.78	896.27	0.10	125.23	17.28	0.00	0.02	0.00	0.00	1075.07	84.34	913.66

2014 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	4	7.8	12.48	9.36	1.56	4.06	0.00	0.00	0.31	0.03	0.00	12.08	7.80	11.26
Antenna Area Material 02	0	7.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	140.6	7.2	0.00	1012.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1012.32	0.00	1012.32
Antenna Area Material 05	28	6.7	0.00	0.00	0.00	187.60	0.00	0.00	0.00	0.00	0.00	187.60	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	3	7.1	0.00	0.00	0.00	21.30	0.00	0.00	0.00	0.00	0.00	18.32	2.98	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A	nnual Emissio	ons (lb/yr) =	12.48	1021.68	1.56	212.96	0.00	0.00	0.31	0.03	0.00	1230.32	10.78	1023.58

2013 Speciated Compound Emissions - Antenna Fabrication

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0.75	7.8	2.34	1.76	0.29	0.76	0.00	0.00	0.06	0.01	0.00	2.26	1.46	2.11
Antenna Area Material 02	87.6	7.2	0.00	189.22	0.00	189.22	31.54	0.00	0.00	0.00	0.00	481.80	147.59	220.75
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	99.96	7.2	0.00	719.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	719.71	0.00	719.71
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	8.06	7.1	0.00	0.00	0.00	57.23	0.00	0.00	0.00	0.00	0.00	49.21	8.01	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ar	nual Emissio	ns (lb/yr) =	2.34	910.68	0.29	247.20	31.54	0.00	0.06	0.01	0.00	1252.99	157.06	942.58

Product	Annual Usage	Density	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide	voc	Solids	Total HAP
	(gal/yr)	(lb/gal)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Antenna Area Material 01	0.61	7.8	1.90	1.43	0.24	0.62	0.00	0.00	0.05	0.00	0.00	1.84	1.19	1.72
Antenna Area Material 02	65.04	7.2	0.00	140.49	0.00	140.49	23.41	0.00	0.00	0.00	0.00	357.72	109.58	163.90
Antenna Area Material 03	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 04	102	7.2	0.00	734.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	734.40	0.00	734.40
Antenna Area Material 05	0	6.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 06	0	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antenna Area Material 07	3.25	7.1	0.00	0.00	0.00	23.08	0.00	0.00	0.00	0.00	0.00	19.84	3.23	0.00
Antenna Area Material 08		7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A	nnual Emissio	ons (lb/yr) =	1.90	876.31	0.24	164.18	23.41	0.00	0.05	0.00	0.00	1113.81	114.00	900.02

Results of Air Dispersion Modeling for RTAP/HAP (Adjusted 2019 Model Results Based on Increased Hourly Pounds of Ethyl Acetate, Xylene and Benzene)

	Ethyl Acetate	Toluene	Xylene	MEK	Hexane	Cyclo- hexane	Ethyl Benzene	Benzene	Lead Monoxide
Maximum Annual Emissions (2012-2021) in lb.	15.60	1021.68	1.95	247.20	31.54	0.00	0.39	0.04	0
Hourly Pounds Based on Max. Annual/2,080 hr/yr	0.00750	0.491	0.000938	0.119	0.0152	0	0.000188	0.0000188	0
Maximum 24-Hour Concentration (ug/m ³)	2.33E-01	1.52E+01	2.90E-02	3.69E+00	4.71E-01	N/A	4.65E-03	5.81E-04	N/A
Annual Concentration (ug/m ³)	0.07875	5.115	0.010	1.24	0.158	N/A	0.002	0.00025	N/A
24-hour AAL (ug/m ³)	10141	5000	1550	5000	885	N/A	1000	5.7	N/A
Annual AAL (ug/m ³)	4829	5000	100	5000	700	N/A	1000	3.8	N/A
% of 24 Hour AAL	0.0023%	0.30%	0.0019%	0.074%	0.053%	N/A	0.00047%	0.0102%	N/A
% Annual AAL	0.0016%	0.10%	0.0100%	0.025%	0.023%	N/A	0.00020%	0.0066%	N/A
% Increase From Hourly Value in 2018 in Application	25%	0%	25%	0%	0%	N/A	0%	25%	N/A

<u>Attachment B.3</u> Combustion Calculations

EMISSIONS OF AIR CONTAMINANTS FROM COMBUSTION IN EMERGENCY GENERATOR

Known Data:

- a. Existing Diesel Fuel Fired Emergency Generator Unit installed in 2015
- b. Unit is a Kohler generator 40REOZJC (80 hp/0.466 MMBtu/hr engine)

Assumptions:

a. Unit has the unrestricted potential to operate 8,760 hours per year Hours of operation capped at 500 hours per year per Env-A 600

Emission Factors:

From EPA Tier 3 Limits or Sulfur Content Limit in Diesel Fuel

Contaminant Name	Emission Factor (g/hp-hr)	Emission Factor (lb/hp-hr)	Emission Factor (Ib/MMBtu)	
Particulate Matter (PM)	0.29828	0.000657595	0.09394212	Tier 3 Limit
Sulfur Dioxide (SO ₂) [*]			0.0015	15 ppm S Limit
Oxides of Nitrogen (NO _X)**	3.50479	0.007726739	1.10381990	Tier 3 Limit
Carbon Monoxide (CO)	3.7285	0.008219935	1.17427649	Tier 3 Limit
Total Organic Compounds (TOC)**	3.50479	0.007726739	1.10381990	Tier 3 Limit

* - Emission factor based on 15 PPM sulfur

** - Emission factors for VOC and NOx each assumed to be total of Tier 3 Limit for NMHC + NO $_{\rm X}$

Tier 3 limits (in g/kw-hr) = 4.7 for NOx+NMHC; 5.0 for CO; and 0.4 for PM. Conversion factor from g/kw-hr to g/hp-hr = 0.7457

Details of Emergency Generator Unit at Facility

Identifier	Manufacturer	Fuel Type	Rating (hp)	Rating (BTU/hr)
40REOZJC	Kohler/John Deere	Diesel Fuel	80	466,000

Emission Calculations

Hourly Emissions (lb/hr) = (Max. Firing Rate {MMBtu/hr}) * (Emission Factor {lb/MBTU})

Potential Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr)

Annual Emission (lbs/yr) = Unit Firing Rate (MMBtu/hr) * 500 (hr/year)¹ * Emission Factor (lb/MMBTU)

Contaminant Name	Hourly Emissions (Ib/hr)	Potential to Emit (lb/yr)	Annual Emissions [500 Hrs/Yr] (ton/yr)
Particulate Matter (PM)	0.04	383.5	0.01
Sulfur Dioxide (SO ₂)	0.0007	6.1	1.7E-04
Oxides of Nitrogen (NO _X)	0.51	4,506	0.1
Carbon Monoxide (CO)	0.55	4,794	0.1
Total Organic Compounds (TOC)	0.51	4,506.0	0.1

¹ - Maximum allowed rate based on 500 hours per year limit established in Env-A 600.

C.T. Male Associates

EMISSIONS OF AIR CONTAMINANTS FROM COMBUSTION IN FIRE PUMP

Known Data:

- a. Existing Fire Pump Unit installed in 2015
- b. 110 HP emergency Clarke Model JU4H-UF AD 5G emergency fire pump combusting Diesel Fuel

Assumptions:

a. Unit has the unrestricted potential to operate 8,760 hours per year Hours of operation capped at 500 hours per year per Env-A 600

Emission Factors:

From EPA Tier 3 Limits or Sulfur Content Limit in Diesel Fuel

Contaminant Name	Emission Factor (g/hp-hr)	Emission Factor (lb/hp-hr)	Emission Factor (Ib/MMBtu)	
Particulate Matter (PM)	0.22371	0.000493196	0.07045659	Tier 3 Limit
Sulfur Dioxide (SO ₂)*			0.0015	15 ppm S Limi
Oxides of Nitrogen (NO _X)**	2.9828	0.006575948	0.93942119	Tier 3 Limit
Carbon Monoxide (CO)	3.7285	0.008219935	1.17427649	Tier 3 Limit
Total Organic Compounds (TOC)**	2.9828	0.006575948	0.93942119	Tier 3 Limit

* - Emission factor based on 15 PPM sulfur

** - Emission factors for VOC and NOx each assumed to be total of Tier 3 Limit for NMHC + $\ensuremath{\text{NO}_{\text{X}}}$

Tier 3 limits (in g/kw-hr) = 4.0 for NOx+NMHC; 5.0 for CO; and 0.3 for PM. Conversion factor from g/kw-hr to g/hp-hr = 0.7457

Details of Emergency Generator Unit at Facility

Identifier	Manufacturer	Fuel Type	Rating (hp)	Rating (BTU/hr)
JU4H-UF AD 5G	Clarke	Diesel Fuel	110	1,200,000

Emission Calculations

Hourly Emissions (lb/hr) = (Max. Firing Rate {MMBtu/hr}) * (Emission Factor {lb/MBTU})

Potential Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr)

Annual Emission (lbs/yr) = Unit Firing Rate (MMBtu/hr) * 500 (hr/year)¹ * Emission Factor (lb/MMBTU)

Contaminant Name	Hourly Emissions (lb/hr)	Potential to Emit (Ib/yr)	Annual Emissions [500 Hrs/Yr] (ton/yr)
Particulate Matter (PM)	0.08	740.6	0.02
Sulfur Dioxide (SO ₂)	1.80E-03	15.8	4.50E-04
Oxides of Nitrogen (NO _X)	1.13	9,875	0.3
Carbon Monoxide (CO)	1.41	12,344	0.4
Total Organic Compounds (TOC)	1.13	9,875.2	0.3

¹ - Maximum allowed rate based on 500 hours per year limit established in Env-A 600.

Attachment B.4

2021 Tower Coater Summary

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

							Wernin	аск, NH Fa	acinty									
All quantities in Pounds		Ethylene Glycol 107- 21-1		Isopropano I 67-63-0	Formaldeh yde 50-00-0			Benzene 71 43-2	Polyethyen e Glycol 25322-68-3				Acetaldehy de 75-07-0	Ethylene Oxide 75- 21-8		Methyl ethyl ketone 78- 93-3	2- Pyrrolidino ne, 1- methyl- 872-50-4	hexane 110
Formula Description	2021 Total	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP	RTAP/HAP
1 Product 01	0		. 0		. 0		. 0	. 0	0	. 0	0	. 0	. 0	. 0	. 0	0	0	
2 Product 02	0	0	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	C
3 Product 03	0						0	0	0	0	0		0	0	0	0	0	C
4 Product 04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
5 Product 05	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
6 Product 06	74	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
7 Product 07	104	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
8 Product 08	10		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
9 Product 09	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
10 Product 10	906	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
11 Product 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
12 Product 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
13 Product 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
14 Product 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
15 Product 15	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 Product 16	2,750	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
17 Product 17	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
18 Product 18	293	0	0	0	0	0	0	0	8.79	0	0	0	0	0	0	0	0	C
19 Product 19	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
20 Product 20	171	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
21 Product 21	82	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
22 Product 22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
23 Product 23	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
24 Product 24	103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
25 Product 25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
26 Product 26	14	· 0	0	0	0	0.1374	0	0	0	0	0	0	0	0	0	0	0	C
27 Product 27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
28 Product 28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
29 Product 29	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
30 Product 30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
31 Product 31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
32 Product 32	5	0	0	0	0	0	0	0.00463	0	0	0	0	0	0	0	0	0	C
33 Product 33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
34 Product 34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
35 Product 35	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
36 Product 36	756	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
37 Product 37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
38 Product 38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
39 Product 39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
40 Product 40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
41 Product 41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
42 Product 42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
43 Product 43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
44 Product 44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
45 Product 45	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	C
46 Product 46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
47 Product 47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
48 Product 48	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	C
49 Product 49	0	-	-				0	0	0	0	0	0	0	•		0	0	C
50 Product 50	0	-	-		-	-	0	0	0	0	0	0	0	•	-	0	0	C
51 Product 51	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	C
52 Product 52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
53 Product 53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
54 Product 54	0	-	-				0	0	0	0	0	0	0	0		0	0	(
55 Product 55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
56 Product 56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
57 Product 57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
58 Product 58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tower Coating -2021 Emissions PUBLIC

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

Algorithm Production Algorithm										IACK, NIT FO										
SP Padex 3 0 0 0 0		All quantities in Pounds		Glycol 107-					Dioxane		e Glycol	Acid 7738-	ethylene			Oxide 75-	Oxide 75-	ethyl ketone 78-	ne, 1- methyl-	hexane 110
Bookers Bookers <t< td=""><td></td><td>Formula Description</td><td>2021 Total</td><td>RTAP/HAP</td><td>RTAP/HAP</td><td>RTAP</td><td>RTAP/HAP</td><td>RTAP</td><td>RTAP/HAP</td><td>RTAP/HAP</td><td>RTAP</td><td>RTAP/HAP</td><td>RTAP</td><td>RTAP/HAP</td><td>RTAP/HAP</td><td>RTAP/HAP</td><td>RTAP/HAP</td><td>RTAP</td><td>RTAP</td><td>RTAP/HAP</td></t<>		Formula Description	2021 Total	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP	RTAP/HAP
is Production 0 <			0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0
Image: Section of the section of t			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B)Paka63C) <th< td=""><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Here Signal (AS)II	62	Product 62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E) Public 33OOO <t< td=""><td>63</td><td>Product 63</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	63	Product 63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
168 Pockck 67 0 <			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
68 Poidel 63 0 <t< td=""><td></td><td></td><td>ç</td><td>v</td><td>•</td><td>v</td><td>v</td><td>0</td><td>v</td><td>0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>			ç	v	•	v	v	0	v	0	-	-	-	-	-	_	0	0	0	0
is Product 36 is Product 37 is Produ				0	•	0	•	0	•	0	-		Ű	0	÷	÷	0	0	0	0
60 Poduct 0 0 <td< td=""><td></td><td></td><td>ç</td><td>0</td><td>v</td><td>0</td><td>-</td><td>0</td><td>v</td><td>0</td><td>-</td><td>-</td><td>-</td><td>•</td><td>-</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>			ç	0	v	0	-	0	v	0	-	-	-	•	-	-	0	0	0	0
ip mater 70 10 0 <t< td=""><td></td><td></td><td>÷</td><td>0</td><td>0</td><td>0</td><td></td><td>-</td><td>-</td><td>0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>v</td><td>0</td><td>0</td><td>0</td></t<>			÷	0	0	0		-	-	0	-	-	-	-	-	-	v	0	0	0
71 Product 71 10 0 <t< td=""><td></td><td></td><td>ç</td><td>0</td><td>0</td><td>0</td><td>, v</td><td>v</td><td>-</td><td>0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td><td>v</td><td>0</td><td>0</td><td>0</td></t<>			ç	0	0	0	, v	v	-	0	-	-	-	-	-	_	v	0	0	0
DP mdnd: 12 15,65 0 0 0 0 0 48.453 0			ç	0	•	•	v	0	v	0	-	-	-	-	-	-	0	0	0	0
73 Product 73 6631 0 0 0 0 18.9248 0			0	0	0	0	v	0	•	0	•	-	-	•	, v	÷	0	0	0	0
74 Roduit 74 3.877 0 <				0	v	v	-	v	-	0			-	-	-	-	0	0	0	0
Product 75 O				0	-			-	-	0			-	-	-	-	•	0	0	0
Product 76 0			-	0	0	0	-	-	Ţ	0	-		-	-	-	-	0	0	0	0
77 Product 77 Product 77 Product 78			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Product 79 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80 Product 80 <	78	Product 78	3,227	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
81 Product 81 52 0	79	Product 79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
bit Product 32 O			-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit Product 81 200 0				0	v	0	0	0	0	0	-	-	-	-	÷	÷	0	0	0	0
88 Product 84 0 <			•	0	-	÷	0	0	0	0	-	-	-	-	÷	-	0	0	0	0
88 Product 85 0 <				0	-	-		-	-	0	-	-	-	-	-	-	v	0	0	0
B6 Product 87 O <tho< th=""> O O O O<</tho<>				0	-	÷	-	-	Ţ	0	-	-	-		-	-	-	0	0	0
BP Product 87 0 <				-	-	0	-	-	-	0	-	-	-	-	÷	-	0	0	0	0
B Product 88 776 0 <t< td=""><td></td><td></td><td>Ŧ</td><td>0</td><td>•</td><td>0</td><td>v</td><td>0</td><td>v</td><td>0</td><td>-</td><td>-</td><td>-</td><td>Ų</td><td>÷</td><td>÷</td><td>, v</td><td>0</td><td>0</td><td>0</td></t<>			Ŧ	0	•	0	v	0	v	0	-	-	-	Ų	÷	÷	, v	0	0	0
BP Product 89 0 <			•	0	v	v	, v	Ŭ	v	0	-	-	-	•	, v	-	Ŭ	0	0	0
90 Product 90 269 0 <				0	-	-	, v	v	-	0	-	-	-	-	-	-	v	0	0	0
91 Product 91 429 0 <			•	0	v	, v	-	-	Ţ	0	-	-	-	•	-	-	-	0	0	0
92 Product 92 75,221 0				0	•	•	v	0	v	0	-		-	•	÷	÷	0	0	0	0
93 Product 93 1,201 0				0	0	0	-	-	-	0	-	-	-	-	-	_	0	0	0	0
94 Product 94 0 <				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96 Product 96 18 0 <t< td=""><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
97 Product 97 676 0 <			25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
98 Product 98 570,966 0	96	Product 96			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
99 Product 99 14,242 0 0 0 0 0 14.2478 0					0	0	0	0	0	0	0		Ŭ	0	0	0	0	0	0	0
100 Product 100 12,582 0					0	0	0	0	v	0	-			-	-	-	0	0	0	0
101 Product 101 0 <					-	÷		-	Ţ	0					-		-	0	0	0
102 Product 102 0 <			12,582	0	v	Ű	•	v	Ţ	0					-		0	0	0	0
103 Product 103 22 0 <			0	0	v	0		•	-	0	-		-	-	÷	-	-	0	0	0
104 Product 104 0 <			-	0	-	0	-	•	-	0			-	÷			-	0	0	0
105 Product 105 0 <					v	v	v	v	•	0	-	-	-	-	-	_	•	0	0	0
106 Product 106 92 0			-	-	-	÷		-	-	0							-	0	0	0
107 Product 107 0 <			-	-	v	Ű	, v	v	Ţ	0	-	-			-		-	0	0	0
108 Product 108 5,537 0			0	0	v	•			-	0	-		-	-	÷		-	0	0	0
109 Product 109 0 <			5,537	0	-	0	-	-		0				-			0	0	0	0
110 Product 110 315 0				0	0	0	0	0	-	0	-	-	-	-	-	-	0	0	0	0
111 Product 111 0			315	0	0	0	0	0	0	0							0	0	0	0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	112	Product 112	2,094	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tower Coating -2021 Emissions PUBLIC

