

Final

Perfluorinated Compound Investigation Status Report Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508) Former Pease Air Force Base Portsmouth, New Hampshire

Prepared for Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 JBSA Lackland, Texas 78236-9853

Prepared by CB&I Federal Services LLC 150 Royall Street Canton, Massachusetts 02021

> Contract No. FA8903-09-D-8580, Task Order No. 0010 Project No. 143279 Revision 0 September 2016

Final Perfluorinated Compound Investigation Status Report Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508) Former Pease Air Force Base Portsmouth, New Hampshire

Performance-Based Remediation Contract No. FA8903-09-D-8580 Task Order No. 0010

CBI-PL-00641

Revision 0 September 2016

Submitted to:

Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 JBSA Lackland, Texas 78236-9853

Submitted by:

CB&I Federal Services LLC 150 Royall Street Canton, Massachusetts 02021

Final Perfluorinated Compound Investigation Status Report Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508) Former Pease Air Force Base Portsmouth, New Hampshire

Performance-Based Remediation Contract No. FA8903-09-D-8580 Task Order No. 0010

CBI-PL-00641

Revision 0 September 2016

Prepared by:

Christian Buerkle, P.G. Project Geologist/Primary Author

Reviewed/ Approved by:

David Crispo, P.E. Senior Project Engineer/ **Technical Reviewer**

Reviewed/ Approved by:

Michael G. Quinlan **Project Manager**

September 13, 2016 Date

September 13, 2016 Date

September 13, 2016 Date

Perfluorinated Compound Investigation Status Report Certification, September 2016

I certify under penalty of law that this *Perfluorinated Compound Investigation Status Report*, *Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508), Former Pease Air Force Base, Portsmouth, New Hampshire, Revision 0* was reviewed and prepared under the direct supervision of a professional geologist licensed in the state of New Hampshire as described herein and pursuant to the New Hampshire Department of Environmental Services Code of Administrative Rules, Chapter Env-Or 600, Contaminated Site Management, Section Env-Or 606.18(b). I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

13/2016

CHRISTIAN BUERKLE, P.G. NEW HAMPSHIRE P.G. LICENSE NO. 827 CB&I FEDERAL SERVICES LLC

CBI-PL-I

2016 -

0010 • Final • Revision 0 • September

Task Order No.

Contract No. FA8903-09-D-8580,

PROFESSIONAL GEOLOGIST CERTIFICATION STAMP

This page intentionally left blank.

Table of Contents

Perfluorinated Compound Investigation Status Report Certification,			
1:-4		tember 2016	
		hibits	
		jures	
		bles	
List o	of Ap	pendices	İV
Acro	nyms	and Abbreviations	V
4.0	1		
1.0		oduction	
	1.1	Performance Objectives	
	1.2	Report Organization	
	1.3	Site 8 Description and History	
		1.3.1 Site 8 PFC Sampling	
		1.3.2 Residential Well PFC Sampling	
	1.4	Site Geology	
	1.5	Site Hydrogeology	
~ ~	1.6	Conceptual Site Model	
2.0		d Investigation	
	2.1	2-D Electrical Soil Resistivity Testing	
	2.2	Utility Clearance/Property Access	
	2.3	Open Borehole Bedrock Well Installation	
	2.4	Well Development	
	2.5	Well Survey	
	2.6	Geophysical Logging	
	2.7	Rehabilitation of Open Borehole Bedrock Well 08-6046	
	2.8	Groundwater Sample Collection and Analysis	
		2.8.1 Discrete Interval PFC Groundwater Sampling	
		2.8.2 Low-Flow PFC Groundwater Sampling	
	0.0	2.8.3 Coliform Groundwater Sampling	
	2.9	Decontamination of Equipment and Supplies	
	2.10	0 1	
~ ~	2.11		
3.0		rock Hydrogeology Downgradient of Site 8	
	3.1		
	3.2	Contaminant Migration Flow Pathways	
	3.3	Bedrock PFC Plume	
4.0		mary, Conclusions, and Recommendations	
	4.1	Summary	
	4.2	Conclusions	
	4.3	Recommendations	
5.0	Refe	erences	5-1

List of Exhibits

Exhibit 1	Open Borehole Well Summary	2-3
Exhibit 2	Summary of Analyzed PFC Compounds	2-8