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility

									ack, NH Fa										
	All quantities in Pounds		Ethylene Glycol 107- 21-1	Toluene	Isopropano I 67-63-0	Formaldeh yde 50-00-0		1,4- Dioxane 123-91-1	Benzene 71 [.] 43-2	Polyethyen e Glycol 25322-68-3	Acid 7738-	Tetrafluoro ethylene 116-14-3		Acetaldehy de 75-07-0	Ethylene Oxide 75- 21-8	Propylene Oxide 75- 56-9		2- Pyrrolidinc ne, 1- methyl- 872-50-4	- - hexane 110
	Formula Description	2021 Total		RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP				RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP	P RTAP/HAF
	Product 113	77,593		0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0	<u>ر</u> ر
	Product 114	0		0	0	0	0	0	0	0	0	-	0			0	0	0) (
	Product 115	371		-	-	0	0	0.37129	0	0		0	0	-	-	0	0	0	<u>) (</u>
	Product 116	0	-	0	0	0	0	0	0	0	÷	0	0	-	-	0	0	0) (
	Product 117	440		-		0	0	0	0	0	-	-	0	-	-	0	0	0) (
	Product 118	0		-		-	0	0	0	0	-	-	0	-	-	0	0	0) (
	Product 119	0		-		-	0	0	0	0	÷	Ŧ	0	-	-	0	0	0	<u>ر</u>
	Product 120	0	-	-		÷	0	0	0	0	_	-	0	-	-	0	0	0) (
	Product 121	110		v		Ŭ	0	0	0	0	÷	•	0	-	-	0	0	0	<u>ر</u> (
	Product 122	441		-		0	0	0	0	0	-	0	0	÷	-	0	0	0) (
	Product 123	110		-	-	-	-	0	0	0	-	Ŧ	0	-	-	0	0	0	<u>ر</u>
	Product 124	55		-	-	-	0	0	0	0	÷	-	0	-	-	0	0	0	<u>4</u>
	Product 125	26		7.68		0	0	0	0	0	_	0	0	-	-	0	7.68	0	1.28
	Product 126	0	-	0	0	0	0	0	0	0	v	0	0	•	ÿ	0	0	0	<u> </u>
	Product 127	88		÷		0	0	0	0	0	-	-	0	-	_	0	0	0	4
	Product 128	0		÷		÷	0	0	0	0	÷	-	0	-	_	0	0	0	<u>4 </u>
	Product 129	9		-	-	÷	0	0	0	0	÷	Ŧ	0	-	-	0	0	0	/ (
	Product 130	0	_	0	-	0	0	0	0	0		0	0	-	-	0	0	0	<u>) C</u>
	Product 131	0		, v		0	0	0	0	0	÷	•	0	, v	-	0	0	0	<u>) C</u>
	Product 132	0		-		0	0	0	0	0	-	0	0		_	0	0	0	<u>) C</u>
	Product 133	717		-		0	0	0	0	0	-	-	0	-		0	0	0	
	Product 134	165		÷		-	0	0	0	0	÷	Ŧ	0	-	-	0	0	0	
	Product 135	1,112		÷	-	-	0	0	0	0		0	0	-	-	0	0	0	
	Product 136	0		, v		v	0	0	0	0	÷	Ű	0	-	-	0	0	0	
	Product 137	0		-		-	0	0	0	0	-	-	0	-	-	0	0	0	<u>, c</u>
	Product 138	0	-	÷		v	v	0	0	0	÷	-	0	-	_	0	0	0	
	Product 139	0	_	-		-	0	0	0	0	÷	Ŧ	0	-	-	0	0	0	
	Product 140	0		-		÷	0	0	0	0	_	-	0	-	-	0	0	0	
	Product 141	13,393		v		v	0	0	0	0	÷	-	0	-	-	0	0	0	
	Product 142	13				0	0	0	0	0	-	0	0	Ű	-	0	0	0	<u>/ </u>
	Product 143	0		÷		-	•	0	0	0	÷	-	0	-	_	0	0	0	
	Product 144	362		Ŷ	-	0	0	0	0	0	÷	Ŧ	0	-	-	0	0	0	<u>, , , , , , , , , , , , , , , , , , , </u>
145	Product 145	1,903	B 0	0	0	0	0	0	0	0	-	0	0	-	-	0	0	0	<u>/</u>
140	Product 146	0				0	0	0	0	0	0		0	0		0	0	0	
	Product 147 Product 148	451 0			-	-	0	0	0	0	-	-	0	-	-	0	0	0	<u>'</u>
	Product 148 Product 149	16		-	-	0	0	0	0	0	-	-	0			0	15.6	0	<u>'</u>
	Product 149 Product 150	0		0		0	0	0	0	0	÷	0	0	-	-	0	10.0	0	
	Product 150 Product 151	0		-	-	0	0	0	0	0			0	-	-	0	0	0	<u></u>
	Product 151	26	-	-	-	-	0	0	0	0	÷	-	0	-	-	0	0	0	
	Product 152	613				-	0	0	0	0	-		0			0	0	0	
	Product 155	127				0	0	0	0	0			0			0	0	0	
	Product 155	298				v	0	0	0	0	-		0	-	_	0	0	29.8	
	Product 155	230		-	-	-	0	0	0	0			0	-	-	0	0	20.0	
	Product 157	47	-	-	-	-	0	0	0	0	-	-	0	-	-	0	0	0	
	Product 158	0				-	0	0	0	0	-	-	0	-	-	0	0	0	
	Product 159	857				0	0	0	0	0	-		0			0	0	0	
	Product 160	1,029				v	0	0	0	0	-	0	0	-	_	0	0	0	
	Product 161	3,330		-	-	-	0	0	0	0		v	99.8991	-	-	0	0	0	
	Product 162	165,958		-	-	, v	0	0	0	0	-	÷	00.0001		-	0	0	0	
	Product 163	100,000				-	0	0	0	0	_	÷	0	-	-	0	0	0	
	Product 164	794				-	0	0	0	0	-	-	0			0	0	0	
	Product 165	11,520		-	-	0	0	0	0	0	-	0	0	÷	÷	0	0	0	
	Product 166	11,520		-	-	0	0	0	0	0			0	-	-	0	0	0	
									•										I Y

Tower Coating -2021 Emissions PUBLIC

0.00	23.28	29.80	1.28

<u>Attachment B.5</u> RTAP/HAP Summary

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Evaluation of RTAP/HAP associated with Coating Tower operation

1. Actual/PTE scaling factor as calculated for each year used in calculations

4. For worst-case evaluation, use max. PTE calculated for years 2012-2021 to account for product variation 5. Convert to hourly PTE by dividing PTE (lb/yr) by 8,760 hours 6. Demonstrate compliance with Adjusted In-Stack Concentration limits established under Env-A 1405.05

2. Actual amount of RTAP/HAP available for release per maximum concentrations listed on Safety Dat	a Sheets
3. Convert actual annual emissions to PTE by dividing annual emissions by scaling factor	

	Actual/PTE	-	e Glycol -21-1	Tolu 108-	Jene -88-3	lsopro 67-6	•		dehyde 00-0		anol 17-5	1,4-Di 123-	ioxane -91-1		zene 43-2		ene Glycol 2-68-3	(Chro	nic Acid mium -94-5		oroethylene 5-14-3
Year	Scaling Factor	RTAP	P/HAP	RTAP	/HAP	RT	AP	RTAP	/HAP	RT	AP	RTAP	/HAP	RTAP	P/HAP	RT	ГАР	RTAP	P/HAP	R	ТАР
		Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE
		lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr
2021	0.305	0	0	7.68	25.19	0	0	0	0	0.14	0.45	0.37	1.22	0.0046	0.015	76.16	249.9	0	0	597.8	1,961
2020	0.330	0	0	13.02	39.40	0	0	0	0	2.12	6.42	1.05	3.18	0.0056	0.017	136.6	413.3	0	0	652.4	1,975
2019	0.350	0	0	4.20	11.99	0	0	0.0	0	0.30	0.85	1.33	3.79	0.018	0.051	137.0	391.2	0	0	717.0	2,047
2018	0.348	0	0	15.90	45.69	0	0	0	0	0.31	0.88	2.25	6.48	0.012	0.034	193.8	556.9	0	0	857.1	2,463
2017	0.335	98.60	294.5	0	0	0	0	0	0	0.25	0.74	1.70	5.08	0.032	0.096	179.0	534.6	0	0	331.2	989.0
2016	0.381	0	0	0	0	0	0	0	0	0.35	0.91	2.56	6.73	0.0085	0.022	236.4	621.2	0	0	959.52	2,522
2015	0.412	736.2	1,786	538.8	1,307	53.88	130.7	0	0	3.18	7.72	0	0	0	0	333.1	808.0	0	0	1,089	2,642
2014	0.471	1,105	2,344	697.8	1,481	69.78	148.1	0	0	0.68	1.44	0.59	1.26	0	0	315.4	669.1	0	0	1,153	2,447
2013	0.448	1,698	3,789	493.1	1,100	49.31	110.0	0	0	0.28	0.62	3.52	7.86	0.0020	0.0045	396.8	885.4	0	0	589.8	1,316
2012	0.455	3,733	8,208	1,329	2,922	132.9	292.2	0	0	0.49	1.08	6.68	14.69	0.021	0.046	724.6	1,593	0	0	0	0
Maximum =	0.471	3733	8208	1329	2922	132.9	292.2	0	0	3.18	7.72	6.68	14.69	0.032	0.096	724.6	1593	0	0	1153	2642
Average =	0.384	737	1642	310.0	693.3	30.59	68.10	0	0	0.81	2.11	2.01	5.03	0.032	0.030	272.9	672.3	0	0	694.7	1836
Average -	0.564	757	1042	510.0	055.5	50.55	00.10	0	0	0.01	2.11	2.01	5.05	0.010	0.025	272.5	072.5	0	0	0,04.7	1050
PTE (lb/hr) = (based on 8,760 h	hr/yr)	0.937	lb/hr	0.334	lb/hr	0.0334	lb/hr	0	lb/hr	0.000881	lb/hr	0.00168	lb/hr	0.0000110	lb/hr	0.182	lb/hr	0	lb/hr	0.302	lb/hr
<u>RTAP Evaluation</u> X (lb/hr) =		0.937	lb/hr	0.334	lb/hr	0.0334	lb/hr	0	lb/hr	0.000881	lb/hr	0.00168	lb/hr	0.00001101	lb/hr	0.182	lb/hr	0	lb/hr	0.302	lb/hr
Y = X / 7.94 =		0.1180		0.0420		0.00420		0		0.0001109		0.000211		0.00000139		0.0229		0		0.0380	
$Z = Y \times 10^{6} =$		118,003	ug/sec	42,017	ug/sec	4 202	ug/sec	0	ug/sec	110 92	ug/sec	211 3	ug/sec	1 39	ug/sec	22 906	ug/sec	0	ug/sec	37,984	ug/sec
A = Stack Volume		110,000	48/900	12,017	46,500	1,202	46/900	J	46/300	110.52	46,000		48/900	1.00	46,000	22,500	48/966	Ŭ	48,900	57,501	48,500
B = A / 2119 =	(±70,000 cr wr)	33.034	m ³ /sec	33.034	m³/sec	33.034	m ³ /sec	33.034	m³/sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec
In-Stack Concent	ration = Z/B	3572	ug/m ³	1272	ug/m ³	127.2	ug/m ³	0	ug/m ³	3.36	ug/m ³	6.40	ug/m ³	0.042	ug/m ³	693.4	ug/m ³	0	ug/m ³	1149.8	ug/m ³
Adj. In-Stack Con	c. = (Z/B) / 700	5.10	ug/m ³	1.82	ug/m ³	0.18	ug/m ³	0	ug/m ³	0.0048	ug/m ³	0.0091	ug/m ³	0.000060	ug/m ³	0.99	ug/m ³	0	ug/m ³	1.64	ug/m ³
RTAP Limits Com	parison																				
	24 Hour AAL	503	ug/m ³	5000	ug/m ³	1757	ug/m ³	1.3	ug/m ³	6714	ug/m ³	258	ug/m ³	5.7	ug/m ³	208	ug/m ³	0.036	ug/m ³	171	ug/m ³
	Annual AAL	335	ug/m ³	5000	ug/m ³	1171	ug/m ³	0.88	ug/m ³	4476	ug/m ³	30	ug/m ³	3.8	ug/m ³	99	ug/m ³	0.024	ug/m ³	81	ug/m ³
Adj. In-Stack	Conc./24 Hour AAL	1.0)1%	0.03	36%	0.01	03%	0	%	0.000	071%	0.00)35%	0.00	105%	0.4	48%	0	1%	0.	.96%
	c Conc./Annual AAL		52%		36%		16%		%		107%		30%		016%		00%		%		03%
In Compliance wi	ith AALs?	Y	es	Y	es	Ye	es	N	/A	Y	es	Y	es	Y	es	Y	es	N	/A	Ň	Yes

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Evaluation of RTAP/HAP associated with Coating Tower operation

1. Actual/PTE scaling factor as calculated for each year used in calculations

3. Convert actual annual emissions to PTE by dividing annual emissions by scaling factor

4. For worst-case evaluation, use max. PTE calculated for years 2012-2021 to account for product variation 2. Actual amount of RTAP/HAP available for release per maximum concentrations listed on Safety Data Sheets 5. Convert to hourly PTE by dividing PTE (lb/yr) by 8,760 hours 6. Demonstrate compliance with Adjusted In-Stack Concentration limits established under Env-A 1405.05

	Actual/PTE	Meth 67-5		Acetalo 75-0	dehyde	-	e Oxide	Propylei		Methyl Eth	<u> </u>	met	dinone, 1- thyl-		ane 54-3
Year	Scaling Factor		/HAP		/HAP		21-8 9/HAP	75-5 RTAP	/HAP	78-9 RT/			-50-4 'AP		-54-3 /HAP
	Scaling ractor	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE
		lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr
2021	0.305	99.90	327.7	0	0	0	0	0	0	23.28	76.37	29.80	97.76	1.28	4.20
2020	0.330	72.25	218.6	0	0	0	0	0	0	31.42	95.09	23.04	69.74	2.17	6.57
2019	0.350	67.04	191.4	0	0	0	0	0	0	11.20	31.98	12.37	35.33	0.70	2.00
2018	0.348	45.37	130.4	0	0	0	0	0	0	49.60	142.5	43.30	124.4	2.65	7.62
2017	0.335	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2016	0.381	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2015	0.412	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2014	0.471	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2013	0.448	0	0	0	0	0	0	0	0	0.0	0	0.0	0	0	0
2012	0.455	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r				r		1						1		
Maximum =	0.471	99.90	327.72	0	0	0	0	0	0	49.60	142.5	43.30	124.43	2.65	7.62
Average =	0.384	28.46	86.82	0	0	0	0	0	0	11.55	34.60	10.85	32.73	0.68	2.04
PTE (lb/hr) = (based on 8,760 h	nr/yr)	0.0374	lb/hr	0	lb/hr	0	lb/hr	0	lb/hr	0.0163	lb/hr	0.0142	lb/hr	0.000869	lb/hr
<u>RTAP Evaluation</u> X (lb/hr) =		0.0374	lb/hr	0	lb/hr	0	lb/hr	0	lb/hr	0.0163	lb/hr	0.0142	lb/hr	0.000869	lb/hr
Y = X / 7.94 =		0.00471		0		0		0		0.00205		0.00179		0.0001095	
$Z = Y \times 10^6 =$		4,712	ug/sec	0	ug/sec	0	ug/sec	0	ug/sec	2,049	ug/sec	1,789	ug/sec	109.49	ug/sec
A = Stack Volume	(±70,000 CFM)														
B = A / 2119 =	. , ,	33.034	m ³ /sec	33.034	m³/sec	33.034	m³/sec	33.034	m³/sec	33.034	m ³ /sec	33.034	m³/sec	33.034	m ³ /sec
In-Stack Concentr	ration = Z/B	142.63	ug/m ³	0	ug/m ³	0	ug/m³	0	ug/m ³	62.04	ug/m ³	54.16	ug/m ³	3.31	ug/m ³
Adj. In-Stack Cond	c. = (Z/B) / 700	0.204	ug/m ³	0	ug/m ³	0	ug/m ³	0	ug/m ³	0.089	ug/m ³	0.077	ug/m ³	0.0047	ug/m ³
RTAP Limits Comp	parison														
	24 Hour AAL	20000	ug/m ³	161	ug/m ³	6.4	ug/m ³	17	ug/m ³	5000	ug/m ³	1429	ug/m ³	885	ug/m ³
	Annual AAL	20000	-	9	ug/m³	4.3	ug/m ³	11	ug/m ³		ug/m ³		ug/m ³	700	ug/m ³
	Conc./24 Hour AAL		102%		%		%		%	0.00)54%		054%
Adj. In-Stack	Conc./Annual AAL	0.002	102%	0	%	0	%	0	%	0.00	18%	0.00	081%	0.00	068%
In Compliance wit	th AALs?	Y	es	N	/A	N	/A	N	/A	Ye	es	Y	es	Y	es

Attachment B.6

PFOA/PFOS Calculations Summary

Saint-Gobain Performance Plastics Corp. Merrimack, NH Facility C.T. Male Project No. 16.6235

Calculation of Annual Combined PFOA/PFOS Emissions from RTO and Bypass Operations

Known:

[1] PFOA RTO Outlet Emission Rate = 1.64×10^{-6} lb/hr (from September 2021 Stack Test, Table 4-2)

[2] PFOS RTO Outlet Emission Rate = 6.80×10^{-8} lb/hr (from September 2021 Stack Test, Table 4-2)

[3] PFOA Bypass Emission Rate = 2.06×10^{-5} lb/hr (from September 2021 Stack Test, Table 4-2)

[4] PFOS Bypass Emission Rate = 2.77×10^{-7} lb/hr (from September 2021 Stack Test, Table 4-2)

[5] Air Deposition Modeling results limit operation of bypass at 4,145 hours per year

Assumptions:

[6] RTO hours of operation are anticipated to be 8,760 less the hours of Bypass operation (i.e., 8,760 - 4,145 = 4,615)[7] Hourly bypass outlet (lb/hr) assumed to equal RTO inlet measured during September 2021 stack test

A. Calculation of Combined	Annual Emission Rate at Maxi	mum Allowable Bypass Hours (4,145 hr/yr):

[item 3]	[item 5]	[item 1]	[item 6]
PFOA Annual Emissions (lb/yr) =	0.093 lb/yr		
Maximum Allowable PFOA =	0.45 lb/yr		
% of Maximum Emissions =	20.66% of allowa	ole PFOA on an a	nnual basis
. PFOS Annual Emissions = Bypass Emissions (lb/h	ır) * 4,145 (hr/yr) + F	RTO Outlet (lb/hr) * (8,760 hr/yr - 4
[item 4]	[item 5]	[item 2]	[item 6]
PFOS Annual Emissions (lb/yr) =	0.0015 lb/yr		
Maximum Allowable PFOS =	0.57 lb/yr		
	e .e, j.		
% of Maximum Emissions = . Calculation of Combined Annual Emission Rate a	0.26% of allowa	Bypass Hours (1	75 hr/yr*):
% of Maximum Emissions =	0.26% of allowa	Bypass Hours (1	75 hr/yr*):
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (Ib/h [item 3]	0.26% of allowa at Requested Annual nr) * 175 (hr/yr) + RT [item 5]	<u>Bypass Hours (1</u> O Outlet (lb/hr) '	75 hr/yr*):
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (lb/r [item 3] PFOA Annual Emissions (lb/yr) =	0.26% of allowa at Requested Annual nr) * 175 (hr/yr) + RT [item 5] 0.018 lb/yr	<u>Bypass Hours (1</u> O Outlet (lb/hr) '	75 hr/yr*):
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (Ib/h [item 3]	0.26% of allowa at Requested Annual nr) * 175 (hr/yr) + RT [item 5] 0.018 lb/yr 0.45 lb/yr	<u>Bypass Hours (1</u> O Outlet (lb/hr) '	<u>75 hr/yr*):</u> * 8,585 hr/yr)
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (lb/r [item 3] PFOA Annual Emissions (lb/yr) = Maximum Allowable PFOA =	0.26% of allowa at Requested Annual nr) * 175 (hr/yr) + RT [item 5] 0.018 lb/yr 0.45 lb/yr 3.93% of allowal	<u>Bypass Hours (1</u> O Outlet (lb/hr) [,] [item 1] ole PFOA on an a	<u>75 hr/yr*):</u> * 8,585 hr/yr) nnual basis
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (lb/r [item 3] PFOA Annual Emissions (lb/yr) = Maximum Allowable PFOA = % of Maximum Emissions = 2. PFOS Annual Emissions = Bypass Emissions (lb/r)	0.26% of allowal at Requested Annual ar) * 175 (hr/yr) + RT [item 5] 0.018 lb/yr 0.45 lb/yr 3.93% of allowal ar) * 175 (hr/yr) + RT	<u>Bypass Hours (1</u> O Outlet (lb/hr) [•] [item 1] ole PFOA on an a	<u>75 hr/yr*):</u> * 8,585 hr/yr) nnual basis
% of Maximum Emissions = 8. Calculation of Combined Annual Emission Rate a PFOA Annual Emissions = Bypass Emissions (lb/r [item 3] PFOA Annual Emissions (lb/yr) = Maximum Allowable PFOA = % of Maximum Emissions = 2. PFOS Annual Emissions = Bypass Emissions (lb/h [item 4]	0.26% of allowal at Requested Annual nr) * 175 (hr/yr) + RT [item 5] 0.018 lb/yr 0.45 lb/yr 3.93% of allowal nr) * 175 (hr/yr) + RT [item 5]	<u>Bypass Hours (1</u> O Outlet (lb/hr) [•] [item 1] ole PFOA on an a	<u>75 hr/yr*):</u> * 8,585 hr/yr) nnual basis

* - 175 hours per year is equal to 2% of 8,760

Results of the September 7-10, 2021, Regenerative Thermal Oxidizer Compliance Tests at Saint-Gobain Performance Plastics in Merrimack, New Hampshire

RTO PCE01

Temporary Permit No. TP-0256

Barr Project No. 29061003.07

Prepared for Saint-Gobain Performance Plastics Merrimack, New Hampshire

November 2021

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435-4803 Phone: 952.832.2600 www.barr.com

4.1 PFAS Test Results

The PFAS results that satisfy the facility permit are illustrated below. The PFOA annualized emission rate average is 0.014 lb/yr, which is below the permit limit of 0.45 lb/yr. The PFOS annualized emission rate average is 0.00060 lb/yr which is below the permit limit of 0.57 lb/yr.

Table 4-1 PFAS Test Results

Test Methods 1-4, OTM-45	Average Test Results RTO Outlet (PCE01)	Permit Limit
Test Date	9/7-8/21	-
PFOA, lb/yr	0.014	0.45
PFOS, lb/yr	0.00060	0.57

The full results of the RTO inlet and outlet PFAS tests are summarized in Tables 1-2 for each compound in the OTM-45 Table 45-1. The samples were analyzed for the PFAS target analytes listed in Table 45-1 of Other Test Method 45 (OTM-45).

Table 1 provides the RTO outlet controlled PFAS emission rates in pounds per year (lb/yr) Table 2 provides the RTO inlet mass loading rates of PFAS in lb/yr. The calculated destruction/removal efficiency (DRE) for PFOA and PFOS are presented below. Intermediary calculations of PFAS pollutant concentrations, emissions rates and compound DRE are in Appendix A for the inlet and outlet tests.

Table 4-2 RTO PFAS Destruction/ Removal Efficiency

Average Test Results								
Test Methods 1-4, OTM-45	RTO Inlet, lb/hr (PCE01)	RTO Outlet, lb/hr (PCE01)	DRE, %					
Test Date	9/7-8/21	9/7-8/21						
PFOA	2.06E-05	1.64E-06	92					
PFOS	2.77E-07	6.80E-08	75					

Test run one was performed on September 7. Test runs two and three were performed on September 8. Test run three was delayed 27 minutes from 1433-1500 due to an RTO trip out and subsequent reheating to its operating temperature.

Performance tests for HF, NMVOC and permanent total enclosure verification were completed during periods of the three PFAS test runs.

4.2 Hydrogen Fluoride Test Results

Table 3 summarizes the results of the HF test performed on September 7-8, 2021. Four test runs were completed during periods of the PFAS test runs. The first test run on September 7th was compromised due to an inability to lower the sample train exit temperature below 68 degrees Fahrenheit at the beginning of the run. Barr conferred with NHDES representatives onsite, and all agreed to conduct three additional runs that were successfully completed on September 8th and comprise the test. All four samples were analyzed, and results are presented in the table with the test average omitting run one, which had no effect on the results, data usability or reliability. Test run three was delayed from 1145-1410 waiting for the next PFAS test run to begin and also delayed 27 minutes from 1433-1500 due to an RTO trip out and subsequent reheating to its operating temperature.

HF does not have a specific a permit emission limit, but data is used to evaluate 24 -hour and Annual Ambient Air Limits against NHDES RTAP standards. The measured HF emission rates were multiplied by the ratio of molecular weights (19 F, 20 HF) to calculate hydrogen fluoride as F. The result of the HF RTAP evaluation is presented below. The HF adjusted in-stack concentration complies with the 24-hour and annual AALs.

Table 4-3RTAP Determination of HF Ambient Air Levels									
RTAP Compound	24-hr AAL (µg/m³)	Annual AAL (µg/m³)							
Hydrogen Fluoride as F	1.21E-02	103,600	0.13	1.5	0.98				

4.3 **RTAP Determination**

An RTAP analysis was conducted following the procedures given in the New Hampshire Code of Administrative Rules Part Env-A 1400. The RTAP analysis compares emissions (both on a 24-hour and annual basis) to ambient air levels (AALs) as set forth in NHDES Env-A Table 1450-1: RTAP List. Controlled emissions for HF and APFO were determined by the emissions tests at the RTO.

Measured PFOA emissions were multiplied by the ratio of molecular weights (431 ammonium perfluorooctanoate (APFO), 414 PFOA) to calculate APFO emissions.

A summary of the results of the APFO RTAP analysis are presented in Tables 5-4 below. Ammonia perfluorooctanoate is below the *de minimis* 24-hr and annual emission rate levels. The RTAP calculations are in Appendix F.

Attachment B.7

Scaling Factor Determination for Tower Coating Operations

Determination of Scaling Factor to Convert Actual Emissions in Coating Products to a Potential Basis

Known:

1. Maximum hourly capacity of each Coating Tower (in square feet per hour) [A]

2. Annual Hours of operation of each Coating Tower [E]

Assumptions:

1. In order to estimate Potential to Emit, no bottleneck factor has been assumed (100%) [C]

Calculated:

1. Maximum annual capacity of each Coating Tower (in square feet per year, based on 8,760 hr/yr operation potential) [B = A * 8760]

2. Calculated Potential production based on Maximum ft2/yr multiplied by bottleneck factor [D = B * C]

3. Calculated annual square footage of material based on line speed and hours operated [F = A * E]

4. % of Maximum = Calculated Annual ft2/yr / Potential ft2/yr [G = F / D]

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	
	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2021 Hrs	2021 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	3546.4	21,278,400	0.405	
MB	4,375	38,325,000	100%	38,325,000	1006.6	4,403,875	0.115	
MC	9,200	80,592,000	100%	80,592,000	3675.1	33,810,920	0.420	
MR	9,200	80,592,000	100%	80,592,000	2925.4	26,913,680	0.334	
MD	9,200	80,592,000	100%	80,592,000	3124.8	28,748,160	0.357	
QX	6,000	52,560,000	100%	52,560,000	3637	21,822,000	0.415	
20" SBC	500	4,380,000	100%	4,380,000	1363.3	681,650	0.156	
20" Coater	500	4,380,000	100%	4,380,000	905.2	452,600	0.103	
Tower ME**	0	0	100%	0	0	0	-	
Tower MG	4,375	38,325,000	100%	38,325,000	271.4	1,187,375	0.031	
Tower MP	4,375	38,325,000	100%	38,325,000	941.5	4,119,063	0.107	
Tower MI**	0	0	100%	0	0	0	-	
Tower MQ	4,400	38,544,000	100%	38,544,000	1944.1	8,554,040	0.222	
Tower MS	9,200	80,592,000	100%	80,592,000	3570.7	32,850,440	0.408	
R&D*	2,600	17,693,010	100%	17,693,010	133.8	347,880	0.020	
Total	69,925	607,460,010		607,460,010		185,170,083	0.3048	= 2021 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours Towers ME & MI were removed from the facility in 2017

Tower	Maximum ft2/hr	Maximum ft2/year	Bottleneck Factor	Potential ft2/year	Actual 2020 Hrs	Calculated 2020 ft2	% of Maximum	
MA	6,000	52,560,000	100%	52,560,000	3751.937	22,511,622	0.428	
MB	4,375	38,325,000	100%	38,325,000	1879.195	8,221,478	0.215	
MC	9,200	80,592,000	100%	80,592,000	3418.151	31,446,989	0.390	
MR	9,200	80,592,000	100%	80,592,000	3320.467	30,548,296	0.379	
MD	9,200	80,592,000	100%	80,592,000	2854.003	26,256,828	0.326	
QX	6,000	52,560,000	100%	52,560,000	3550.945	21,305,670	0.405	
20" SBC	500	4,380,000	100%	4,380,000	437.082	218,541	0.050	
20" Coater	500	4,380,000	100%	4,380,000	752.152	376,076	0.086	
Tower ME**	0	0	100%	0	0	0	-	
Tower MG	4,375	38,325,000	100%	38,325,000	931.961	4,077,329	0.106	
Tower MP	4,375	38,325,000	100%	38,325,000	1440.753	6,303,294	0.164	
Tower MI**	0	0	100%	0	0	0	-	
Tower MQ	4,400	38,544,000	100%	38,544,000	3154.866	13,881,410	0.360	
Tower MS	9,200	80,592,000	100%	80,592,000	3698.841	34,029,337	0.422	
R&D*	2,600	17,693,010	100%	17,693,010	592	1,539,200	0.087	
Total	69,925	607,460,010		607,460,010		200,716,072	0.3304	= 2020 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours Towers ME & MI were removed from the facility in 2017

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2019 Hrs	2019ft2	of Maximum	l i i i i i i i i i i i i i i i i i i i
MA	6,000	52,560,000	100%	52,560,000	3487.702	20,926,212	0.398	
MB	4,375	38,325,000	100%	38,325,000	1587.893	6,947,032	0.181	
MC	9,200	80,592,000	100%	80,592,000	3355.288	30,868,650	0.383	
MR	9,200	80,592,000	100%	80,592,000	3193.845	29,383,374	0.365	
MD	9,200	80,592,000	100%	80,592,000	3344.325	30,767,790	0.382	
QX	6,000	52,560,000	100%	52,560,000	4197.469	25,184,814	0.479	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME**	0	0	100%	0	0	0	-	
Tower MG	4,375	38,325,000	100%	38,325,000	1292.858	5,656,254	0.148	
Tower MP	4,375	38,325,000	100%	38,325,000	1877.775	8,215,266	0.214	
Tower MI**	0	0	100%	0	0	0	-	
Tower MQ	4,400	38,544,000	100%	38,544,000	3479.364	15,309,202	0.397	
Tower MS	9,200	80,592,000	100%	80,592,000	4105.536	37,770,931	0.469	
R&D*	2,600	17,693,010	100%	17,693,010	648	1,684,800	0.095	
Total	69,925	607,460,010		607,460,010		212,714,324	0.3502	= 2019 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours Towers ME & MI were removed from the facility in 2017

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	
	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2018 Hrs	2018 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	3726	22,356,000	0.425	
MB	4,375	38,325,000	100%	38,325,000	2578	11,278,750	0.294	
MC	9,200	80,592,000	100%	80,592,000	3301	30,369,200	0.377	
MR	9,200	80,592,000	100%	80,592,000	3758	34,573,600	0.429	
MD	9,200	80,592,000	100%	80,592,000	3972	36,542,400	0.453	
QX	6,000	52,560,000	100%	52,560,000	4507	27,042,000	0.514	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME**	4,000	35,040,000	100%	35,040,000	0	0	-	
Tower MG	4,375	38,325,000	100%	38,325,000	1436	6,282,500	0.164	
Tower MP	4,375	38,325,000	100%	38,325,000	2694	11,786,250	0.308	
Tower MI**	3,000	26,280,000	100%	26,280,000	0	0	-	
Tower MQ	4,400	38,544,000	100%	38,544,000	3368	14,819,200	0.384	
Tower MS	9,200	80,592,000	100%	80,592,000	4006	36,855,200	0.457	
R&D*	2,600	19,532,610	100%	19,532,610	560	1,456,000	0.075	
Total	76,925	670,619,610		670,619,610		233,361,100	0.3480	= 2018 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours Towers ME & MI were removed from the facility in 2017

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2017 Hrs	2017 ft2	of Maximum	l
MA	6,000	52,560,000	100%	52,560,000	4170	25,020,000	0.476	
MB	4,375	38,325,000	100%	38,325,000	2923	12,788,125	0.334	
MC	9,200	80,592,000	100%	80,592,000	3204	29,476,800	0.366	
MR	9,200	80,592,000	100%	80,592,000	3456	31,795,200	0.395	
MD	9,200	80,592,000	100%	80,592,000	3588	33,009,600	0.410	
QX	6,000	52,560,000	100%	52,560,000	3173	19,038,000	0.362	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME	4,000	35,040,000	100%	35,040,000	0	0	0.000	
Tower MG	4,375	38,325,000	100%	38,325,000	1153	5,044,375	0.132	
Tower MP	4,375	38,325,000	100%	38,325,000	2660	11,637,500	0.304	
Tower MI	3,000	26,280,000	100%	26,280,000	671	2,013,000	0.077	
Tower MQ	4,400	38,544,000	100%	38,544,000	3420	15,048,000	0.390	
Tower MS	9,200	80,592,000	100%	80,592,000	4156	38,235,200	0.474	
R&D*	2,600	19,532,610	100%	19,532,610	560	1,456,000	0.075	
Total	76,925	670,619,610		670,619,610		224,561,800	0.3349	= 2017 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2016 Hrs	2016 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	4028	24,168,000	0.460	
MB	4,375	38,325,000	100%	38,325,000	2637	11,536,875	0.301	
MC	9,200	80,592,000	100%	80,592,000	4879	44,886,800	0.557	
MR	9,200	80,592,000	100%	80,592,000	3997	36,772,400	0.456	
MD	9,200	80,592,000	100%	80,592,000	4299	39,550,800	0.491	
QX	6,000	52,560,000	100%	52,560,000	4193	25,158,000	0.479	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME	4,000	35,040,000	100%	35,040,000	1081	4,324,000	0.123	
Tower MG	4,375	38,325,000	100%	38,325,000	1528	6,685,000	0.174	
Tower MP	4,375	38,325,000	100%	38,325,000	2830	12,381,250	0.323	
Tower MI	3,000	26,280,000	100%	26,280,000	1915	5,745,000	0.219	
Tower MQ	4,400	38,544,000	100%	38,544,000	2211	9,728,400	0.252	
Tower MS	9,200	80,592,000	100%	80,592,000	3531	32,485,200	0.403	
R&D*	2,600	19,532,610	100%	19,532,610	680	1,768,000	0.091	
Total	76,925	670,619,610		670,619,610		255,189,725	0.3805	= 2016 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2015 Hrs	2015 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	3821	22,926,000	0.436	
MB	4,375	38,325,000	100%	38,325,000	2855	12,490,625	0.326	
MC	9,200	80,592,000	100%	80,592,000	5510	50,692,000	0.629	
MR	9,200	80,592,000	100%	80,592,000	4236	38,971,200	0.484	
MD	9,200	80,592,000	100%	80,592,000	4434	40,792,800	0.506	
QX	6,000	52,560,000	100%	52,560,000	4862	29,172,000	0.555	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME	4,000	35,040,000	100%	35,040,000	1569	6,276,000	0.179	
Tower MG	4,375	38,325,000	100%	38,325,000	2152	9,415,000	0.246	
Tower MP	4,375	38,325,000	100%	38,325,000	2288	10,010,000	0.261	
Tower MI	3,000	26,280,000	100%	26,280,000	2519	7,557,000	0.288	
Tower MQ	4,400	38,544,000	100%	38,544,000	2485	10,934,000	0.284	
Tower MS	9,200	80,592,000	100%	80,592,000	3643	33,515,600	0.416	
R&D*	2,600	19,532,610	100%	19,532,610	1409	3,663,400	0.188	
Total	76,925	670,619,610		670,619,610		276,415,625	0.4122	= 2015 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2014 Hrs	2014 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	4744	28,464,000	0.542	
MB	4,375	38,325,000	100%	38,325,000	3303	14,450,625	0.377	
MC	9,200	80,592,000	100%	80,592,000	5606	51,575,200	0.640	
MR	9,200	80,592,000	100%	80,592,000	4905	45,126,000	0.560	
MD	9,200	80,592,000	100%	80,592,000	5478	50,397,600	0.625	
QX	6,000	52,560,000	100%	52,560,000	4715	28,290,000	0.538	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME	4,000	35,040,000	100%	35,040,000	2054	8,216,000	0.234	
Tower MG	4,375	38,325,000	100%	38,325,000	2852	12,477,500	0.326	
Tower MP	4,375	38,325,000	100%	38,325,000	2754	12,048,750	0.314	
Tower MI	3,000	26,280,000	100%	26,280,000	2854	8,562,000	0.326	
Tower MQ	4,400	38,544,000	100%	38,544,000	3402	14,968,800	0.388	
Tower MS	9,200	80,592,000	100%	80,592,000	4150	38,180,000	0.474	
R&D*	2,600	19,532,610	100%	19,532,610	1275	3,315,000	0.170	
Total	76,925	670,619,610		670,619,610		316,071,475	0.4713	= 2014 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2013 Hrs	2013 ft2	of Maximum	l i i i i i i i i i i i i i i i i i i i
MA	6,000	52,560,000	100%	52,560,000	4523	27,138,000	0.516	
MB	4,375	38,325,000	100%	38,325,000	2665	11,659,375	0.304	
MC	9,200	80,592,000	100%	80,592,000	5745	52,854,000	0.656	
MR	9,200	80,592,000	100%	80,592,000	5395	49,634,000	0.616	
MD	9,200	80,592,000	100%	80,592,000	5466	50,287,200	0.624	
QX	6,000	52,560,000	100%	52,560,000	4693	28,158,000	0.536	
20" SBC	500	4,380,000	100%	4,380,000	1316	658,000	0.150	
20" Coater	500	4,380,000	100%	4,380,000	0	0	0.000	
Tower ME	4,000	35,040,000	100%	35,040,000	1046	4,184,000	0.119	
Tower MG	4,375	38,325,000	100%	38,325,000	2539	11,108,125	0.290	
Tower MP	4,375	38,325,000	100%	38,325,000	2768	12,110,000	0.316	
Tower MI	3,000	26,280,000	100%	26,280,000	2056	6,168,000	0.235	
Tower MQ	4,400	38,544,000	100%	38,544,000	2463	10,837,200	0.281	
Tower MS	9,200	80,592,000	100%	80,592,000	3886	35,751,200	0.444	
R&D*	2,600	19,532,610	100%	19,532,610	0	0	0.000	
Total	76,925	670,619,610		670,619,610		300,547,100	0.4482	= 2013 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2012 Hrs	2012 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	4594	27,564,000	0.524	
MB	4,375	38,325,000	100%	38,325,000	4959	21,695,625	0.566	
MC	9,200	80,592,000	100%	80,592,000	4298	39,541,600	0.491	
MR	9,200	80,592,000	100%	80,592,000	4493	41,335,600	0.513	
MD	9,200	80,592,000	100%	80,592,000	4927	45,328,400	0.562	
QX	6,000	52,560,000	100%	52,560,000	5241	31,446,000	0.598	
20" SBC	500	4,380,000	100%	4,380,000	0	0	0.000	
20" Coater	500	4,380,000	100%	4,380,000	1424	712,000	0.163	
Tower ME	4,000	35,040,000	100%	35,040,000	4544	18,176,000	0.519	
Tower MG	4,375	38,325,000	100%	38,325,000	4778	20,903,750	0.545	
Tower MP	4,375	38,325,000	100%	38,325,000	4172	18,252,500	0.476	
Tower MI	3,000	26,280,000	100%	26,280,000	182	546,000	0.021	
Tower MQ	4,400	38,544,000	100%	38,544,000	2148	9,451,200	0.245	
Tower MS	9,200	80,592,000	100%	80,592,000	3119	28,694,800	0.356	
R&D*	2,600	19,532,610	100%	19,532,610	516	1,341,600	0.069	
Total	76,925	670,619,610		670,619,610		304,989,075	0.4548	= 2012 Actual/PTE Scaling Factor

Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

Attachment C

Air Dispersion and Deposition Modeling Prepared by Barr Engineering

resourceful. naturally.

engineering and environmental consultants

Technical Memorandum

To: Mr. William Kempskie – Director Environmental Health and Safety Saint-Gobain Performance Plastics, Merrimack, New Hampshire
 From: Eric Edwalds
 Subject: Bypass Stack, Air Deposition and Dispersion Modeling
 Date: December 16, 2021
 Project: Merrimack, New Hampshire Facility
 c: Brett Slensky, Saint-Gobain

Executive Summary

To address Item #4 in the November 18, 2021 Letter of Deficiency (LOD), air dispersion and deposition modeling was conducted to include emissions from the regenerative thermal oxidizer's (RTO) bypass stack to address RSA 125-C:10-e (deposition of perfluorinated compounds (PFC's)) and Env-A 1400 Regulated Toxic Air Pollutants (RTAP) in accordance with Table 8, Item 6 of Saint-Gobain's Temporary Air Permit TP-0256.