List of Figures

Figure 1	Location Map
Figure 2	Site Features
Figure 3	Site 8 Well Locations
Figure 4	Emerging Contaminant Concentrations
Figure 5	Survey Line 1—Modeled Resistivity
Figure 6	Survey Line 2—Modeled Resistivity
Figure 7	Survey Line 3—Modeled Resistivity
Figure 8	Survey Line 4—Modeled Resistivity
Figure 9	Newly Installed Bedrock Well Groundwater Results
Figure 10	Perfluorinated Compound Bedrock Plume

List of Tables

Table 1	Summary of Transmissive Zones and Sample Zones
Table 2	Groundwater PFC Results, October 2015

List of Appendices

- Appendix A Electrical Resistivity Report
- Appendix B Boring and Well Construction Logs
- Appendix C Well Development Logs
- Appendix D TFMoran Survey Report
- Appendix E Geophysical Logging Report
- Appendix F 08-6046 Boring Log
- Appendix G Data Quality Summary Report
- Appendix H Groundwater Sample Collection and Purge Logs
- Appendix I Seacoast Analytical Lab Results
- Appendix J NHDES Fact Sheets

Acronyms and Abbreviations

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

<	less than
μg/L	micrograms per liter
μS/cm	microsiemens per centimeter
2-D	two-dimensional
AFB	Air Force Base
AFCEC	Air Force Civil Engineer Center
AFFF	aqueous film forming foam
AMEC	AMEC Environment & Infrastructure
amsl	above mean sea level
ATV	acoustic televiewer
bgs	below ground surface
CAS	Chemical Abstracts Service
CB&I	CB&I Federal Services LLC
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CSM	conceptual site model
DOD	U.S. Department of Defense
E. coli	Escherichia coli
EPA	U.S. Environmental Protection Agency
FDTA	Fire Department Training Area
	gallons per minute
gpm GT	glacial till
GWTS	groundwater treatment system
ID	inside diameter
IWQPP	Installation-Wide Quality Program Plan
JP-4	jet propulsion fuel No. 4
lb	pound
LNAPL	light nonaqueous phase liquid
LOQ	limit of quantitation
LS	lower sand
LTM	long-term monitoring
MCS	marine clay silt
MDL	method detection limit
NEBC	New England Boring Contractors
NGS	Northeast Geophysical Services
NHAGQS	New Hampshire Ambient Groundwater Quality Standards
NHDES	New Hampshire Department of Environmental Services
NTU	nephelometric turbidity units
OD	outside diameter
PDA	Pease Development Authority
PFC	perfluorinated compound
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

Acronyms and Abbreviations (continued)

PHA	Provisional Health Advisory		
Quality Systems Manual	Quality Systems Manual for Environmental Laboratories, Version 5.0		
Shaw	Shaw Environmental & Infrastructure, Inc.		
SVE	soil vapor extraction		
U.S.	United States		
US	upper sand		
USGS	U.S. Geological Survey		
VOC	volatile organic compound		
WERC	Worldwide Environmental Restoration and Construction		
Weston	Roy F. Weston, Inc.		
Work Plan	Site 8 PFC Investigation Work Plan		

1.0 INTRODUCTION

The Air Force Civil Engineer Center (AFCEC) has awarded CB&I Federal Services LLC (CB&I) a Performance-Based Task Order for firm fixed-price environmental restoration activities at the former Pease Air Force Base (AFB) in Portsmouth, New Hampshire (**Figure 1**) that is being conducted under the Worldwide Environmental Restoration and Construction (WERC) Contract No. FA8903-09-D-8580, Task Order No. 0010. Under the WERC contract, the AFCEC has requested that CB&I perform an investigation to delineate off-site migration of perfluorinated compounds (PFCs) at Site 8, AT008, Fire Department Training Area (FDTA) 2 (**Figures 1** and **2**). The work objectives conform to the *Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations* (United States [U.S.] Air Force, 2012).