The modeling analysis shows:

- Operating at a maximum of 4,145 hours per year, the bypass stack would be in compliance with RSA 125-C:10-e and will not cause or contribute to an exceedance of groundwater or surface water quality standards (AGQS and SWQS).
- Permit limits for annual operations of the bypass stack pursuant to Env-A 607.01 can be incorporated into Saint-Gobain's Temporary Air Permit TP-0256 to demonstrate compliance with RSA 125-C:10-e.
- The bypass stack is in compliance with Env-A 1400 RTAP limits for hydrogen fluoride (HF) and ammonium perfluorooctanoate (APFO).

Letter of Deficiency and Air Permit Requirements

Item #4 of the November 18, 2021 LOD cites condition VIII, Table 8, Item 6 of the permit (*Update to Air Dispersion and Deposition Modeling Impact Analysis*) that the bypass stack is a new emissions source not included in the modeling analysis for the permit, and consequently the modeling must be updated:

Requested action:

• No later than 30 days from the date of this letter, provide an update to the modeling analysis that was submitted with the Application that includes the bypass stack in the analysis. In addition, present the methodology for estimating uncontrolled per- and polyfluoroalkyl substances (PFAS)

emissions and the rationale for the number of hours for any consecutive 12-month included in the analysis.

An updated modeling analysis is also required by permit condition VIII, Table 8, Item 5 *Compliance Demonstration for Env-A 1400, Regulated Toxic Air Pollutant Regulation and RSA 125-C:10-e, Requirements for Air Emissions of Perfluorinated Compounds Impacting Soil and Water* based on final as-built RTO emission parameters and the results of the stack testing conducted pursuant to Table 6, Item 14 for RTAPs and PFCs, respectively of the permit¹. The updated modeling analysis for the RTO as-built emission parameters² has been utilized for developing modeling parameters in the bypass stack modeling analysis.

Updated Modeling Analysis to Include the Bypass Stack

The bypass stack is a necessary safety component of the RTO. The bypass stack allows process exhaust gases to be diverted from entering the RTO in the event that the RTO is inoperable. As such, the RTO and the bypass stack do not operate at the same time, meaning that emissions would not occur from both stacks simultaneously. Consequently, the RTO and the bypass stack do not have combined modeled impacts such that the bypass stack can be modeled independently of the RTO.

Bypass Stack Modeling Parameters

The bypass stack is located on the roof and connected to the process exhaust gas ductwork as shown in **Figure 1**. The bypass stack has a slightly downward horizontal discharge to keep precipitation and other material from entering the process exhaust system. The bypass stack was modeled as source type POINTHOR (horizontal point source).

The modeling input parameters for the bypass stack were developed from the stack testing inlet parameters for the RTO. The RTO inlet measurements were collected just downstream of the bypass stack and represent what would be discharged through the bypass stack. These parameters are appropriate for this modeling analysis because the stack testing was designed to measure maximum pollutant emissions. Modeled emission parameters for the bypass stack are shown in **Table 1**.

For the purposes of preparing a permit amendment to incorporate the bypass stack into Saint-Gobain's temporary permit, a second set of modeling runs were conducted at a typical flow rate of 50,000 scfm to encompass the range of potential maximum modeled impacts.

¹ Saint-Gobain RTO Compliance Test Report 11-09-2021.

² December 16, 2021 Technical Memorandum: RTO As-Built Emission Parameters, Air Deposition and Dispersion Modeling

Modeling Methodology

The modeling was conducted following the methodology used in the RTO as-built emission parameter modeling. The model set-up is summarized in **Table 2**.

Compliance Demonstration for RSA 125-C:10-e, Requirements for Air Emissions of Perfluorinated Compounds Impacting Soil and Water

Revised Table 11 (from Permit Application Review Summary) on Page 16 of the Permit Document *Temporary Permit – Findings of Fact and Director's Decision* (330110016518-0227TypeFindingsOfFact.pdf) specifies the methodology for evaluating compliance with RSA 125-C:10-e. Compliance demonstration with RSA 125-C:10-e for the bypass stack is shown in **Table 3**. Consistent with previous deposition modeling, Method 2 deposition was greater than Method 1 deposition. Method 2 deposition results were used in the compliance demonstration. Maximum unit impact deposition (g/m²/yr per g/s) was slightly greater for the measured flow modeling run as compared to the typical flow modeling run. As shown in **Table 3**, PFOA deposition would potentially be detectable if the bypass stack operated continuously. **Table 3** also shows the number of hours per year that the bypass stack could theoretically operate and still demonstrate compliance with RSA 125-C:10-e. **Figure 2** shows the unit impact deposition results for the measured flow rate bypass stack modeling scenario.

This modeling demonstration satisfies the requirement that the operation of the bypass stack (at less than 4,145 hours per year based on conditions at the measured flow rate, which is the more restrictive of the scenarios modeled) does not cause or contribute to or have the potential to cause or contribute to an exceedance of an ambient groundwater quality standard (AGQS) or surface water quality standard (SWQS) due to the deposition of the contaminant from the air. This modeling demonstration will be used as supporting documentation for any permitted annual operating hours limitations.

Compliance Demonstration for Env-A 1400, Regulated Toxic Air Pollutant Regulation

Hydrogen fluoride (HF) emissions were not measured at the RTO inlet as part of the compliance testing, consequently, HF emissions from the bypass stack are unquantified. Because one of the primary concerns for operation of the RTO is the potential for generation of HF due to the thermal destruction of PFCs, we have assumed that the measured HF emissions at the RTO outlet would be a conservative representation of HF emissions from the bypass stack.

Measured PFOA emissions at the RTO inlet were multiplied by the ratio of molecular weights (431 APFO, 414 PFOA) to calculate APFO emissions from the bypass stack. APFO emissions from the bypass stack are well below Env-A 1400 *de minimis* emissions and modeled concentrations are well below RTAP AALs.

Compliance demonstration with Env-A 1400, RTAP regulation for the bypass stack is shown in **Table 4**. Very small differences in modeled concentrations occurred between the measured flow rate and the typical flow rate model runs.

Table 1 - Bypass Stack Modeled Stack ParametersBypass Stack Air Dispersion Modeling Technical MemorandumSt. Gobain Perfomance Plastics Inc., Merrimack, NH Facility

	UTM Zone			English Unit	s	Metric (Modeling) Units					
Modeled Flow Rate	X-Coordinate (easting)	Y-Coordinate (northing)	Ht (ft)	Temp (F)	Diam (in)	Flow (SCFM)	Flow (ACFM)	Ht (m)	Temp (K)	Diam (m)	Vel (m/s) [2]
Measured [1]	200 700 62	4,752,031.23	63.52	236	60	57,500	76,900	10.26	386	1 5 2 4	19.90
Typical	298,780.62	4,752,051.25	03.52	236	60	50,000	65,660	19.36	380	1.524	16.99

[1] Saint-Gobain RTO Compliance Test Report 11-09-2021:

Results of the September 7-10, 2021, Regenerative Thermal Oxidizer Compliance Tests

at Saint-Gobain Performance Plastics in Merrimack, New Hampshire

Table 2 - RTO Inlet

[2] Stack gas exit velocity is based on actual airflow (ACFM)

Table 2 – Bypass Stack Model Set-Up Summary

Bypass Stack Air Deposition and Dispersion Modeling Technical Memorandum St. Gobain Performance Plastics Inc., Merrimack, NH Facility

Model Set-Up

- AERMOD v.21112
- 2013 2017 Manchester, NH meteorological data
 - Processed by NHDES AERMET v.18081 with AERMINUTE and adjusted u-star
 - Upper air data from Gray, ME
- Model Bypass stack at 1 g/s
 - Calculate Unit Impact Rate (UIR)
 - Deposition (g/m²/yr per g/s)
 - Ambient air concentration (μg/m³ per g/s)
- Source type = POINTHOR
- Receptor Grids
 - o OXIDIZER.ROU (PFAS deposition) includes receptors on property
 - o RTAP_GRID (RTAP compliance) receptors start at facility property boundary
- Deposition Parameters
 - o Unknown particle size distribution in bypass stack exhaust
 - Method 1 deposition parameters from Barton et al., 2006, Table 4

|--|

Particle Diameter, µm	Mass Fraction %
>4.0	5.6
1.7	12.9
0.8	9.2
0.5	7.2
0.3	5.3
<0.28	59.8

0

• Density = 1.8 g/cm³ (perfluorooctanoic acid -

https://pubchem.ncbi.nlm.nih.gov/source/ILO-ICSC)

 \circ Method 2 deposition parameters (< 2.5 μ m) fraction of 0.61 (Barton, 2010)

References:

Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J., and Kaiser, M., 2006. Characterizing
 Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing
 Modeled and Monitored Values. Journal of the Air & Waste Management Association, 56:48-55.

Barton, C.A., Zarzecki, C.J., and Russell, M.H., 2010. A Site-Specific Screening Comparison of Modeled and Monitored Air Dispersion and Deposition for Perfluorooctanoate. Journal of the Air & Waste Management Association, 60:4, 402-411, DOI:<u>10.3155/1047-3289.60.4.402</u>

Table 3 - Compliance Demonstration for RSA 125-C:10-e [1] Bypass Stack Air Dispersion and Deposition Modeling Technical Memorandum St. Gobain Perfomance Plastics Inc., Merrimack, NH Facility

Measured Flow Rate

PFC	Lowest Concentration Minimum Reporting Limits (LCMRL) for Lab Analysis [2]	Maximum Concentration of PFC (MC _{PFC}) Infiltrating to Groundwater [3]	Maximum Deposition Rate (MDR _{PFC}) [4]	Maximum Annualized Emission Rate [5]	Maximum Annualized Emission Rate [6]	Maximum Annualized Emission Rate [7]	Annual Emission Rate Based on September 2021 Stack Tests [8]	Maximum	Annual Operating Hours to Meet Limit [10]
	(ppt)	(ppt)	(µg/m²/yr)	(g/s)	(lb/hr)	(lb/yr)	(lb/yr)	(Yes / No)	
PFOA	3.4	< 3.4	< 1.8	< 1.23E-06	< 9.72E-06	< 0.085	0.18	No	4,145
PFOS	4.4	< 4.4	< 2.3	< 1.59E-06	< 1.26E-05	< 0.110	0.0024	Yes	

Typical Flow Rate

PFOA	3.4	< 3.4	< 1.8	< 1.33E-06	< 1.06E-05	< 0.093	0.18	No	4,509
PFOS	4.4	< 4.4	< 2.3	< 1.72E-06	< 1.37E-05	< 0.120	0.0024	Yes	

[1] The calculation methodology used in this table follows the NHDES methodology shown in Table 11 of the Permit Application Review Summary and in the Revised Table 11 in the NHDES response to Comment #16 in the Temporary Permit - Findings of Fact and Director's Decision.

[2] LCMRLs used in the Revised Table 11 from the November 2019 EPA document Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

[3] The maximum concentration of PFC (MC_{PFC}) infiltrating to groundwater needs to be less than the LCMRL to demonstrate no impact to groundwater.

[4] MDR
PFC ((μ g/m²)/yr) = MC
PFC (μ g/m³ or ppt) * IR (m/yr)Precipitation Infiltration Rate (IR) (m/yr)0.53IR based on annual precipitation of 46 inches per year as described in the permit application review summary.

[5] Maximum Annualized Emission Rate (g/s) = MDR _{PFC} ((μg/m ²)/yr) / (UIR (g/m ² /yr per g/s) * 1,000,000 (μg/g))	
Unit Impact Rate (UIR) (g/m ² /yr per g/s) at maximum impact receptor (measured flow rate)	1.47 Method 2 Deposition
Unit Impact Rate (UIR) (g/m ² /yr per g/s) at maximum impact receptor (typical flow rate)	1.35 Method 2 Deposition
UIR from Method 2 deposition (worst-case). Method 1 UIR = 0.423 (g/m ² /yr per g/s) (measured flow rate).	

[6] Maximum Annualized Emission Rate (lb/hr) = Maximum Annualized Emission Rate (g/s) * 3600 s/hr * 1 lb/453.6 g/lb

[7] Maximum Annualized Emission Rate (lb/yr) = Maximum Annualized Emission Rate (lb/hr) * 8760 hr/yr

[8] Table 2 - Saint-Gobain RTO Compliance Test Report 11-09-2021.

[9] If the annual emission rate is less than the maximum annualized emission rate (which represents the level at which the PFC would be detectable), this result demonstrates that operation of the RTO will not cause or contribute to an exceedance of a groundwater or surface water quality standard (AGQS and SWQS, respectively) and satisfies the requirements of RSA 125-C:10-e.

[10] Annual operating hours to meet limit = maximum annualized emission rate / stack test annual emission rate * 8,760 hours per year

Table 4 - Compliance Demonstration for Env-A 1400 Regulated Toxic Air Pollutants (RTAP) Bypass Stack Air Dispersion and Deposition Modeling Report Saint-Gobain Performance Plastics - Merrimack, NH

			24-hr H1H					
		Emission Rate	Concentration	24-hr Maximum %	Maximum Annual	Annual Maximum	24-hr AAL	Annual AAL
Model Run	RTAP	(lbs/hr) [2]	[3][4]	of AAL	Concentration [5]	% of AAL	(µg/m³) [6]	(µg/m³) [6]
As-Built Parameters [1]	Hydrogen fluoride, HF as F-	0.012	0.061	4.1%	0.0092	0.94%	1.5	0.98
As-Built Parameters [1]	Ammonium perfluorooctanoate (APFO)	2.70E-06	1.4E-05	0.0%	2.1E-06	0.0%	0.05	0.024
Typical Flow Rate (50,000 scfm)	Hydrogen fluoride, HF as F-	0.012	0.061	4.1%	0.0091	0.93%	1.5	0.98
Typical Flow Rate (50,000 scill)	Ammonium perfluorooctanoate (APFO)	2.70E-06	1.4E-05	0.0%	2.1E-06	0.0%	0.05	0.024

 [1] As-Built Bypass Stack
 Stack height - 63.5 feet

 Parameters
 Stack temperature - 236 F

 Stack diameter - 60 inches
 Flow rate - 76,900 acfm (57,500 scfm)

[2] - HF was not measured at the inlet. RTO outlet emission rate (Table 3 Saint-Gobain RTO Compliance Test Report 11-09-2021, HF as Fluoride (F-)) assumed to be worst-case for inlet.

[2] - PFOA measured at RTO inlet (lb/hr) converted to APFO (lb/hr).

[3] - Maximum modeled concentration for 1 g/s emission rate * RTAP lbs/hr * 0.126 g/s / lbs/hr

[4] - Highest (High-1st-high) 24-hour concentration over 5 years of meteorological data

[5] - Highest annual concentration over 5 years of meteorological data

[6] - New Hampshire Code of Administrative Rules Env-A 1405.01 Table of All Regulated Toxic Air Pollutants.

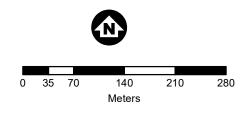
2.70E-06 APFO lb/hr 0.126 lbs/hr to g/s

Figure 1 – Bypass Stack Location

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	the second s
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	The same set of the se
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contraction of the second second
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A REAL PROPERTY AND A REAL PROPERTY
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A DE TRANSFER OF A DE LA DE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALTER AND A COMPANY OF A REAL SHOLENEY
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AND THE REAL PROPERTY AND A DESCRIPTION
	CALIFIC LINES & LINES AND THE PARTY AND
	CANADA CONTRACTOR OF ANY AND
	ADDA. V.SCINCLASSING
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	A LOSS INCLUS AND
	MAY A REAL OF ANY
	A DOMESTIC AND A DOMESTICANA A DOMESTICA
	A REAL PROPERTY AND A REAL
	A second s
••••••••••••••••••	A 6 100 0 10 10 10 10
• • • • • • • • • • • • • • • • • • • •	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
.	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<u> </u>	0 0 0 0 0 0 0 0 0 0
0 00000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
	OLO LL O
	A ST THE REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.
<u> </u>	0 0 0 0 0 0 0 0 0 0 0
Unit Impact Rate (UIR) Deposition (g/m ² /yr per g/s)	

Unit Impact Rate (UIR) Deposition (g/m²/yr per g/s)

- 0 0 - 0.05 \oplus Bypass Stack AERMOD Method 2 Deposition
- 0.05 0.50 0


Barr Footer: ArcGIS 10.8.1, 2021-12-16 14:07 File: I\Clien(\Saint_Gobain\Merrimack_NH\Maps\AirModeling\Oxidizer\Figure 2 Air Deposition Bypass.mxd User: ere

- 0.50 1.0
- 1.0 1.3 0

0

BARR

1.3 - 1.47 •

PFOA DEPOSITION - NEAR FIELD BYPASS STACK AIR DEPOSITION MODELING Measured Flow Rate Scenario Unit Impact Rate (UIR) Deposition

> Merrimack, New Hampshire Saint-Gobain

> > FIGURE 2

resourceful. naturally. engineering and environmental consultants

Technical Memorandum

To:Mr. William Kempskie – Director Environmental Health and Safety
Saint-Gobain Performance Plastics, Merrimack, New HampshireFrom:Eric EdwaldsSubject:RTO As-Built Emission Parameters, Air Deposition and Dispersion Modeling
Date:Date:December 16, 2021Project:Merrimack, New Hampshire Facilityc:Brett Slensky, Saint-Gobain

Executive Summary

Air dispersion and deposition modeling was conducted to evaluate the performance of the regenerative thermal oxidizer (RTO) with respect to RSA 125-C:10-e (deposition of perfluorinated compounds (PFC's)) and Env-A 1400 Regulated Toxic Air Pollutants (RTAP) in accordance with Table 8, Item 5 of Saint-Gobain's Temporary Air Permit TP-0256.

The modeling analysis shows:

- The RTO is in compliance with RSA 125-C:10-e and will not cause or contribute to an exceedance of groundwater or surface water quality standards (AGQS and SWQS).
- The RTO does not require permit limits to demonstrate compliance with RSA 125-C:10-e pursuant to Env-A 607.01 (n).
- The RTO is in compliance with Env-A 1400 RTAP limits for hydrogen fluoride (HF) and ammonium perfluorooctanoate (APFO).
- The RTO does not need a permit for control of HF emissions pursuant to Env-A 607.01(t) and Env-A 1403.

Air Permit Requirements

Saint Gobain's Temporary Air Permit TP-0256 for the installation and operation of a regenerative thermal oxidizer has the following condition: Table 8 – Reporting Requirements, Item 5 *Compliance Demonstration for Env-A 1400, Regulated Toxic Air Pollutant Regulation and RSA 125-C:10-e, Requirements for Air Emissions of Perfluorinated Compounds Impacting Soil and Water*

a.) The owner or operator shall update and submit an Env-A 1400 compliance demonstration in accordance with Table 7, Item 10 and an updated air deposition modeling analysis of post-controlled PFC emissions based on final as-built RTO emission parameters and the results of the stack testing conducted pursuant to Table 6, Item 14 for RTAPs and PFCs, respectively.

b.) The Env-A 1400 compliance demonstration required in Table 8, Item 5(a) above, shall include the submission of the air dispersion model for RTAP emissions, an evaluation of compliance with the

limitations in Env-A 1400, a determination if the RTO requires a permit pursuant to Env-A 607.01(t) and Env-A 1403, *Permit Requirements*

The results from the September 7-10, 2021 stack testing (conducted pursuant to Table 6, Item 14) were submitted on November 9, 2021¹. The compliance modeling demonstration described in Table 8, Items 5(a) and 5(b) above, is due to the NHDES within 30 business days of submittal of the stack testing report. This modeling report fulfills the above requirements and demonstrates compliance with RSA 125-C:10-e and Env-A 1400 without any additional permit limits or permitting actions pursuant to Env-A 607.01(n) (PFCs) or Env-A 607.01(t) (RTAP).