On August 3, 2015, the U.S. Environmental Protection Agency (EPA) issued an Administrative Order under the Safe Drinking Water Act (Docket No. SDWA-01-2015-0061) that institutes requirements related to Site 8 PFC contamination and associated off-site and residential well impacts. However, the activities described in this status report were initiated before the Administrative Order went into effect and were performed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

1.1 Performance Objectives

The Site 8 PFC Investigation Work Plan (Work Plan; CB&I, 2015a) proposed investigation activities to help characterize PFC contamination at Site 8. The Work Plan summarized previous PFC sampling activities at Site 8 and listed two main performance objectives:

- 1. Determine if the Site 8 groundwater treatment system (GWTS) presents a migration pathway for perfluorooctanoic acid (PFOA)/perfluorooctane sulfonate (PFOS) release. Results and discussions of work completed pertaining to this objective can be found in the *Perfluorinated Compounds Results for the Fire Department Training Area 2, Site 8 (AT008) and the Burn Area 1, Site 22 (AB022)* letter report (CB&I, 2015b).
- 2. Define the boundaries and/or leading edge of the PFC plume downgradient of Site 8 by the installation of four off-site open borehole bedrock wells. Perform geophysical evaluation of the new wells to understand bedrock hydrology downgradient of Site 8 to help determine potential contaminant migration flow pathways. Activities and results related to the second performance objective are detailed in this *Perfluorinated Compound Investigation Status Report, Site 8, AT008, Fire Department Training Area 2.*

The investigation focused on the bedrock aquifer downgradient of Site 8, which is used for private water supply by residents of the town of Newington, New Hampshire. New bedrock wells 08-6722 through 08-6725 are sited downgradient from the outermost site or private residential well (RES17 located approximately 1,900 feet northeast of Site 8) with PFOA and/or PFOS concentrations above the EPA's Provisional Health Advisories (PHAs) (**Figure 3**). The locations of bedrock wells 08-6722 and 08-6723 were chosen to assess bedrock groundwater leaving Site 8 in northwest-trending fractures towards Watering Spring and to assess if Recharge Trench E (**Figures 3** and **4**) at the end of the runway may represent a migration pathway. The location of well 08-6724 was chosen in an attempt to intercept groundwater flow in fractured bedrock in the direction of residential wells (RES19, RES20, RES21, and RES22) on Fox Point Road and Coleman Drive, where PFOS and PFOA concentrations greater than one-tenth the PHA limits were measured in 2014. The location of well 08-6725 was chosen to delineate/bound the bedrock PFC plume downgradient of residential well RES17. One existing bedrock well (08-6046) was rehabilitated to provide additional downgradient PFC information.

The activities detailed in this status report are supplemented by the procedures and general work practices included in the Final Installation-Wide Quality Program Plan (IWQPP) (Shaw Environmental & Infrastructure, Inc. [Shaw], 2012), the Final Accident Prevention Plan (CB&I, 2014), and the *Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFCs) Sites,* Revision 1 (AMEC Environment & Infrastructure [AMEC], 2014). This work is being conducted under the WERC Contract No. FA8903-09-D-8580, Task Order No. 0010, issued to CB&I by the AFCEC, JBSA Lackland, Texas.

1.2 Report Organization

Contract No. F A8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

This status report is organized into the following sections:

- Section 1.0—Introduction
- Section 2.0—Field Investigation
- Section 3.0—Bedrock Hydrogeology Downgradient of Site 8
- Section 4.0—Summary, Conclusions, and Recommendations
- Section 5.0—References

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

1.3 Site 8 Description and History

The former Pease AFB is located in the town of Newington, the town of Greenland, and the city of Portsmouth in Rockingham County, New Hampshire. The former Pease AFB was historically used by the U.S. Air Force to maintain a combat-ready force capable of long-range bombardment operations. Various quantities of fuels, oils, lubricants, solvents, and protective coatings were used to support the missions, and as a result, contaminants from those substances were released into the environment.

The former Pease AFB was proposed for addition to the National Priorities List on July 14, 1989, and was added on February 21, 1990. This placed the former Pease AFB under the Federal Facilities provisions of Section 120 of CERCLA. On April 24, 1991, the U.S. Air Force, EPA, and the New Hampshire Department of Environmental Services (NHDES) signed a Federal Facility Agreement.

The Site 8 Groundwater Management Zone (**Figure 2**) is approximately 25 acres with the source area originally consisting of approximately 11 acres. This Groundwater Management Zone was established to monitor groundwater quality and treatment based on historic site activities and the natural groundwater flow.