As-Built RTO Emission Parameters

Separate performance tests were conducted for PFAS compounds (Modified EPA OTM-45) and HF (EPA Method 26A). Although the measured flow parameters were very similar, the PFAS deposition modeling used the flow parameters from OTM-45, and the RTAP modeling for HF used the flow parameters from Method 26A. Modeled as-built emission parameters are shown in **Table 1**.

The location of the RTO stack is approximately 60 feet northeast of the RTO location in the permit application modeling. The building downwash model (BPIP) was rerun to accommodate this change.

Modeling Methodology

The modeling was conducted following the methodology used in the permit application with the one exception being that the latest version of AERMOD v.21112 was used instead of the AERMOD v.18081². The model set-up is summarized in **Table 2**.

Compliance Demonstration for RSA 125-C:10-e, Requirements for Air Emissions of Perfluorinated Compounds Impacting Soil and Water

Revised Table 11 (from Permit Application Review Summary) on Page 16 of the Permit Document *Temporary Permit – Findings of Fact and Director's Decision* (330110016518-0227TypeFindingsOfFact.pdf) specifies the methodology for evaluating compliance with RSA 125-C:10-e. Compliance demonstration with RSA 125-C:10-e for the RTO as-built emission parameters is shown in **Table 3**. **Figure 1** shows the unit impact deposition results (g/m²/s per g/s) for the as-built emission parameters.

This modeling demonstration satisfies the requirement that the operation of the RTO does not cause or contribute to or have the potential to cause or contribute to an exceedance of an ambient groundwater

¹ Saint-Gobain RTO Compliance Test Report 11-09-2021

² AERMOD versions are identified by year and day of year.

quality standard (AGQS) or surface water quality standard (SWQS) due to the deposition of the contaminant from the air.

Compliance Demonstration for Env-A 1400, Regulated Toxic Air Pollutant Regulation

Compliance demonstration for Env-A 1400 was provided in the stack test report for hydrogen fluoride, as F (HF), and ammonium perfluorooctanoate (APFO)³, however the compliance demonstration did not require dispersion modeling. In keeping with Permit Condition VIII Table 8 – Item 5(b) shown above, this report constitutes the submission of the air dispersion model for RTAP emissions. **Table 4** shows the RTAP dispersion modeling results which also demonstrate compliance with Env-A 1400.

In accordance with Env-A 607.01(t) and Env-A 1403.02, the air modeling results demonstrate compliance with the Env-A 1450.01 Ambient Air Levels. Accordingly, Saint-Gobain is not required to obtain a permit to control HF emissions from the RTO based on the measured emissions.

Discussion

For the RTO as-built emission parameters deposition modeling, both AERMOD Method 1 and Method 2 deposition were evaluated. Consistent with previous modeling, Method 2 deposition was greater than Method 1 deposition.

As mentioned above, AERMOD v.18081 was used for the permit application modeling and AERMOD v.21112 was used for the RTO as-built emission parameters compliance demonstration modeling. The model algorithm for Method 2 wet deposition was significantly changed in AERMOD v.19191 to modify an inconsistent calculation⁴. In addition to the wet deposition algorithm change, Method 2 was reclassified to being an ALPHA option in AERMOD, meaning that the Method 2 deposition algorithm has not been rigorously evaluated and use of Method 2 deposition is not approved for regulatory applications by default. Method 1 deposition is not affected by the model update and use of Method 1 is approved by default for regulatory applications.

Method 2 total deposition (wet + dry) Unit Impact Rate (UIR) increased by slightly more than a factor of 10 for the as-built modeling (UIR = 2.91) from that in Revised Table 11 (from Permit Application Review Summary) (UIR = 0.282). Due to low measured emission rates during the September 2021 stack test, even with the increase in UIR, the PFC emissions from the RTO readily demonstrate compliance with RSA 125-C:10-e.

³ HF demonstrated compliance using the adjusted in-stack concentration ratio method and APFO demonstrated compliance using the *de minimis* emission level method. Refer to Tables 4-3 (HF) and 4-4 (APFO) in the compliance test report.

⁴ See AERMOD Model Change Bulletin (MCB) 14 – AERMOD version 19191 for a full description of the wet deposition algorithm change.

Table 1 - RTO As-Built Emission Parameters [1]

RTO As-Built Emission Parameters Air Deposition and Dispersion Modeling Technical Memorandum

St. Gobain Perfomance Plastics Inc., Merrimack, NH Facility

	UTM Zone 19 Meters		English Units				Metric (Modeling) Units				
Model Run	X-Coordinate (easting)	Y-Coordinate (northing)	Ht (ft)	Temp (F)	Diam (in)	Flow (SCFM)	Flow (ACFM)	Ht (m)	Temp (K)	Diam (m)	Vel (m/s) [2]
PFAS Deposition - OTM-45	298,810.07	4 752 022 26	60	350	70	63,500	98,300	18.288	450	1.778	18.69
RTAP - Method 26A	298,810.07	4,752,033.26	60	351	70	66,900	103,600	18.288	450	1.778	19.69

[1] Saint-Gobain RTO Compliance Test Report 11-09-2021:

Results of the September 7-10, 2021, Regenerative Thermal Oxidizer Compliance Tests

at Saint-Gobain Performance Plastics in Merrimack, New Hampshire

[2] Stack gas exit velocity based on ACFM

Table 2 – RTO As-Built Emission Parameters Model Set-Up Summary

RTO As-Built Emission Parameters Air Deposition and Dispersion Modeling Technical Memorandum St. Gobain Performance Plastics Inc., Merrimack, NH Facility

Model Set-Up

- AERMOD v.21112
- 2013 2017 Manchester, NH meteorological data
 - Processed by NHDES AERMET v.18081 with AERMINUTE and adjusted u-star
 - Upper air data from Gray, ME
- Model RTO stack at 1 g/s
 - Calculate Unit Impact Rate (UIR)
 - Deposition (g/m²/yr per g/s)
 - Ambient air concentration (μg/m³ per g/s)
- Receptor Grids
 - o OXIDIZER.ROU (PFAS deposition) includes receptors on property
 - RTAP_GRID (RTAP compliance) receptors start at facility property boundary
- Deposition Parameters
 - Unknown particle size distribution in RTO exhaust, but most likely 100% < 1 um.
 - Method 1 deposition parameters from Barton et al., 2006, Table 4

Particle Diameter, µm	Mass Fraction %
>4.0	5.6
1.7	12.9
0.8	9.2
0.5	7.2
0.3	5.3
<0.28	59.8

Table 4. Average particle size distribution for PFOA at fence line.

0

• Density = 1.8 g/cm^3 (perfluorooctanoic acid -

https://pubchem.ncbi.nlm.nih.gov/source/ILO-ICSC)

 \circ $\,$ Method 2 deposition parameters (< 2.5 $\mu m)$ fraction of 0.61 (Barton, 2010) $\,$

References:

Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J., and Kaiser, M., 2006. Characterizing
 Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing
 Modeled and Monitored Values. Journal of the Air & Waste Management Association, 56:48-55.

Barton, C.A., Zarzecki, C.J., and Russell, M.H., 2010. A Site-Specific Screening Comparison of Modeled and Monitored Air Dispersion and Deposition for Perfluorooctanoate. Journal of the Air & Waste Management Association, 60:4, 402-411, DOI:<u>10.3155/1047-3289.60.4.402</u>

Table 3 - Compliance Demonstration for RSA 125-C:10-e [1] NTO As Built Emission Desenators Air Deposition and Dimension Medaling Technical Memorand

RTO As-Built Emission Parameters Air Deposition and Dispersion Modeling Technical Memorandum

St. Gobain Perfomance Plastics Inc., Merrimack, NH Facility

PFC	Lowest Concentration Minimum Reporting Limits (LCMRL) for Lab Analysis [2]	Maximum Concentration of PFC (MC _{PFC}) Infiltrating to Groundwater [3]	Maximum Deposition Rate (MDR _{PFC}) [4]	Maximum Annualized Emission Rate [5]	Maximum Annualized Emission Rate [6]	Maximum Annualized Emission Rate [7]	Annual Emission Rate Based on September 2021 Stack Tests [8]	Annual Emission Rate Below Maximum Annualized Emission Rate? [9]
	(ppt)	(ppt)	(µg/m²/yr)	(g/s)	(lb/hr)	(lb/yr)	(lb/yr)	(Yes / No)
PFOA	3.4	< 3.4	< 1.8	< 6.20E-07	< 4.92E-06	< 0.043	0.014	Yes
PFOS	4.4	< 4.4	< 2.3	< 8.02E-07	< 6.36E-06	< 0.056	0.0006	Yes

[1] The calculation methodology used in this table follows the NHDES methodology shown in Table 11 of the Permit Application Review Summary and in the Revised Table 11 in the NHDES response to Comment #16 in the Temporary Permit - Findings of Fact and Director's Decision.

[2] LCMRLs used in the Revised Table 11 from the November 2019 EPA document *Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry*.

[3] The maximum concentration of PFC (MC_{PFC}) infiltrating to groundwater needs to be less than the LCMRL to demonstrate no impact to groundwater.

0.53

[4] MDR_{PFC} (($\mu g/m^2$)/yr) = MC_{PFC} ($\mu g/m^3$ or ppt) * IR (m/yr)

Precipitation Infiltration Rate (IR) (m/yr)

IR based on annual precipitation of 46 inches per year as described in the permit application review summary.

[5] Maximum Annualized Emission Rate (g/s) = $MDR_{PFC} ((\mu g/m^2)/yr) / (UIR (g/m^2/yr per g/s) * 1,000,000 (\mu g/g))$ Unit Impact Rate (UIR) (g/m²/yr per g/s) at maximum impact receptor2.91UIR from Method 2 deposition (worst-case). Method 1 UIR = 0.121 (g/m²/yr per g/s).

[6] Maximum Annualized Emission Rate (lb/hr) = Maximum Annualized Emission Rate (g/s) * 3600 s/hr * 1 lb/453.6 g/lb

[7] Maximum Annualized Emission Rate (lb/yr) = Maximum Annualized Emission Rate (lb/hr) * 8760 hr/yr

[8] Table 1 - Saint-Gobain RTO Compliance Test Report 11-09-2021.

[9] Because the annual emission rate is less than the maximum annualized emission rate (which represents the level at which the PFC would be detectable), this result demonstrates that operation of the RTO will not cause or contribute to an exceedance of a groundwater or surface water quality standard (AGQS and SWQS, respectively) and satisfies the requirements of RSA 125-C:10-e.

Table 4 - Compliance Demonstration for Env-A 1400

RTO As-Built Emission Parameters Air Deposition and Dispersion Modeling Technical Memorandum

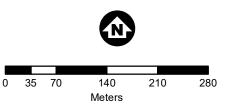
Saint-Gobain Performance Plastics - Merrimack, NH

	Emission Rate	24-hr H1H	24-hr Maximum %	Maximum Annual	Annual Maximum	24-hr AAL	Annual AAL
RTAP	(lbs/hr) [1]	Concentration [2]	of AAL	Concentration [3]	% of AAL	(µg/m³) [4]	(µg/m³) [4]
Hydrogen fluoride, as F-	0.012	0.032	2.1%	0.0027	0.3%	1.5	0.98
Ammonium perfluorooctanoate	1.7E-06	4.5E-06	0.0%	3.8E-07	0.0%	0.05	0.024

[1] - HF as F- Saint-Gobain RTO Compliance Test Report 11-09-2021, Table 3 (RTO Outlet)

- [1] Saint-Gobain RTO Compliance Test Report 11-09-2021, Table 1 (RTO Outlet) PFOA = 0.014 lbs/yr APFO (lbs/hr) = PFOA (lbs/yr) * (yr/8760 hr) * 431 (mol wt APFO) / 414 (mol wt PFOA)
- [2] Highest (High-1st-high) 24-hour concentration over 5 years of meteorological data
- [2] Maximum modeled concentration for 1 g/s emission rate * RTAP lbs/hr * 0.126 g/s / lbs/hr
- [3] Highest annual concentration over 5 years of meteorological data

[4] - New Hampshire Code of Administrative Rules Env-A 1450.01 <u>Table of All Regulated Toxic Air Pollutants</u>.


0.126 lbs/hr to g/s

• •	• •
• •	0 0
• •	0 0
• •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• •	0 0
• •	0 0
• • • • • • • • • • • • • • • • • • •	0 0
••••••••••••••••••••••••••••••••••••••	
• 0 - 0.05 • RTO	PFOA DEPOSITION - NEAR FIELD

- 0.05 0.50
- 0.50 1.5
- 1.5 2.5
- 2.5 2.91

BARR

AERMOD Method 2 Deposition

PFOA DEPOSITION - NEAR FIELD RTO AS-BUILT AIR DEPOSITION MODELING Unit Impact Rate (UIR) Deposition

> Merrimack, New Hampshire Saint-Gobain

> > FIGURE 1

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

April 12, 2023

Ms. Cathy Beahm SIP Planning Administrator NH Department of Environmental Services Air Resources Division 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095

Re: Saint-Gobain Performance Plastics Merrimack, NH Significant Permit Amendment – EU24 / MTM C.T. Male Project No.: 16.6126

Dear Ms. Beahm:

On behalf of Saint-Gobain Performance Plastics Corp. (SGPP), please find attached information relative to a requested amendment to the facility's Air Permit relative to modifying an existing permitted Emission Unit in order to operate the equipment similar to other coating equipment at the facility. SGPP most recently submitted an application for State Permit to Operate in May 2022 and this correspondence seeks to modify operation of one (1) Emission Unit contained within the permit.

Due to the completion of RTO and related systems construction including the RTO Bypass stack, and the pending expected issuance of a State Permit to Operate, this amendment includes modification to one (1) emission source, EU24 (referred to as MTM). The Emission Unit will be retrofitted with a dip tray in order to be able to function similar to other Towers at the facility. This piece of equipment was previously used only for laminating and did not use products containing VOC/HAP/RTAP. With the added ability to utilize formulations containing VOC/HAP/RTAP in processing on the Emission Unit, this modification will provide additional manufacturing resiliency to the facility's operations. The MTM would have the functionality to use VOC/HAP/RTAP containing formulations or continue to operate as it historically did without the use of such materials. No new formulations are planned to be used on EU24, and no change to the list of chemicals emitted from the facility will occur as a result of this modification. The EU currently discharges to the facility's RTO and no change to the exhaust is being sought under the application.

In order to minimize the complexity of the application document, only those areas which would be directly updated as a result of this change are being revised/resubmitted. All other attachments to the May 2022 application remain

April 12, 2023 Ms. Cathy Beahm Page - 2

consistent with facility operation. Forms ARD-1 and ARD-3 are included in Attachment A.1 and A.2, respectively and include the requested modification to the operation of EU24. This change would effectively update the facility description within the permit to include EU24 within the same grouping which currently includes EU01-EU05, EU08, EU12, EU13, EU15 and EU16.

Emission Calculations

Saint-Gobain and C.T. Male previously reviewed Safety Data Sheets for all products currently in the inventory tracking system for products used in Coating Tower operations at the facility (±166 materials). Of these materials, 22 contain RTAP and/or HAP. No changes to these products or concentrations are being sought as part of this modification.

In order to estimate potential annual emissions, a scaling factor was developed to extrapolate full production across all product lines. Details of the scaling factor development were included in Attachment B.7 of the May 2022 application and were used in VOC/HAP/RTAP potential emission estimates. This calculation has been updated to include the additional capacity of the MTM in similar service to other towers operated at the facility with respect to VOC/HAP/RTAP emissions.

Previous documentation did not track the number of operating hours of EU24 as the activity did not include emissions of VOC/HAP/RTAP. The closest comparison of the MTM to the existing emission units would be Tower MA, which has a maximum product width of 60 inches and maximum production of 6,000 square feet per hour as compared to the MTM which has a maximum product width of 50 inches and a 5,000 square foot per hour capacity. For the purposes of this application amendment, annual hours of operation used to calculate the MTM scaling factor were estimated based on duplicating Tower MA information.

RTO Operation

No change in operation relative to the RTO is needed for this modification. EU24 would continue to exhaust to the RTO in a similar manner as the remaining towers. No changes to the RTO operating parameters are being sought as part of this modification.

April 12, 2023 Ms. Cathy Beahm Page - 3

EU24 Testing

As part of the proposed modification to EU24, it is anticipated that upon approval by NHDES, the work could be implemented prior to the next emission testing event which includes testing of the RTO and dip pans. EU24 was not previously tested via Method 204 for permanent total enclosure, and would be subject to such testing as part of the next testing regimen.

Deposition Modeling

PFC and Fluoride estimates previously completed demonstrated that each of these compounds were well below their respective AAL. As a result of this modification, the additional production capacity of the facility (i.e., the maximum raw material process rate of the towers) would increase from 72,850 square feet per hour to 77,850 square feet per hour (a ± 6.9 percent increase).

As this modification would add $\pm 6.9\%$ additional capacity to the towers, it is anticipated that the results of the previous stack testing could increase by that same percentage for VOC/HAP/RTAP. As such, this modification would not cause exceedances of AAL for any of the emitted compounds.

Capture Efficiency Verification Plan

As this modification would include changes to the natural draft opening characteristics of EU24, the MTM would need to be included within SGPP's Capture Efficiency Verification Plans which previously included EU01-EU08, EU12, EU13, EU15, EU16 and EU22.

Permit Changes

Permit changes which would occur based on this modification include citation of EU24 within requirements of Env-A 604.02, 606.02(a)(4), 607.01(g), 607.01(n) and 1200 at the State level and 40 CFR 60.740, NSPS Subpart VVV as EU24 would be permitted to process VOC/HAP/RTAP.

April 12, 2023 Ms. Cathy Beahm Page - 4

If you have any questions or require additional information please contact me at (518) 786-7625.

Sincerely, C.T. MALE ASSOCIATES

Daven ?. Teel#

Daniel P. Reilly, P.É. Division Manager, Environmental Services

Enclosures

ec: David Calentine, Will Kempskie, Chris Angier (SGPP) Craig Wright (NHDES)

<u>Attachment A</u> Air Permit Application Forms

Attachment A.1 NHDES Form ARD-1

ARD-1 FORM GENERAL FACILITY INFORMATION

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

This ARD-1 General Facility Information form shall be submitted with every application for an air permit,

except for a Permit by Notification (PBN).

1. TYPE OF FACILITY¹		1. TYPE OF FACILITY ¹				
🗌 Title V 🛛 🗌 Non-Title	V 🗌 Unknown					
2. TYPE OF PERMIT ²						
Temporary Permit (Const	ruction) 🛛 🖂 State Pe	ermit to Operate	e 🗌 T	itle V Operating Permit		
🗌 General State Permit	Limitatio	on on Potential	to Emit (Env-A 625	5)		
3. TYPE OF APPLICATION ³						
New R	enewal 🛛 🕅 Modifica	ation	Administ	rative Amendment		
4. FACILITY INFORMATION						
FACILITY NAME ⁴ : Saint-Gobai	n Performance Plastics Corp.	AFS	S NUMBER ⁵ : 33011	00165		
PHYSICAL ADDRESS: 701 Dani	iel Webster Highway					
TOWN/CITY: Merrimack		STA	ATE: NH	ZIP: 03054		
GOVERNMENT FACILITY COD	E ⁶ : 0					
5. BUSINESS INFORMATION	AS REGISTERED WITH SECRETA	RY OF STATE (I	lf applicable)			
REGISTERED NAME: Saint-Go	bain Performance Plastics Corp).				
REGISTERED ADDRESS: 701 D	aniel Webster Highway					
TOWN/CITY: Merrimack		STA	ATE: NH	ZIP: 03054		
6. PARENT CORPORATION IN	FORMATION (If applicable)					
PARENT CORPORATION NAM	E: Saint-Gobain Corporation					
MAILING ADDRESS: 20 Moore	es Road					
TOWN/CITY: Malvern		STA	ATE: PA	ZIP: 19355		
7. MAJOR ACTIVITY OR PROD List all activities performed	DUCT DESCRIPTION at this facility and provide SIC	and/or NAICS (Code(s).			
SIC Code	Activity Description	NAICS	S Code	Activity Description		
2221	Woven Fiber Glass					
2296	Industrial Fabrics					
2851	Fluoropolymer Films					

At a minimum, please provide contact information below for Responsible Official, Prepared Application, Technical, and Invoicing contacts. Make as many copies of this page as necessary in order to include all contacts that you wish to associate with the application. Multiple people can be assigned one role; multiple roles can be assigned to one person.