Historical activities at Site 8 included an active fire training area from 1961 to 1988. The majority of fire training exercises were performed in a large circular pit located in the southeastern section of the site. Various aircraft crash scenarios were simulated using jet propulsion fuel No. 4 (JP-4) at this location. Prior to 1971, mixed waste oils, solvents, and fuels were also disposed of at this site. The pit was presaturated with water, and then the waste oils, solvents, and fuels were poured on top of the water and onto a mock aircraft. The practice of mixing waste oils and solvents with fuel for training fires ceased in the mid-1970s, and only JP-4 was used thereafter (Roy F. Weston [Weston], 1994).

In 1970, the U.S. Air Force began purchasing and using aqueous film forming foam (AFFF) containing PFCs with PFOA and PFOS for extinguishing petroleum fires and for use during firefighting training activities at the FDTAs (U.S. Air Force, 2012). PFCs are synthetic (manmade) chemicals that do not occur naturally in the environment. It was standard practice for the U.S. Air Force to use AFFF to extinguish fires during training exercises. AFFF contains PFCs, which makes the Site 8 FDTA the likely source area for PFCs.

As part of the AFCEC's ongoing efforts to evaluate for emerging contaminants, CB&I was contracted to evaluate for potential chemicals in groundwater that may have originated from Site 8. The emerging contaminants that were evaluated included PFOA and PFOS that are PFCs.

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

1.3.1 Site 8 PFC Sampling

There are no promulgated New Hampshire Ambient Groundwater Quality Standards (NHAGQS) or EPA Maximum Contaminant Levels for PFCs; therefore, EPA's PHAs (2009) are used to serve as an informal technical guidance to assist federal, state, and local officials in response to an urgent or rapidly developing drinking water contamination. The PHAs were developed to protect against potential risk from exposure to these chemicals through drinking water. The PHA values for PFOA and PFOS are 0.4 and 0.2 micrograms per liter (μ g/L), respectively.

During June and September 2013, two rounds of sampling were conducted at a total of 21 locations to determine if PFOA and PFOS were present in groundwater at Site 8 and at a downgradient surface water location. The sample locations between the two sampling events included 13 overburden wells, 7 bedrock wells, and the GWTS effluent. One surface water sample was collected during the September sampling event only at Watering Spring (misidentified as Pickering Spring during sampling). 2013 sample locations are shown on **Figure 4**. Samples were analyzed for PFOA/PFOS according to EPA Method 537.1.

For the June 2013 sampling event, 19 locations were sampled including 11 overburden wells, 7 bedrock wells, and the GWTS effluent. Both PFOA and PFOS were detected in all samples collected. The PFOA and PFOS concentrations ranged from 0.0055 to 120 μ g/L and 0.032 to 95 μ g/L, respectively. The highest PFOA and PFOS concentrations were detected at wells that are screened in the overburden. The PFOA concentrations were above the PHA (0.4 μ g/L) in 10 of the 11 overburden wells and 5 of 7 bedrock wells. The PFOS concentrations were above the PHA (0.2 μ g/L) at all 11 overburden wells and 5 of 7 bedrock wells. The GWTS effluent was below the PHA for both PFOA and PFOS (**Figure 4**).

For the September 2013 sampling event, 21 locations were sampled including 12 overburden wells, 7 bedrock wells, the GWTS effluent, and Watering Spring. Again, both PFOA and PFOS were detected in all samples collected, but were at slightly lower concentrations than the June 2013 values. The PFOA and PFOS concentrations ranged from 0.0021 to 72 μ g/L and 0.015 to 42 μ g/L, respectively. The highest PFOA and PFOS concentrations were again also detected in overburden wells—08-563 and 08-5133, respectively. PFOA concentrations were above the PHA (0.4 μ g/L) in 9 of 12 overburden wells, 5 of 7 bedrock wells, and Watering Spring. PFOS concentrations were above the PHA (0.2 μ g/L) at 9 of 12 overburden wells, 6 of 7 bedrock wells, and Watering Spring. The GWTS effluent was again below the PHAs for PFOA and PFOS (**Figure 4**).

Additional investigations for PFCs in overburden and bedrock groundwater and surface water associated with Site 8 are currently being conducted in accordance with the

Administrative Order (EPA Docket No. SDWA-01-2015-0061; EPA, 2015). The results will be provided under separate cover in an Investigation Report.