8. RESPONSIBLE OFFICIAL INFORMATION					
RESPONSIBLE OFFICIAL NAME ⁷ : David Calentine					
TITLE: Plant Manager					
COMPANY NAME: Saint-Gobain Performance Plastics Corp.					
MAILING ADDRESS: 701 Daniel Webster Highway					
TOWN/CITY: Merrimack	STATE: NH ZIP: 03054				
EMAIL ADDRESS: David.Calentine@saint-gobain.com					
TELEPHONE NUMBER: 603-420-1267 EXTENSI	ON:				
FAX NUMBER:					
ROLES: Responsible Official Technical Invoicing	Legal Emissions				
Prepared Application Corporate Owner/O	perator 🗌 Consultant				
9. ADDITIONAL CONTACT INFORMATION					
CONTACT NAME: William Kempskie					
TITLE: EHS Manager					
COMPANY NAME: Saint-Gobain Performance Plastics Corporation					
MAILING ADDRESS: 701 Daniel Webster Highway					
TOWN/CITY: Merrimack	STATE: NH ZIP: 03054				
EMAIL ADDRESS: William.kempskie@saint-gobain.com					
TELEPHONE NUMBER: 603-420-1387	EXTENSION:				
FAX NUMBER:					
ROLES: Responsible Official Xechnical Invoicing	Legal Emissions				
Prepared Application Corporate Owner/O	perator Consultant				
10. ADDITIONAL CONTACT INFORMATION					
CONTACT NAME: Daniel Reilly					
TITLE: Division Manager, Environmental Services					
COMPANY NAME: C.T. Male Associates					
MAILING ADDRESS: 50 Century Hill Drive					
TOWN/CITY: Latham	STATE: NY ZIP: 12110				
EMAIL ADDRESS: d.reilly@ctmale.com					
TELEPHONE NUMBER: 518-786-7400	EXTENSION:				
FAX NUMBER: 518-786-7299					
ROLES: Responsible Official Technical Invoicing	Legal Emissions				
Prepared Application Corporate Owner/O	perator 🛛 Consultant				

PO Box 95, Concord, NH 03302-0095

11. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Oper/Oper/Oper/Oper/Oper/Oper/Oper/Op	Legal 🗌 Legal	Emissions
12. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Oper/Oper/Oper/Oper/Oper/Oper/Oper/Op	Legal 🗌 Legal	Emissions
13. ADDITIONAL CONTACT INFORMATION		
CONTACT NAME:		
TITLE:		
COMPANY NAME:		
MAILING ADDRESS:		
TOWN/CITY:	STATE:	ZIP:
EMAIL ADDRESS:		
TELEPHONE NUMBER:	EXTENSION:	
FAX NUMBER:		
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Oper/Oper/Oper/Oper/Oper/Oper/Oper/Op	Legal 🗌 Legal	Emissions

VOC

PFOA

PFOS

Total HAP

Individual HAP

•	,	,
14. FACILITY-WIDE EMISSIONS		
POLLUTANT ⁸	POTENTIAL TPY	ACTUAL TPY

TOTAL = 2.2 TONS PER YEAR

TOTAL = 0.37 TONS PER YEAR

LARGEST = 0.20 TONS PER YEAR

0.0012 lb/yr; 0.0000006 ton/yr

0.000049 lb/yr; 0.000000025 ton/yr

For ALL APPLICATIONS except Administrative Amendments, General State Permits, and Limitations on Potential to Emit:

Please include calculations used in determining emissions and include any non-permitted emission devices.

<0.45 lb/yr; 0.000225 ton/yr

<0.57 lb/yr; 0.000285 ton/yr

<50

<25

<10

15. FO	15. FOR NEW APPLICATIONS OR IF CHANGES ARE MADE – PLEASE INCLUDE:					
	A copy of the USGS map, property identified, which shows the facility's location.					
	A site plan to scale of the facility showing:					
	1. The locations of all emission points;					
	2. The dimensions of all buildings and tiers, including roof heights; and					
	3. The facility's property boundary and any security features (fences, walls, etc.).					

16. FOR TITL	16. FOR TITLE V PERMIT APPLICATIONS – PLEASE INCLUDE:9					
Included in Application	Previously Submitted and Unchanged					
		A. Identification and details of limitations on source operation, or any work practice standards affecting emissions for all regulated pollutants.				
		B. Information required by any other applicable requirement of the Act, including, but not limited to, information related to stack height limitations developed pursuant to section 123 of the federal Clean Air Act (42 U.S.C. §7401).				
		C. A citation and description of state and federal air pollution control regulations and requirements applicable to each emission unit.				
		D. A narrative description or reference to test methods used or required for initial compliance demonstration with each applicable regulation.				
		E. Any additional information required to be provided pursuant to the Act or to determine applicability of any other requirements of the Act.				
		F. A written explanation of proposed exemptions.				
		G. Any information required to be provided to the director pursuant to the Act in order to evaluate alternative operating scenarios, or to define permit terms and conditions.				
		H. A list of all equipment and devices located at the source classified as insignificant activities pursuant to Env-A 600, including appropriate sizing data for equipment and devices which are exempt from permitting requirements based on their process ratings, fuel consumption rate, or both.				

16. CONTINUED - FOR TITLE V PERMIT APPLICATIONS – PLEASE INCLUDE: ¹⁰				
Included in				
Application				
	 Compliance plan information containing: A narrative description of the compliance status of the source with respect to all applicable requirements; A narrative statement of methods used to determine continued compliance, including a description 			
	of monitoring, recordkeeping and reporting requirements and test methods; 3. A statement indicating the source's compliance status with an applicable enhanced monitoring and compliance certification requirements specified in Env-A 800;			
	4. A statement that the source shall continue to comply with all applicable requirements;5. A statement that the source shall meet all applicable requirements that will become effective during the permit term on a timely basis;			
	A compliance schedule stating all applicable requirements with which the source is not in compliance, consistent with the following:			
	 The compliance schedule shall incorporate the requirements of and be at least as stringent as that contained in any judicial consent decree or administrative order to which the source is subject; 			
	b. Such compliance schedule shall be supplemental to, and not sanction non-compliance with, the applicable requirements on which it is based; and			
	c. The compliance schedule shall include the following statements and schedules:			
	 A narrative description of how the source shall achieve compliance with such requirements; 			
	ii. A schedule of remedial measures, including an enforceable sequence of actions with milestones leading to compliance with any applicable requirements for which the source shall be in non-compliance with at the time of permit issuance; and			
	 A schedule for submission of certified progress reports no less frequently than every 6 months. 			
	For sources deemed in compliance with all applicable requirements, a certified statement signed by a responsible official stating:			
	"The undersigned certifies that, based on information and belief formed after reasonable inquiry, the source is in compliance with all applicable regulations"; and			
	 A schedule for submission of compliance certifications during the permit term, to be submitted annually or more frequently as specified by the underlying applicable requirement. 			
	J. For sources subject to Title IV of the Act, the compliance plan requirements, specified in (I.) above, shall apply to and be included in the acid rain portion of a compliance plan for an affected source, except as specifically superseded by regulations promulgated under Title IV of the Act with regard to the schedule and method(s) the source will use to achieve compliance with the acid rain emission limitations.			
	K. In addition to the forms required pursuant to Env-A 1700, sources subject to Title IV of the Act shall use the nationally standardized forms for the acid rain portions of the Title V operating permit application, pursuant to 40 CFR 72.30.			

This section of the form must be completed and signed by the Responsible Official only.

17. CERTIFICATIONS					
	I certify that the applicant, or the owner or operator the applicant represents, has right, title, or interest in all of the property that is proposed for development or use because the owner or operator owns, leases, or has binding options to purchase all of the property proposed for development or use.				
	I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the information submitted in this document and all of its attachments. Based on my inquiry of those individuals primary responsibility for obtaining the information, I certify that the statements and information are to the of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.				
18.	RESPONSIBLE OFFICIAL INFORMATION AND SIGNATURE				
RESPONSIBLE OFFICIAL NAME: David Calentine					
TITLE: Plant Manager					
RES	DATE:				

ARD-1 GENERAL FACILITY INFORMATION INSTRUCTIONS

- 1 A list of Title V facilities in NH can be found to the NHDES website. Most facilities are Non-Title V. Check Unknown if you are unsure.
- Temporary Permit = New Construction at Existing or New Facility
 State Permit to Operate = Existing Non-Title V Facilities
 Title V Operating Permit = Existing Title V Facilities
 GSP = General State Permit
 Limitation on Potential to Emit = Small Facilities requesting coverage under Env-A 625
- New = New devices at facility, change in operation at Existing facility or New facility never permitted before Renewal = Renewal of any permit type Modification = Currently permitted by non-expired permit and wants to make amendment/modification to information contained in permit. This includes adding/removing devices covered by GSP.
 Administrative Amendment = changes in ownership or responsible official.
- 4 Facility Name = Trade Name or Doing Business As
- 5 AFS number is assigned by NHDES and is a 10-digit number starting with 33 (example 3300100001).

6	0 = Facility is not government owned	3 = Source owned by the County
	1 = Source owned by the Federal Government	4 = Source owned by the Municipality
	2 = Source owned by the State	5 = Source owned by the District

7 Responsible Official:

For a corporation = President, Secretary, treasurer, or vice-president in charge of a principal business function For a partnership = General partner or proprietor For a municipality = Principal executive officer or ranking elected official

- 8 For Title V sources, include facility wide emissions of filterable PM, filterable PM₁₀, filterable PM_{2.5}, condensable PM, SO₂, NO_x, CO, NMVOCs, Pb (if appropriate), HAPs, and CO₂e.
- 9 If any of the information requested in Section 16 A-H was submitted in a previous Title V Operating Permit application and has **not** changed, it can be incorporated by reference in the renewal application package. This previous information must be <u>clearly</u> referenced in the renewal application package and must <u>accurately</u> reflect current operations at the facility. If any changes have occurred at the facility or if changes are proposed in the renewal application package, new information must be provided. The information requested in Section 16 I-K must be completed based on <u>current</u> operations at the facility. Due to the time sensitive nature of this required information, incorporation by reference in the application package is **not** allowed.

<u>Attachment A.2</u> NHDES Form ARD-3: PCE01 (Stacks 1A & 1B)

ARD-3 FORM INFORMATION REQUIRED FOR PERMITS FOR A UNIT OF PROCESSING OR MANUFACTURING EQUIPMENT

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I. EQUIPMENT INFORMATION – Complete a separate form for each Emission Unit.

Emission Unit Description: PCE01 (Stacks 1A & 1B)

		Maximum Raw	Maximum Finished				Hours of
	Manufacturer	Material	Material				Operation
Process/	Model #	Process	Process	Manufacture	Installation		per day and
Device	Serial #	Rate	Rate	Date ¹	Date ¹	Stack #	days/yr
Paint Booth							3 hr/day;
#3	N/A	8 gal/hr	N/A	1997	1999	#1	250 days/yr
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Ex)	(Example)
Metal Furnace #2	Consumat Model C12 S/N: 2569	N/A	500 lbs/hr		2002	#5	9 hr/day; 300 days/yr
(Example)	(Example)	(Example)	(Example)	2002 (Example)	(Example)	(Ex)	(Example)
See Attached							

Process Description - Please provide a brief description of each process performed (attach additional pages as needed):

EU01-EU08, EU12, EU13 EU15, EU16, & EU24 - Coating operations for paper, fabric, film, or foil; EU22, research and development coating operations for paper, fabric, film, or foil; EU23 - Chemsil Coater coats and dries silicone onto fiberglass through thermally treating a solid paste without the addition of solvent; EU24 & EU25 - MTM and Step Press/Laminator utilize heat to laminate or otherwise affix coated fabrics and films; EU26 - Heat Clean oven used for cleaning by heating.

A. Parts Washers/Solvent Degreasers

Not Applicable

Process/Device	Manufacturer & Model #	Capacity (gal)	Solvent Used	# Solvent Changes per Year
Degreaser #2	Safety-Kleen Model 16	16 gal (Example)	Recycled 150 Solvent	2
(Example)	(Example)		(Example)	(Example)

B. Coatings, Solvents, and Inks Entering Process – Use additional sheets if necessary

Not Applicable

Process/ Device	Raw Material or Chemical Compound	(gal or lb	tial Usage per hour and r year)	Density (lb/gal)	Percent VOC ² (wt %)	Percent HAP ³ (wt %)	Potential VOC emissions (Ib/yr)	Potential HAP emissions (lb/yr)	
Paint	Black Enamel								
Booth	#5693	13 gal/hr	1360 gal/yr	7.5 lb/gal	67.96%	13.17%	6,932 lb/yr	1,343 lb/yr	
(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	(Example)	
See Attached									
results are	Provide an example of the calculations used to determine total potential VOC and HAP emitted. Indicate if the results are based on test results; if control equipment was taken into account; if conditions exist where solvents remain in the substrate rather than complete volatilization, transfer efficiency, etc.:								

ck test results are utilized for calculating bypass emissions and allowable hours of operation in lieu of a material balance roach.											
Coatin	g Application	Method:									
Air-A	Volume-Low I Assisted Airless ow Coating Tec	Spray		Electrostatic Airless Spray Other (speci	y 🛛 🖾 C	inc-Arc Spray Dip Coat					
C. Amount of Liquid Waste Discarded:											
D. Stack Information Is device equipped with multiple stacks? No (If yes, provide data for each stack) Are multiple units connected to this stack? Yes No (If yes, identify other devices on this stack:)											
Stack #	Discharge Height Above Ground Level (ft)	Inside Diameter (ft) or Area (ft ²) at Stack Exit ⁴	Exhaust Temperature (°F)	Exhaust Flow (acfm)	Stack Capped or Otherwise Restricted⁵ (Yes - Type/No)	Exhaust Orientation ⁶	Stack Monitor (Yes/No) and Description				
#5 (Ex)	65 ft (Example)	4 ft (Example)	70 ℉ (Example)	1500 acfm (Example)	Yes - Rain Cap (Example)	Vertical (Example)	No (Example)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
1B (RTO Bypass Stack)63.52 ft.5 ft.236°F76,900 ACFMNoHorizontalYes - Open/Closed Monitor											

Hours per day: _up to 24 Days per year: up to 365

٦

II. NEW HAMPSHIRE REGULATED TOXIC AIR POLLUTANTS (RTAPs) – Env-A 1400

Do any of the devices or processes emit any of the RTAPs listed in Env-A 1400? $\hfill Yes \hfill No$

If **Yes**, attach your facility's <u>most recent</u> compliance demonstration.

III. SUPPLEMENTAL FUEL USAGE INFORMATION

- Not Applicable
- A. Fuel Information (List each fuel utilized by the devices)

Device	Fuel Type	Heat Value ⁷	Units	Sulfur Content (%)	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
Thermal Oxidizer (Example)	#2 Fuel Oil (Example)	140,000 (Example)	Btu/gal (Example)	0.0015 (Example)	20 (Example)	gal/hr (Example)	1.2 (Example)	MMBtu/hr (Example)
See Attached								

B. Air Pollutant Emissions from Combustion

Pollutant	Emission Factor	Units	Emission Factor Source ⁸	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
TSP	See Attached						
PM ₁₀							
NO _x							
VOC							
СО							
SO ₂							
Other (specify)							
Provide an exam	ple of the calcu	lations use	ed to determine ur	ncontrolled air	pollutant em	issions, if appli	cable:
Calculations detail	ed in attachment.						

Note: If process utilizes more than one Supplemental Fuel Burning Device, provide all six pollutant emissions information for each device. Use additional pages if necessary.

IV. POLLUTION CONTROL EQUIPMENT

Not Applicable

Note: If the devices utilize more than one type of pollution control equipment, provide data for each type of equipment.

Device	Type of Control Device	Manufacturer of Control Device	Model and Serial Number of Control Device (if known)	Pollutant(s) Controlled by Device
Metal Furnace #2 (Example)	Baghouse #2 (Example)	Ultra-Flow Inc. (Example)	2400 CFM Small Dust Collector Serial #: N/A (Example)	TSP (Example)
Paint Spray Booth (Example)	Filter (Example)	Paint Arrestors (Example)	3100 Series (Example)	Zinc Chromate (Example)
PCE01	Regenerative Thermal Oxidizer	Air Clear	Thermgen 3 Canister RTO Serial No. 64504J5	PFOA and PFOS

For each control device, include an Air Pollution Control Equipment Monitoring Plan pursuant to Env-A 810.

A. Controlled Air Pollution Emissions (list emissions that result <u>after all</u> add on controls – *use additional sheets if necessary*)

Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁹	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)
See Attached							
Provide an exam	ple of the calcu	lations us	sed to determine o	controlled air po	ollutant emiss	sions, if applica	ble:
Calculations detail	ed in attachment						

NHDES-A-02-003d

ARD-3 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Manufacture Date or Installation Date, you may use 01/01/year. Manufacture Date refers to the date the emission unit was originally produced. Installation Date refers to the date the emission unit is installed at the facility.
- 2 Volatile Organic Compound, as defined in Env-A 100.
- 3 Hazardous Air Pollutant, as defined in section 112 of the 1990 Clean Air Act Amendments.
- 4 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 5 Flapper valves and other devices which do not restrict the vertical exhaust flow while the device is operating are not considered obstructions or restrictions.
- 6 Examples of Exhaust Orientation: Vertical, Horizontal, Downward <u>Note</u>: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 7 <u>Liquid Fuels</u> Ultra-Low Sulfur Diesel (ULSD) #2 Fuel Oil Kerosene Other – Liquid
 - <u>Gaseous Fuels</u> Natural Gas Propane (LPG) Gasoline Other (Gaseous)

<u>Heat Value</u> 137,000 Btu/gal 140,000 Btu/gal 135,000 Btu/gal Obtain from Fuel Supplier

- <u>Heat Value</u> 1,020 Btu/cubic foot 94,000 Btu/gal 130,000 Btu/gal Obtain from Fuel Supplier
- 8 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate

Attachment B Emission Calculations

Updated Attachment B.5 RTAP/HAP Summary

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Evaluation of RTAP/HAP associated with Coating Tower operation (Updated 2021 Values to Include EU24/MTM)

1. Actual/PTE scaling factor as calculated for each year used in calculations (MTM estimated for 2021)

Actual amount of RTAP/HAP available for release per maximum concentrations listed on Safety Data Sheets
 Convert actual annual emissions to PTE by dividing annual emissions by scaling factor

For worst-case evaluation, use max. PTE calculated for years 2012-2021 to account for product variation
 Convert to hourly PTE by dividing PTE (lb/yr) by 8,760 hours
 Demonstrate compliance with Adjusted In-Stack Concentration limits established under Env-A 1405.05

		-	e Glycol		uene	•	opanol		dehyde		anol	1,4-Di			zene		ene Glycol	(Chro	ic Acid mium		roethylene
Year	Actual/PTE		-21-1		-88-3		63-0		00-0		17-5	123-			43-2		2-68-3		-94-5		-14-3
	Scaling Factor		P/HAP		P/HAP		AP		/HAP		AP	RTAP			P/HAP				HAP		TAP
		Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE	Actual	PTE
2021	0.312	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	Ib/yr	lb/yr	lb/yr	lb/yr	lb/yr
2021 2020	0.312	0	0	7.68	24.65 39.40	0	0	0	0	0.14	0.44 6.42	0.37	1.19 3.18	0.0046	0.015	76.16	244.5 413.3	0	0	597.8 652.4	1,919
2020	0.350	0	0	4.20	11.99	0	0	0.0	0	0.30	0.85	1.05	3.18	0.0056	0.017	136.6	413.3 391.2	0	0	717.0	1,975 2,047
2019	0.348	0	0	15.90	45.69	0	0	0.0	0	0.30	0.83	2.25	6.48	0.018	0.031	193.8	556.9	0	0	857.1	2,047
2018	0.348	98.60	294.5	0	45.05	0	0	0	0	0.25	0.88	1.70	5.08	0.012	0.096	179.0	534.6	0	0	331.2	989.0
2017	0.335	0	0	0	0	0	0	0	0	0.35	0.91	2.56	6.73	0.0085	0.022	236.4	621.2	0	0	959.52	2,522
2015	0.412	736.2	1,786	538.8	1,307	53.88	130.7	0	0	3.18	7.72	0	0.75	0.0005	0.022	333.1	808.0	0	0	1,089	2,642
2014	0.471	1,105	2,344	697.8	1,481	69.78	148.1	0	0	0.68	1.44	0.59	1.26	0	0	315.4	669.1	0	0	1,153	2,447
2013	0.448	1,698	3,789	493.1	1,100	49.31	110.0	0	0	0.28	0.62	3.52	7.86	0.0020	0.0045	396.8	885.4	0	0	589.8	1,316
2012	0.455	3,733	8,208	1,329	2,922	132.9	292.2	0	0	0.49	1.08	6.68	14.69	0.021	0.046	724.6	1,593	0	0	0	0
		-,	-,	_/	_,			-	-								_,				-
Maximum =	0.471	3733	8208	1329	2922	132.9	292.2	0	0	3.18	7.72	6.68	14.69	0.032	0.096	724.6	1593	0	0	1153	2642
Average =	0.384	737	1642	310.0	693.2	30.59	68.10	0	0	0.81	2.11	2.01	5.03	0.010	0.029	272.9	671.7	0	0	694.7	1832
0																					
PTE (lb/hr) = (based on 8,760 ł	nr/yr)	0.937	lb/hr	0.334	lb/hr	0.0334	lb/hr	0	lb/hr	0.000881	lb/hr	0.00168	lb/hr	0.0000110	lb/hr	0.182	lb/hr	0	lb/hr	0.302	lb/hr
<u>RTAP Evaluation</u> X (lb/hr) =		0.937	lb/hr	0.334	lb/hr	0.0334	lb/hr	0	lb/hr	0.000881	lb/hr	0.00168	lb/hr	0.00001101	lb/hr	0.182	lb/hr	0	lb/hr	0.302	lb/hr
Y = X / 7.94 =		0.1180	-	0.0420	-	0.00420	-	0		0.0001109	-	0.000211		0.00000139		0.0229		0	-	0.0380	-
$Z = Y \times 10^{6} =$		118,003	ug/sec	42,017	ug/sec	4,202	ug/sec	0	ug/sec	110.92	ug/sec	211.3	ug/sec	1.39	ug/sec	22,906	ug/sec	0	ug/sec	37,984	ug/sec
A = Stack Volume	(±70,000 CFM)																				
B = A / 2119 =		33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec
In-Stack Concent	ration = Z/B	3572	ug/m ³	1272	ug/m ³	127.2	ug/m ³	0	ug/m ³	3.36	ug/m ³	6.40	ug/m ³	0.042	ug/m ³	693.4	ug/m ³	0	ug/m ³	1149.8	ug/m ³
Adj. In-Stack Con	c. = (Z/B) / 700	5.10	ug/m ³	1.82	ug/m ³	0.18	ug/m ³	0	ug/m ³	0.0048	ug/m ³	0.0091	ug/m ³	0.000060	ug/m ³	0.99	ug/m ³	0	ug/m ³	1.64	ug/m ³
RTAP Limits Com	narison																				
•	24 Hour AAL	502	ug/m ³	5000	ug/m ³	1757	ug/m ³	1 2	ug/m ³	6714	ug/m ³	250	ug/m ³	E 7	ug/m ³	200	ug/m ³	0.026	ug/m ³	171	ug/m ³
	Annual AAL		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³
	Conc./24 Hour AAL)1%		36%		.03%		%		071%	0.00			105%		18%		%		96%
	Conc./Annual AAL		52%		36%		16%		%		0107%	0.03			105%)16%		0%		%		03%
		1.5		0.0.		0.0	/ ·	0		0.000		0.00		0.00		1 1.0		1 0	,.	2.	
In Compliance wi	th AALs?	Y	es	Y	es	Y	es	N	/A	Y	es	Ye	es	Y	es	Y	es	N	/A		/es

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Evaluation of RTAP/HAP associated with Coating Tower operation (Updated 2021 Values to Include EU24/MTM)

1. Actual/PTE scaling factor as calculated for each year used in calculations

4. For worst-case evaluation, use max. PTE calculated for years 2012-2021 to account for product variation 6. Demonstrate compliance with Adjusted In-Stack Concentration limits established under Env-A 1405.05

2. Actual amount of RTAP/HAP available for release per maximum concentrations listed on Safety Data Sheets 5. Convert to hourly PTE by dividing PTE (lb/yr) by 8,760 hours 3. Convert actual annual emissions to PTE by dividing annual emissions by scaling factor

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Met	nanol	Acetalo	dehyde	Ethylen	e Oxide	Propylei	ne Oxide	Methyl Eth	nyl Ketone	-	dinone, 1- thyl-	Не	ane
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Year	Actual/PTE														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Scaling Factor				-										-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2024	0.212		-	-	-	-	-	-	-	_	-	-		-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	-	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-	-	-	-	-						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	-	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	-	-	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-		-	-	-	-	-	-	-	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_				-	-	-	-	-	-	-	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-	-	-	-	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-						-	-	-	-	-	-	-	-	-	
Maximum = 0.471 99.90 320.65 0 0 0 0 0 49.60 142.5 43.30 124.43 2.65 7.62 Average = 0.384 28.46 86.11 0 0 0 0 0 11.55 34.43 10.85 32.52 0.68 2.03 PTE (lb/hr) = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr KTAP Evaluation X (lb/hr) = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr Y = X / 7.94 = 0.00461 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 33.034 m ³ /sec								-	-	-		-		-		
Average = 0.384 28.46 86.11 0 0 0 0 0 11.55 34.43 10.85 32.52 0.68 2.03 PTE (lb/hr) = (based on 8,760 hr/yr) 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr RTAP Evaluation X (lb/hr) = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr Y = X / 7.94 = 0.00461 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 109.49 ug/sec 109.49 ug/sec B = A / 2119 = 33.034 m ³ /sec 33.	2012	0.455	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Average = 0.384 28.46 86.11 0 0 0 0 0 11.55 34.43 10.85 32.52 0.68 2.03 PTE (lb/hr) = (based on 8,760 hr/yr) 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr RTAP Evaluation X (lb/hr) = (based on 8,760 hr/yr) 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr Y = X / .94 = 0.00461 0 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 1.789 ug/sec 109.49 ug/sec B = A / 2119 = 33.034 m³/sec	Maximum =	0.471	99 90	320.65	0	0	0	0	0	0	49.60	142 5	43 30	124.43	2 65	7.62
PTE (lb/hr) = (based on 8, 760 hr/yr) 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr RTAP Evaluation X (lb/hr) = (based on 8, 760 hr/yr) 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr X (lb/hr) = Y = X / .94 = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr 2 = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 2,049 ug/sec 1,789 ug/sec 109.49 ug/sec A = Stack Volume (±70,000 CFM) 33.034 m³/sec <					-		-	-	-	-						-
(based on 8,760 hr/yr) Image: Control of the second s	1101080	0.001		00.11		Ū		Ū		Ū		0.1.10		01.01	0.00	
X (lb/hr) = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr Y = X / 7.94 = 0.00461 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 2,049 ug/sec 1,789 ug/sec 109.49 ug/sec A = Stack Volume (±70,000 CFM) 33.034 m ³ /sec In-Stack Concentration = Z/B 139.55 ug/m ³ 0 ug/m ³ 0.0010m ³ 3.004 m ³ /sec 33.034 m ³ /sec In-Stack Conc. = (Z/B) / 700 0.199 ug/m ³ 0 ug/m ³ 0.0010m ³ 0.0047 ug/m ³ RTAP Limits Comparison 24 Hour AAL Annual AAL 20000 ug/m ³ 161 ug/m ³ 6.4 ug/m ³ 17 ug/m ³ 5000 ug/m ³ 1429 ug/m ³ 885 ug/m ³ Adj. In-Stack Conc./24 Hour AAL Adj. In-Stack Conc./24 Hour AAL 0.00100% 0.0010% </td <td>(, ,</td> <td>nr/yr)</td> <td>0.0366</td> <td>lb/hr</td> <td>0</td> <td>lb/hr</td> <td>0</td> <td>lb/hr</td> <td>0</td> <td>lb/hr</td> <td>0.0163</td> <td>lb/hr</td> <td>0.0142</td> <td>lb/hr</td> <td>0.000869</td> <td>lb/hr</td>	(, ,	nr/yr)	0.0366	lb/hr	0	lb/hr	0	lb/hr	0	lb/hr	0.0163	lb/hr	0.0142	lb/hr	0.000869	lb/hr
X (lb/hr) = 0.0366 lb/hr 0 lb/hr 0 lb/hr 0 lb/hr 0.0163 lb/hr 0.0142 lb/hr 0.000869 lb/hr Y = X / 7.94 = 0.00461 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 2,049 ug/sec 1,789 ug/sec 109.49 ug/sec A = Stack Volume (±70,000 CFM) 33.034 m ³ /sec In-Stack Concentration = Z/B 139.55 ug/m ³ 0 ug/m ³ 0.0010m ³ 3.004 m ³ /sec 33.034 m ³ /sec In-Stack Conc. = (Z/B) / 700 0.199 ug/m ³ 0 ug/m ³ 0.0010m ³ 0.0047 ug/m ³ RTAP Limits Comparison 24 Hour AAL Annual AAL 20000 ug/m ³ 161 ug/m ³ 6.4 ug/m ³ 17 ug/m ³ 5000 ug/m ³ 1429 ug/m ³ 885 ug/m ³ Adj. In-Stack Conc./24 Hour AAL Adj. In-Stack Conc./24 Hour AAL 0.00100% 0.0010% </td <td>RTAP Evaluation</td> <td></td>	RTAP Evaluation															
Y = X / 7.94 = 0.00461 0 0 0 0.00205 0.00179 0.0001095 Z = Y x 10 ⁶ = 4,610 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 0 ug/sec 1,789 ug/sec 109.49 ug/sec A = Stack Volume (±70,000 CFM) 33.034 m³/sec 33.034			0.0366	lb/hr	0	lb/hr	0	lb/hr	0	lb/hr	0.0163	lb/hr	0.0142	lb/hr	0.000869	lb/hr
A = Stack Volume (±70,000 CFM) 33.034 m³/sec <						,		-								,
B = A / 2119 = 33.034 m³/sec	$Z = Y \times 10^6 =$		4,610	ug/sec	0	ug/sec	0	ug/sec	0	ug/sec	2,049	ug/sec	1,789	ug/sec	109.49	ug/sec
In-Stack Concentration = Z/B 139.55 ug/m³ 0 ug/m³ 0 ug/m³ 0 ug/m³ 62.04 ug/m³ 54.16 ug/m³ 3.31 ug/m³ Adj. In-Stack Conc. = (Z/B) / 700 0.199 ug/m³ 0 ug/m³ 0 ug/m³ 0 ug/m³ 0 ug/m³ 0.089 ug/m³ 0.077 ug/m³ 0.0047 ug/m³ RTAP Limits Comparison 24 Hour AAL 20000 ug/m³ 161 ug/m³ 6.4 ug/m³ 17 ug/m³ 5000 ug/m³ 1429 ug/m³ 885 ug/m³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.000 0.0018% 0.00054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0% 0.00108% 0.00054% 0.00054%	A = Stack Volume	e (±70,000 CFM)														
Adj. In-Stack Conc. = (Z/B) / 700 0.199 ug/m ³ 0 ug/m ³ 0 ug/m ³ 0 ug/m ³ 0 ug/m ³ 0.089 ug/m ³ 0.077 ug/m ³ 0.0047 ug/m ³ RTAP Limits Comparison 24 Hour AAL 20000 ug/m ³ 161 ug/m ³ 6.4 ug/m ³ 17 ug/m ³ 5000 ug/m ³ 1429 ug/m ³ 885 ug/m ³ Adj. In-Stack Conc./24 Hour AAL 20000 ug/m ³ 9 ug/m ³ 6.4 ug/m ³ 17 ug/m ³ 5000 ug/m ³ 1429 ug/m ³ 885 ug/m ³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.00054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0% 0.0018% 0.00054% 0.00068%	B = A / 2119 =		33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec	33.034	m ³ /sec
RTAP Limits Comparison 20000 ug/m³ 161 ug/m³ 6.4 ug/m³ 17 ug/m³ 5000 ug/m³ 1429 ug/m³ 885 ug/m³ Annual AAL 20000 ug/m³ 9 ug/m³ 6.4 ug/m³ 11 ug/m³ 5000 ug/m³ 1429 ug/m³ 885 ug/m³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.0054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0.0018% 0.0081% 0.00068%	In-Stack Concent	ration = Z/B	139.55	ug/m ³	0	ug/m ³	0	ug/m ³	0	ug/m ³	62.04	ug/m ³	54.16	ug/m ³	3.31	ug/m ³
RTAP Limits Comparison 20000 ug/m³ 161 ug/m³ 6.4 ug/m³ 17 ug/m³ 5000 ug/m³ 1429 ug/m³ 885 ug/m³ Annual AAL 20000 ug/m³ 9 ug/m³ 4.3 ug/m³ 11 ug/m³ 5000 ug/m³ 952 ug/m³ 700 ug/m³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.0054% 0.00054%	Adj. In-Stack Con	c. = (Z/B) / 700	0.199	ug/m ³	0	ug/m ³	0	ug/m ³	0	ug/m ³	0.089	ug/m ³	0.077	ug/m ³	0.0047	ug/m ³
24 Hour AAL 20000 ug/m³ 161 ug/m³ 6.4 ug/m³ 17 ug/m³ 5000 ug/m³ 1429 ug/m³ 885 ug/m³ Annual AAL 20000 ug/m³ 9 ug/m³ 4.3 ug/m³ 11 ug/m³ 5000 ug/m³ 952 ug/m³ 700 ug/m³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.0054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0.0018% 0.0081% 0.00068%				_												
Annual AAL 20000 ug/m³ 9 ug/m³ 4.3 ug/m³ 11 ug/m³ 5000 ug/m³ 952 ug/m³ 700 ug/m³ Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.0054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0.0018% 0.0081% 0.00068%			20000	ua/m^3	161	ua/m^3	C 4	ua/m^3	17	ua/m^3	5000	ug/m ³	1 4 2 0	ua/m^3	005	ua/m^3
Adj. In-Stack Conc./24 Hour AAL 0.00100% 0% 0% 0% 0.0018% 0.0054% 0.00054% Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0% 0.0018% 0.00081% 0.00068%							_			-	•		-			
Adj. In-Stack Conc./Annual AAL 0.00100% 0% 0% 0.0018% 0.0081% 0.00068%																
	-															
	Adj. in Stack		0.00	100/0	0	/0			0	/0	0.00	10/0	0.00		0.00	000/0
In Compliance with AALs? Yes N/A N/A N/A Yes Yes Yes	In Compliance wi	th AALs?	Y	es	N	/A	N	/A	N	/A	Ye	es	Y	es	Y	es

<u>Updated Attachment B.7</u> Scaling Factor Determination for Tower Coating Operations

Determination of Scaling Factor to Convert Actual Emissions in Coating Products to a Potential Basis (Updated to Include EU24/MTM)

Known:

1. Maximum hourly capacity of each Coating Tower (in square feet per hour) [A]

2. Annual Hours of operation of each Coating Tower [E]

Assumptions:

1. In order to estimate Potential to Emit, no bottleneck factor has been assumed (100%) [C

Calculated:

1. Maximum annual capacity of each Coating Tower (in square feet per year, based on 8,760 hr/yr operation potential) [B = A * 8760

2. Calculated Potential production based on Maximum ft2/yr multiplied by bottleneck factor [D = B * C

3. Calculated annual square footage of material based on line speed and hours operated [F = A * E

4. % of Maximum = Calculated Annual ft2/yr / Potential ft2/yr [G = F / D]

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	
	Maximum	Maximum	Bottleneck	Potential	Actual	Calculated	%	
Tower	ft2/hr	ft2/year	Factor	ft2/year	2021 Hrs	2021 ft2	of Maximum	
MA	6,000	52,560,000	100%	52,560,000	3546.4	21,278,400	0.405	
MB	4,375	38,325,000	100%	38,325,000	1006.6	4,403,875	0.115	
MC	9,200	80,592,000	100%	80,592,000	3675.1	33,810,920	0.420	
MR	9,200	80,592,000	100%	80,592,000	2925.4	26,913,680	0.334	
MD	9,200	80,592,000	100%	80,592,000	3124.8	28,748,160	0.357	
QX	6,000	52,560,000	100%	52,560,000	3637	21,822,000	0.415	
20" SBC	500	4,380,000	100%	4,380,000	1363.3	681,650	0.156	
20" Coater	500	4,380,000	100%	4,380,000	905.2	452,600	0.103	
Tower ME***	0	0	100%	0	0	0	-	
Tower MG	4,375	38,325,000	100%	38,325,000	271.4	1,187,375	0.031	
Tower MP	4,375	38,325,000	100%	38,325,000	941.5	4,119,063	0.107	
Tower MI***	0	0	100%	0	0	0	-	
Tower MQ	4,400	38,544,000	100%	38,544,000	1944.1	8,554,040	0.222	
Tower MS	9,200	80,592,000	100%	80,592,000	3570.7	32,850,440	0.408	
MTM**	5,000	43,800,000	100%	43,800,000	3546.4	17,732,000	0.405	
R&D*	2,600	17,693,010	100%	17,693,010	133.8	347,880	0.020	
Total	74,925	651,260,010		651,260,010		202,902,083	0.3116	= 2021 Actual/PTE Scaling Factor

*Assume 3% of Annual total across other lines is equivalent to R&D Coater based on historic operating hours

**Assume MTM to have same Actual 2021 Hrs [Column E] as Tower MA in 2023 updated analysis

***Towers ME & MI were removed from the facility in 2017

ARD-1 FORM GENERAL FACILITY INFORMATION

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

This ARD-1 General Facility Information form shall be submitted with every application for an air permit,

except for a Permit by Notification (PBN).

1. TYPE OF FACILITY ¹										
🗌 Title V 🛛 🖾 Non-Title	V 🗌 Unknov	wn								
2. TYPE OF PERMIT ²										
Temporary Permit (Const	ruction)] State Permit to Op	perate] Title V Operating Permit						
General State Permit] Limitation on Pote	ntial to Emit (Env-A 6	525)						
3. TYPE OF APPLICATION ³										
New R	Kenewal 🛛 🖂] Modification	🗌 Admini	istrative Amendment						
4. FACILITY INFORMATION										
FACILITY NAME ⁴ : Saint-Gobain Performance Plastics Corp. AFS NUMBER ⁵ : 3301100165										
PHYSICAL ADDRESS: 701 Daniel Webster Highway										
TOWN/CITY: Merrimack STATE: NH ZIP: 03054										
GOVERNMENT FACILITY COD	E ⁶ : 0									
5. BUSINESS INFORMATION	AS REGISTERED WITH	SECRETARY OF STA	TE (If applicable)							
REGISTERED NAME: Saint-Go	bain Performance Plas	stics Corp.								
REGISTERED ADDRESS: 701 D	aniel Webster Highwa	У								
TOWN/CITY: Merrimack			STATE: NH	ZIP: 03054						
6. PARENT CORPORATION IN	IFORMATION (If applic	cable)								
PARENT CORPORATION NAM	E: Saint-Gobain Corpo	ration								
MAILING ADDRESS: 20 Moore	es Road									
TOWN/CITY: Malvern			STATE: PA	ZIP: 19355						
7. MAJOR ACTIVITY OR PRODUCT DESCRIPTION List all activities performed at this facility and provide SIC and/or NAICS Code(s).										
SIC Code	Activity Descript	ion N	AICS Code	Activity Description						
2221	Woven Fiber Glass									
2296	Industrial Fabrics									
2851 Fluoropolymer Films										

At a minimum, please provide contact information below for Responsible Official, Prepared Application, Technical, and Invoicing contacts. Make as many copies of this page as necessary in order to include all contacts that you wish to associate with the application. Multiple people can be assigned one role; multiple roles can be assigned to one person.