1.3.2 Residential Well PFC Sampling

A separate effort is ongoing to determine the presence of PFCs in residential wells within an approximate 1-mile radius of the boundaries of the former Pease AFB by another AFCEC contractor. A total of 731 properties were located within the inventory area; however, interviews with the property owners indicated that only 39 of the properties utilized private wells for drinking water. Initial data indicate that PFCs are present in some of these wells and PFOS is above the current PHA (0.2 μ g/L) in one residential well (RES17), located to the northeast approximately 2,800 feet from Site 8 (**Figure 3**).

1.4 Site Geology

The overburden beneath Site 8 consists of upper sand (US), marine clay silt (MCS), lower sand (LS), and glacial till (GT) (Weston, 1992). The four units identified at Site 8 are consistent with the geology located throughout the former Pease AFB. At Site 8, the unconsolidated sediments consist primarily of fine to silty sand with some thin discontinuous MCS seams and GT deposits. The MCS unit is not continuous and occurs locally in very limited areas. Where the MCS is absent, the US/LS contact is undifferentiated. Site overburden also includes more recent surficial materials that include marsh deposits and imported fill. Bedrock underlying the site consists primarily of metasedimentary rocks of the Eliot Formation, which contain calcareous, dark gray to dark green quartz/chlorite/sericite phyllite interbedded with sericite/chlorite quartzite. Diabase dikes occur throughout the bedrock as dark green to black, fine- to medium-grained, massive pyroxene/plagioclase diabase with traces of both pyrite and magnetite. Additional details of site geology can be found in the 1992 Site 8 Remedial Investigation Report (Weston, 1992). Additional information regarding bedrock fractures is discussed in Section 3.0.

1.5 Site Hydrogeology

A conceptual hydrogeologic model for Site 8 was presented in the site Alternatives Analysis (MWH Americas, Inc., 2005) and was based on site data and observations collected over an 8-year period. Salient points are summarized as follows:

- A north–northeast/south–southwest-trending bedrock trough controls the direction of overburden groundwater flow and the distribution of contaminants in the overburden at Site 8.
- Groundwater at Site 8 occurs in the overburden under unconfined (water table) conditions within the axis of the trough.

- Unsaturated conditions occur throughout the overburden at the western and southeastern limbs of the trough.
- Prior to the operation of the GWTS, overburden groundwater flowed along the axis of the bedrock trough and discharged to Pickering Brook to the northeast and to the bedrock along the western limb of the trough. A regional bedrock recharge zone existed east of the former burn pit where groundwater within the bedrock flowed approximately east to west across the burn pit and discharged to the headwaters of Knights Brook.
- 2013 overburden groundwater data suggest that the GWTS does not significantly
 affect the original groundwater flow direction, which is still to the north-northeast
 along the bedrock trough, and the GWTS does not appear to fully contain the
 groundwater leaving Site 8 to the north-northeast. No significant change in the
 overall potentiometric surface is observable during pumping and nonpumping
 conditions; however, mounding occurs in the areas of the recharge trenches and
 narrow cone of depressions form around the extraction wells when the GWTS is in
 operation (CB&I, 2015a).

Based on data collected from 1990 to 2007 (URS Group, Inc., 2007), the median elevation of the Site 8 water table surface is approximately 90 feet above mean sea level (amsl), which corresponds to approximately 25 feet below ground surface (bgs). Short-term low and high elevations of approximately 80 and 100 feet amsl, respectively, have been observed; however, the typical variation occurs over an approximately 3-foot range of 88 to 91 feet amsl. Under high water conditions, the water table occurs within the US/LS units. At low water, the water table occurs within the US/LS units, the GT unit, or the sand/GT interface.

Groundwater at Site 8 is present in both overburden and bedrock aquifers. Overburden flow is to the north–northeast following a bedrock trough with some discharge to Pickering Brook. The bedrock aquifer is used for water supply, although there is very limited data available on the construction of residential wells. **Figure 3** shows the regional bedrock potentiometric surface with data adopted from the U.S. Geological Survey (USGS, 2003a). Regionally, bedrock groundwater flow is radially away from the former Pease AFB towards the surrounding water bodies: Great Bay, Little Bay, and the Piscataqua River. Site 8 bedrock groundwater flows to the northwest towards Little Bay; however, it is likely that a portion of Site 8 bedrock groundwater already surfaces at Watering Spring and Knights Brook.

1.6 Conceptual Site Model

The existing Site 8 Conceptual Site Model (CSM) does not currently address PFCs; however, the data collected during this investigation, and from other ongoing investigations, will be

used to update the CSM to include PFCs. Based on data obtained from historic site documents, the current Site 8 CSM has been summarized in previous historical documents as follows:

- Historical activities at the site resulted in releases of gasoline, jet fuel, waste oils, and solvents, along with AFFF used for fire suppression that contained PFCs.
- The source of the contamination came from pouring flammable chemicals over several burn pits located throughout the site with the largest source area being located on the southeastern section of the site
- The contaminants of concern leached from the former burn pits to groundwater ٠ approximately 25 feet bgs. At the groundwater interface, the light nonaqueous phase liquid (LNAPL) pooled and diffused into groundwater.
- Both LNAPL and dissolved-phase contaminants migrated downgradient from the source area in a northern direction towards Great Bay.
- Volatile organic compound (VOC) contamination generally has been located around the groundwater interface area in both the LS and GT units. However, contamination historically has migrated as deep as 100 feet bgs in downgradient wells.
- Since 1995, the soil vapor extraction (SVE) system has removed over an estimated 205,000 pounds (lbs) of VOCs and an estimated 100,000 gallons of LNAPL.
- Based on SVE vapor concentrations and groundwater data, it appears that most of the VOCs in the unsaturated and saturated zones have been remediated with the possibility of more recalcitrant semivolatile organic compounds persisting in the saturated zone

Environmental receptors downgradient (northeast to northwest) of Site 8 include seeps, creeks, wetlands, streams, and water wells. The operation of the GWTS at Site 8 with discharge of treated water to recharge trenches represents a potential migration pathway for PFCs, which are considered emerging contaminants that were not previously analyzed for in the GWTS effluent.

Because of an air sparge/SVE system and natural attenuation, the non-PFC contaminant concentrations have decreased significantly over time at Site 8. The decrease in contaminant concentrations is reflected in documented reductions in total contaminant recovery and in reduced concentrations in site wells. In 2013, an estimated total of 42 lbs of organic contaminant was removed from the subsurface, which is greatly reduced from approximately 150,000 lbs when contaminant removal was first implemented in 1996 (Shaw, 2013). Concentrations of VOCs and metals have been measured during long-term monitoring

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

(LTM) at the site. As of the 2013 sampling event, there are three wells with contaminants of concern concentrations above the NHAGQS. Additional information supplementing this CSM is discussed in Section 3.0.

2.0 FIELD INVESTIGATION

Discussion of the activities that were conducted for the 2015 investigation, including twodimensional (2-D) electric resistivity logging, installation of four bedrock wells, geophysical logging, discrete interval groundwater sampling, and rehabilitation of bedrock well 08-6046, are presented in this section.

2.1 2-D Electrical Soil Resistivity Testing

Soil resistivity can be used to evaluate a 2-D portion of the subsurface; the resulting images can then be used to choose specific target locations of highest conductivity indicating a water-bearing zone within the subsurface. These zones likely have a greater bedrock fracture system that will help aid in choosing the optimal well placement.

Four open borehole bedrock wells (08-6722 through 08-6725) were installed downgradient of Site 8 during the 2015 investigation (**Figure 3**). Prior to drilling, three (08-6722, 08-6723, and 08-6724) of the four well locations were adjusted based on the results of 2-D electrical resistivity testing. Four 800-foot long 2-D resistivity lines were completed on May 18 and 19, 2015, by Northeast Geophysical Services (NGS) of Bangor, Maine. One 2-D resistivity line each was completed at locations 08-6722 and 08-6723 and two 2-D resistivity lines were completed at location 08-6724 (**Figure 3**).

NGS prepared an electrical resistivity survey report, which is provided in **Appendix A**. The electrical resistivity survey report includes more detailed views of the resistivity survey areas (Figures 1 and 2 in **Appendix A**). CB&I shared the resistivity data with AFCEC, EPA, and the NHDES and included their input before selecting the final well locations. **Figures 5** through **8** are adopted from the electrical resistivity survey report and show the modeled soil resistivity together with the selected drilling locations:

- The drilling location of well 08-6722 (located on Pease Development Authority property) was selected at 400 feet of Survey Line 1 based on the modeled low soil resistivity in that area, which might be indicative of a fracture zone (**Figure 5**).
- The drilling location of well 08-6723 (adjacent to the Newington Cemetery) was selected at 440 feet of Survey Line 2 based on the modeled low soil resistivity in that area, which might be indicative of a fracture zone (**Figure 6**). Initially, a drilling location at 420 feet of Survey Line 2 was discussed due to its close proximity to the likely fracture zone. However, the area at 420 feet on Survey Line 2 was not accessible for a drill rig due to mature trees, granite fence posts, and the location of graves.