8. RESPONSIBLE OFFICIAL INFORMATION											
RESPONSIBLE OFFICIAL NAME ⁷ : David C	Calentine										
TITLE: Plant Manager											
COMPANY NAME: Saint-Gobain Performance Plastics Corp.											
MAILING ADDRESS: 701 Daniel Webster Highway											
TOWN/CITY: Merrimack STATE: NH ZIP: 03054											
EMAIL ADDRESS: David.Calentine@saint-gobain.com											
TELEPHONE NUMBER: 603-420-1267		EXTENSIO	DN:								
FAX NUMBER:											
ROLES: 🔀 Responsible Official	Technical] Invoicing		Legal	Emissions						
Prepared Application	Corporate] Owner/Op	erator	Consultant							
9. ADDITIONAL CONTACT INFORMATIC	DN										
CONTACT NAME: William Kempskie											
TITLE: EHS Manager											
COMPANY NAME: Saint-Gobain Performance Plastics Corporation											
MAILING ADDRESS: 701 Daniel Webster Highway											
TOWN/CITY: Merrimack			STATE: N	IH	ZIP: 03054						
EMAIL ADDRESS: William.kempskie@sa	int-gobain.com										
TELEPHONE NUMBER: 603-420-1387			EXTENSIO	ON:							
FAX NUMBER:											
ROLES: Responsible Official		Invoicing		Legal	Emissions						
Prepared Application	Corporate	Owner/Op	erator	Consultant							
10. ADDITIONAL CONTACT INFORMATI	ON										
CONTACT NAME: Daniel Reilly											
TITLE: Division Manager, Environmental	Services										
COMPANY NAME: C.T. Male Associates											
MAILING ADDRESS: 50 Century Hill Drive											
TOWN/CITY: Latham			STATE: N	Y	ZIP: 12110						
EMAIL ADDRESS: d.reilly@ctmale.com		1									
TELEPHONE NUMBER: 518-786-7400			EXTENSIO	DN:							
FAX NUMBER: 518-786-7299											
ROLES: Responsible Official Invoicing Legal Emissions											
Prepared Application	Corporate	Owner/Op	erator	Consultant							

airpermitting@des.nh.gov or phone (603) 271-1370 PO Box 95, Concord, NH 03302-0095

11. ADDITIONAL CONTACT INFORMATION							
CONTACT NAME:							
TITLE:							
COMPANY NAME:							
MAILING ADDRESS:							
TOWN/CITY:	STATE:	ZIP:					
EMAIL ADDRESS:							
TELEPHONE NUMBER:	EXTENSION:						
FAX NUMBER:							
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Optical	Legal	Emissions					
12. ADDITIONAL CONTACT INFORMATION							
CONTACT NAME:							
TITLE:							
COMPANY NAME:							
MAILING ADDRESS:							
TOWN/CITY:	STATE:	ZIP:					
EMAIL ADDRESS:							
TELEPHONE NUMBER:	EXTENSION:						
FAX NUMBER:							
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Optical	Eegal erator Consultant	Emissions					
13. ADDITIONAL CONTACT INFORMATION							
CONTACT NAME:							
TITLE:							
COMPANY NAME:							
MAILING ADDRESS:							
TOWN/CITY:	STATE:	ZIP:					
EMAIL ADDRESS:							
TELEPHONE NUMBER:							
FAX NUMBER:							
ROLES: Responsible Official Technical Invoicing Prepared Application Corporate Owner/Op	Legal erator Consultant	Emissions					

14. FACILITY-WIDE EMISSIONS					
POLLUTANT ⁸	POTENTIAL TPY	ACTUAL TPY			
VOC	<50	TOTAL = 2.2 TONS PER YEAR			
Total HAP	<25	TOTAL = 0.37 TONS PER YEAR			
Individual HAP	<10	LARGEST = 0.20 TONS PER YEAR			
PFOA	<0.45 lb/yr; 0.000225 ton/yr	0.0012 lb/yr; 0.0000006 ton/yr			
PFOS	<0.57 lb/yr; 0.000285 ton/yr	0.000049 lb/yr; 0.000000025 ton/yr			

For ALL APPLICATIONS except Administrative Amendments, General State Permits, and Limitations on Potential to Emit:

Please include calculations used in determining emissions and include any non-permitted emission devices.

15. FO	R NEW APPLICATIONS OR IF CHANGES ARE MADE – PLEASE INCLUDE:
	A copy of the USGS map, property identified, which shows the facility's location.
	A site plan to scale of the facility showing: 1. The locations of all emission points;
	2. The dimensions of all buildings and tiers, including roof heights; and
	3. The facility's property boundary and any security features (fences, walls, etc.).

16. FOR ITT	E V PERIVITI A	PPLICATIONS – PLEASE INCLUDE: ⁹
Included in Application	Previously Submitted and Unchanged	
		A. Identification and details of limitations on source operation, or any work practice standards affecting emissions for all regulated pollutants.
		B. Information required by any other applicable requirement of the Act, including, but not limited to, information related to stack height limitations developed pursuant to section 123 of the federal Clean Air Act (42 U.S.C. §7401).
		C. A citation and description of state and federal air pollution control regulations and requirements applicable to each emission unit.
		D. A narrative description or reference to test methods used or required for initial compliance demonstration with each applicable regulation.
		E. Any additional information required to be provided pursuant to the Act or to determine applicability of any other requirements of the Act.
		F. A written explanation of proposed exemptions.
		G. Any information required to be provided to the director pursuant to the Act in order to evaluate alternative operating scenarios, or to define permit terms and conditions.
		H. A list of all equipment and devices located at the source classified as insignificant activities pursuant to Env-A 600, including appropriate sizing data for equipment and devices which are exempt from permitting requirements based on their process ratings, fuel consumption rate, or both.

NHDES-A-02-009d

.

.

16. CONTINU	JED - FOR TITLE V PERMIT APPLICATIONS – PLEASE INCLUDE:10
Included in Application	
	 Compliance plan information containing: A narrative description of the compliance status of the source with respect to all applicable requirements; A narrative statement of methods used to determine continued compliance, including a description of monitoring, recordkeeping and reporting requirements and test methods; A statement indicating the source's compliance status with an applicable enhanced monitoring and compliance certification requirements specified in Env-A 800; A statement that the source shall continue to comply with all applicable requirements; A statement that the source shall meet all applicable requirements that will become effective during the permit term on a timely basis; A compliance schedule stating all applicable requirements with which the source is not in compliance, consistent with the following:
	 annually or more frequently as specified by the underlying applicable requirement. J. For sources subject to Title IV of the Act, the compliance plan requirements, specified in (I.) above, shall apply to and be included in the acid rain portion of a compliance plan for an affected source, except as specifically superseded by regulations promulgated under Title IV of the Act with regard to the schedule and method(s) the source will use to achieve compliance with the acid rain emission limitations.
	K. In addition to the forms required pursuant to Env-A 1700, sources subject to Title IV of the Act shall use the nationally standardized forms for the acid rain portions of the Title V operating permit application, pursuant to 40 CFR 72.30.

.

.

This section of the form must be completed and signed by the Responsible Official only.

17.	17. CERTIFICATIONS						
I certify that the applicant, or the owner or operator the applicant represents, has right, title, or inter- the property that is proposed for development or use because the owner or operator owns, leases, o options to purchase all of the property proposed for development or use.							
	I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the information submitted in this document and all of its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.						
18.	RESPONSIBLE OFFICIAL INFORMATION AND SIGNATURE						
RESI	PONSIBLE OFFICIAL NAME: David Calentine						
TITLE: Plant Manager							
	Davie C - 4/24/2023						
RESE	RESPONSIBLE OFFICIAL'S SIGNATURE DATE:						

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

April 12, 2023 Revised May 4, 2023

Ms. Cathy Beahm SIP Planning Administrator NH Department of Environmental Services Air Resources Division 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095

Re: Saint-Gobain Performance Plastics Merrimack, NH Significant Permit Amendment – EU24 / MTM C.T. Male Project No.: 16.6126

Dear Ms. Beahm:

As a follow-up to our April 12, 2023 submission and to provide additional clarification, , please find attached information relative to a requested amendment to the facility's Air Permit relative to modifying an existing permitted Emission Unit in order to operate the equipment similar to other coating equipment at the facility. SGPP most recently submitted an application for State Permit to Operate in May 2022 and this correspondence seeks to modify operation of one (1) Emission Unit contained within the permit.

Due to the completion of RTO and related systems construction including the RTO Bypass stack, and the pending expected issuance of a State Permit to Operate, this amendment includes modification to one (1) emission source, EU24 (referred to as MTM). The Emission Unit will be retrofitted with a dip tray in order to be able to function similar to other Towers at the facility. This piece of equipment was previously used only for laminating and did not use products containing VOC/HAP/RTAP. With the added ability to utilize formulations containing VOC/HAP/RTAP in processing on the Emission Unit, this modification will provide additional manufacturing resiliency to the facility's operations. The MTM would have the functionality to use VOC/HAP/RTAP containing formulations or continue to operate as it historically did without the use of such materials. No new formulations are planned to be used on EU24, and no change to the list of chemicals emitted from the facility's RTO and no change to the exhaust is being sought under the application.

May 4, 2023 Ms. Cathy Beahm Page - 2

In order to minimize the complexity of the application document, only those areas which would be directly updated as a result of this change are being revised/resubmitted. All other attachments to the May 2022 application remain consistent with facility operation. Forms ARD-1 and ARD-3 were previously included as part of the April 12, 2023 submission and remain unchanged from that time relative to the requested modification to the operation of EU24. This change would effectively update the facility description within the permit to include EU24 within the same grouping which currently includes EU01-EU05, EU08, EU12, EU13, EU15 and EU16.

Emission Calculations

Saint-Gobain and C.T. Male previously reviewed Safety Data Sheets for all products currently in the inventory tracking system for products used in Coating Tower operations at the facility (±166 materials). Of these materials, 22 contain RTAP and/or HAP. No changes to these products or concentrations are being sought as part of this modification.

In order to estimate potential annual emissions, a scaling factor was developed to extrapolate full production across all product lines. Details of the scaling factor development were included in Attachment B.7 of the May 2022 application and were used in VOC/HAP/RTAP potential emission estimates. The approach previously used for historic tower operations provided a basis for scaling actual emissions on an annual basis to a maximum potential annual basis. Within this revised submission, RTAP/HAP calculations have been presented with the percentage increase in overall square footage capacity which will occur as a result of EU24 being added as an additional tower capable of running products containing VOC/HAP/RTAP.

RTAP/HAP emissions estimates previously completed demonstrated that each of these compounds were well below their respective AAL. As a result of this modification, the additional production capacity of the facility (i.e., the maximum raw material process rate of the towers) would increase from 72,850 square feet per hour to 77,850 square feet per hour (a ± 6.9 percent increase). This amount continues to exclude the capacity of the facility's production equipment routed to the RTO which do not process VOC/HAP/RTAP (i.e., EU23 - Chemsil, EU25 - Step Press and EU26 - Heat Clean).

As this modification would add $\pm 6.9\%$ additional capacity to the towers, the attached RTAP/HAP analysis is increased by the same percentage and continues to demonstrate compliance with the AAL for each of the compounds (see Attachment).

May 4, 2023 Ms. Cathy Beahm Page - 3

RTO Operation

No change in operation relative to the RTO is needed for this modification. EU24 would continue to exhaust to the RTO in a similar manner as the remaining towers. No changes to the RTO operating parameters are being sought as part of this modification.

EU24 Testing

As part of the proposed modification to EU24, it is anticipated that upon approval by NHDES, the work could be implemented prior to the next emission testing event which includes testing of the RTO and dip pans. EU24 was not previously tested via Method 204 for permanent total enclosure, and would be subject to such testing as part of the next testing regimen.

Deposition Modeling

PFC and Fluoride estimates previously completed demonstrated that each of these compounds were well below their respective AAL. As a result of this modification, the additional production capacity of the facility (i.e., the maximum raw material process rate of the towers) would increase from 72,850 square feet per hour to 77,850 square feet per hour (a ±6.9 percent increase). This amount continues to exclude the capacity of the facility's production equipment routed to the RTO which do not process VOC/HAP/RTAP (i.e., EU23 - Chemsil, EU25 - Step Press and EU26 - Heat Clean).

As this modification would add $\pm 6.9\%$ additional capacity to the towers, it is anticipated that the results of the previous stack testing could increase by that same percentage for VOC/HAP/RTAP. As such, this modification would not cause exceedances of AAL for any of the emitted compounds.

Capture Efficiency Verification Plan

As this modification would include changes to the natural draft opening characteristics of EU24, the MTM would need to be included within SGPP's Capture Efficiency Verification Plans which previously included EU01-EU08, EU12, EU13, EU15, EU16 and EU22.

May 4, 2023 Ms. Cathy Beahm Page - 4

Permit Changes

Permit changes which would occur based on this modification include citation of EU24 within requirements of Env-A 604.02, 606.02(a)(4), 607.01(g), 607.01(n) and 1200 at the State level and 40 CFR 60.740, NSPS Subpart VVV as EU24 would be permitted to process VOC/HAP/RTAP.

If you have any questions or require additional information please contact me at (518) 786-7625.

Sincerely, C.T. MALE ASSOCIATES

Daven P. Teel

Daniel P. Reilly, P.É. Division Manager, Environmental Services

Enclosures

ec: David Calentine, Will Kempskie, Chris Angier (SGPP) Craig Wright (NHDES)

Updated Attachment B.5 RTAP/HAP Summary

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Updated Evaluation of RTAP/HAP associated with Coating Tower Operation (Tower Throughput Increased by 6.9% due to EU24/MTM Addition)

Chemical	Ethylene Glycol	Toluene	Isopropanol	Formaldehyde	Ethanol	1,4-Dioxane	Benzene	Polyethylene Glycol	Chromic Acid (Chromium Compound)	Tetrafluoroethylene
CAS No.:	107-21-1	108-88-3	67-63-0	50-00-0	64-17-5	123-91-1	71-43-2	25322-68-3	7738-94-5	116-14-3
HAP/RTAP Designation:	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP/HAP	RTAP
									-	
PTE (lb/hr) from 2022 Application = (based on 8,760 hr/yr)	0.937 lb/hr	0.334 lb/hr	0.0334 lb/hr	0 lb/hr	0.000881 lb/hr	0.00168 lb/hr	0.0000110 lb/hr	0.182 lb/hr	0 lb/hr	0.302 lb/hr
PTE (lb/hr) Scaled by 1.069 = (based on 8,760 hr/yr)	1.002 lb/hr	0.357 lb/hr	0.0357 lb/hr	0 lb/hr	0.000941 lb/hr	0.00179 lb/hr	0.0000118 lb/hr	0.194 lb/hr	0 lb/hr	0.322 lb/hr
RTAP Evaluation										
X (lb/hr) =	1.002 lb/hr	0.357 lb/hr	0.0357 lb/hr	0 lb/hr	0.000941 lb/hr	0.00179 lb/hr	0.0000118 lb/hr	0.194 lb/hr	0 lb/hr	0.322 lb/hr
Y = X / 7.94 =	0.1261	0.0449	0.00449	0	0.0001186	0.000226	0.00000148	0.0245	0	0.0406
$Z = Y \times 10^6 =$	126,145 ug/sec	44,916 ug/sec	4,492 ug/sec	0 ug/sec	118.58 ug/sec	225.8 ug/sec	1.48 ug/sec	24,486 ug/sec	0 ug/sec	40,605 ug/sec
A = Stack Volume (±70,000 CFM)										
B = A / 2119 =	33.034 m ³ /sec	33.034 m ³ /sec								
In-Stack Concentration = Z/B	3819 ug/m ³	1360 ug/m ³	136.0 ug/m ³	0 ug/m ³	3.59 ug/m ³	6.84 ug/m ³	0.045 ug/m ³	741.2 ug/m ³	0 ug/m ³	1229.2 ug/m ³
Adj. In-Stack Conc. = (Z/B) / 700	5.46 ug/m ³	1.94 ug/m ³	0.19 ug/m ³	0 ug/m ³	0.0051 ug/m ³	0.0098 ug/m ³	0.000064 ug/m ³	1.06 ug/m ³	0 ug/m ³	1.76 ug/m ³
RTAP Limits Comparison										
24 Hour AAL	503 ug/m ³	5000 ug/m ³	1757 ug/m ³	1.3 ug/m ³	6714 ug/m ³	258 ug/m ³	5.7 ug/m ³	208 ug/m ³	0.036 ug/m ³	171 ug/m ³
Annual AAL	335 ug/m^3	5000 ug/m ³	1171 ug/m ³	0.88 ug/m^3	4476 ug/m ³	30 ug/m^3	3.8 ug/m^3	99 ug/m ³	0.024 ug/m^3	81 ug/m ³
Adj. In-Stack Conc./24 Hour AAL	1.08%	0.039%	0.0111%	0%	0.000076%	0.0038%	0.00113%	0.51%	0%	1.03%
Adj. In-Stack Conc./Annual AAL	1.63%	0.039%	0.017%	0%	0.000115%	0.033%	0.0017%	1.07%	0%	2.17%
In Compliance with AALs?	Yes	Yes	Yes	N/A	Yes	Yes	Yes	Yes	N/A	Yes

Saint-Gobain Performance Plastics Merrimack, New Hampshire Facility

Updated Evaluation of RTAP/HAP associated with Coating Tower Operation (Tower Throughput Increased by 6.9% due to EU24/MTM Addition)

Chemical	Methanol	Acetaldehyde	Ethylene Oxide	Propylene Oxide	Methyl Ethyl Ketone	2-Pyrrolidinone, 1- methyl-	Hexane
CAS No.:	67-56-1	75-07-0	75-21-8	75-56-9	78-93-3	872-50-4	110-54-3
HAP/RTAP Designation:	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP/HAP	RTAP	RTAP	RTAP/HAP
		• " "					
PTE (lb/hr) from 2022 Application = (based on 8,760 hr/yr)	0.0374 lb/hr	0 lb/hr	0 lb/hr	0 lb/hr	0.0163 lb/hr	0.0142 lb/hr	0.000869 lb/hr
PTE (lb/hr) Scaled by 1.069 =	0.0400 lb/hr	0 lb/hr	0 lb/hr	0 lb/hr	0.0174 lb/hr	0.0152 lb/hr	0.000929 lb/hr
(based on 8,760 hr/yr)							
RTAP Evaluation							
X (lb/hr) =	0.0400 lb/hr	0 lb/hr	0 lb/hr	0 lb/hr	0.0174 lb/hr	0.0152 lb/hr	0.000929 lb/hr
Y = X / 7.94 =	0.00504	0	0	0	0.00219	0.00191	0.0001170
$Z = Y \times 10^{6} =$	5,037 ug/sec	0 ug/sec	0 ug/sec	0 ug/sec	2,191 ug/sec	1,912 ug/sec	117.04 ug/sec
A = Stack Volume (±70,000 CFM)							
B = A / 2119 =	33.034 m ³ /sec	33.034 m ³ /sec					
In-Stack Concentration = Z/B	152.47 ug/m ³	0 ug/m ³	0 ug/m ³	0 ug/m ³	66.32 ug/m ³	57.89 ug/m ³	3.54 ug/m ³
Adj. In-Stack Conc. = (Z/B) / 700	0.218 ug/m ³	0 ug/m ³	0 ug/m ³	0 ug/m ³	0.095 ug/m ³	0.083 ug/m ³	0.0051 ug/m ³
RTAP Limits Comparison							
24 Hour AAL	20000 ug/m ³	161 ug/m ³	6.4 ug/m ³	17 ug/m ³	5000 ug/m ³	1429 ug/m ³	885 ug/m ³
Annual AAL	20000 ug/m ³	9 ug/m^3	4.3 ug/m^3	11 ug/m^3	5000 ug/m ³	952 ug/m^3	700 ug/m^3
Adj. In-Stack Conc./24 Hour AAL	0.00109%	0%	0%	0%	0.0019%	0.0058%	0.00057%
Adj. In-Stack Conc./Annual AAL	0.00109%	0%	0%	0%	0.0019%	0.0087%	0.00072%
In Compliance with AALs?	Yes	N/A	N/A	N/A	Yes	Yes	Yes