• The drilling location of well 08-6724 (located next to the Newington Public School) was selected on the modeled soil resistivity of Survey Lines 3 (Figure 7) and 4 (Figure 8), which cross each other at an approximately 90-degree angle. Figure 8 shows two possible fracture areas along Survey Line 4. The drilling location for 08-6724 was selected at 360 feet of Survey Line 4 at the more prominent of the two likely fracture zones. Survey Line 3 (Figure 7) also shows a possible fracture at the selected drilling location.

2.2 Utility Clearance/Property Access

All clearance activities were performed in accordance with Shaw Procedure No. EIG-HS-308, *Underground/Overhead Utility Contract Prevention*. Prior to equipment mobilization, the AFCEC coordinated property access for investigation locations 08-6722 through 08-6725. Before starting any intrusive work, CB&I coordinated and reviewed DigSafe® markouts and all locations were hand-cleared to a depth of 5 feet bgs to prevent any possible damage to unmarked utilities.

2.3 Open Borehole Bedrock Well Installation

Between June 22 and July 29, 2015, four bedrock boreholes (08-6722 through 08-6725) were drilled to define the boundaries and/or leading edge of the PFC plume downgradient of Site 8 and to evaluate contaminant migration within the bedrock aquifer. The drilling company was New England Boring Contractors (NEBC) of Derry, New Hampshire. Boring logs with soil/bedrock descriptions and well construction information are provided in **Appendix B**. Refer to **Figure 3** for the open bedrock well locations.

In boreholes 08-6722 through 08-6725, the top of bedrock was encountered at 69.5 feet bgs, 79.5 feet bgs, 8.5 feet bgs, and 18.5 feet bgs respectively. Steel casings were permanently installed approximately 2 to 7 feet into competent bedrock at each location. Competent bedrock was determined by the drilling contractor based on the downhole pressure required to advance the air hammer bit. Competent bedrock was encountered at boreholes 08-6722 through 08-6725 at 72 feet bgs, 82 feet bgs, 12.5 feet bgs, and 20.5 feet bgs respectively. A 5-inch inner diameter (ID) and 5.5 inch outer diameter (OD) casing was installed at well 08-6722, and the open hole section was completed with a 4.5-inch air hammer bit. NEBC had difficulties during the installation of the 08-6722 casing (5-inch ID/5.5-inch OD), which could only get lowered to a depth of 74 feet bgs into a 5-7/s-inch diameter rock socket extending to 79 feet bgs. Since NEBC did not have the capability to drill rock sockets larger than 5-7/s inch, the decision was made to downsize the casing diameters and open hole section. Bedrock consisted of a dark gray metasediment with some quartzitic zones. Water-bearing

zones and well construction information for each of the boreholes is summarized in **Exhibit 1**.

Well Identification	Drilling Observations	Well Construction
08-6722 (PDA Property)	Top of bedrock was encountered at 69.5 feet bgs. The zone from 69.5 to 140.5 feet bgs ranged from highly weathered to slightly weathered. The total flow out of the 74-to-140.5–foot section was approximately 50 gpm during air-lifting. Water- bearing zones were noted from 115.5 to 120.5 feet bgs (4 gpm), 120.5 to 125.5 feet bgs (10 gpm), 130.5 to 135.5 feet bgs (15 gpm), and 135.5 to 140.5 feet bgs (20 gpm).	Borehole consisted of a 4.5-inch open hole section from 74 to 140.5 feet bgs. Stopped drilling at depth due to rig limitations: flow out of borehole was not manageable during drilling and gravel pieces out of fracture zone were locking up air hammer.
08-6723 (Newington Cemetery)	Top of bedrock was encountered at 79.5 feet bgs. The zone from 79.5 to 108.5 feet bgs ranged from highly weathered to slightly weathered. The total flow out of the 88-to-108.5–foot section was approximately 50 gpm during air-lifting. Water- bearing zones were noted from 88 to 90 feet bgs (20 gpm) and from 93.5 to 94.5 feet bgs (30 gpm).	Borehole consisted of a 3-¼ inch open hole section from 88 to 108.5 feet bgs. Per discussion with the NHDES and AFCEC, the borehole was stopped at 108.5 feet bgs. The concern was that potential PFCs out of the highly productive shallow bedrock zone (88 to 108.5 feet bgs) might get introduced into the deeper bedrock zones.
08-6724 (Newington Public School)	Top of bedrock was encountered at 8.5 feet bgs. The zone from 8.5 to 180.8 feet bgs ranged from highly weathered to fresh. The total flow out of the 19.2-to-180.8–foot section was approximately 30 gpm during air-lifting. Water-bearing zones were noted from 19.2 to 20 feet bgs (1 gpm), 35 to 40 feet bgs (1 gpm), 60 to 65 feet bgs (2 gpm), 65 to 70 feet bgs (2 gpm), 72 to 73 feet bgs (6 gpm), 75 to 80 feet bgs (3 gpm), 110 to 115 feet bgs (5 gpm), and 166 to 168 feet bgs (10 gpm).	Borehole consisted of 3- ⁷ / ₆ inch open hole section from 19.2 to 180.8 feet bgs. Stopped drilling at depth since maximum capacity of silt fence was met at 30 gpm.
08-6725 (Frizzell Property)	Top of bedrock was encountered at 18.5 feet bgs. The zone from 27.5 to 228 feet bgs ranged from highly weathered to fresh. The total flow out of the 18.5-to-228–foot section was approximately 50 gpm during air-lifting. Multiple low-producing (< 1 gpm) zones in the zone from 56.5 to 216.5 feet bgs produced a combined flow of 4 gpm. A productive fracture in the 221.5-to-226.5–foot zone produced an estimated 46 gpm.	Borehole consisted of a 3- ⁷ / ₈ inch open hole section from 27.5 to 228 feet bgs. Stopped drilling at depth since air hammer stopped advancing due to high water pressure and air compressor was overheating.

Exhibit 1 Open Borehole Well Summary

< denotes less than.

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

AFCEC denotes Air Force Civil Engineer Center.

bgs denotes below ground surface.

gpm denotes gallons per minute.

NHDES denotes New Hampshire Department of Environmental Services.

PDA denotes Pease Development Authority.

PFC denotes perfluorinated compound.

2.4 Well Development

Following drilling, each open borehole was developed via air lifting. An air compressor was used to inject air through the drill stem into the borehole to flush out water and suspended sediments. Well development was considered complete when the purged water was sediment free and turbidity readings of 5 to 10 nephelometric turbidity units (NTU) were recorded. The final turbidities of wells 08-6722, 08-6724, and 08-6725 were 9.2 NTU, 9.5 NTU, and 5.5 NTU respectively. The final turbidity of well 08-6723 (29 NTU) was above the 10-NTU goal; however, well development was considered complete since the water was visually clear and a total of 235 well volumes had been removed. Well development logs are provided in **Appendix C**.

2.5 Well Survey

The vertical and horizontal positions of the new open bedrock wells were professionally surveyed on October 18, 2015, by TFMoran of Bedford, New Hampshire. The well survey report is provided in **Appendix D**.

2.6 Geophysical Logging

From August 24 through 26, 2015, NGS conducted geophysical borehole logging of the open bedrock boreholes 08-6722 through 08-6725 to help identify and characterize hydraulically active bedrock fractures in the boreholes. Logging techniques included fluid temperature and fluid resistivity, three-arm caliper, heat pulse/flowmeter, and acoustic televiewer (ATV) imaging. A copy of the geophysical logging report is provided as **Appendix E**.

NGS identified multiple potential fractures in the boreholes and presented observations regarding which fractures are likely transmissive. **Table 1** lists both the transmissive zones encountered during drilling and the potentially transmissive zones identified during geophysical logging. The following is a summary of possible transmissive fracture zones based the ATV logging, inflections in the fluid resistivity and temperature logs, and measurable flow during heat pulse/flowmeter logging:

08-6722—Bedrock well 08-6722 was constructed with approximately 66.5 feet of open borehole (74 to 140.5 feet bgs). Potentially transmissive fractures were identified in the zones from 74.5 to 75 feet bgs, 79 to 80 feet bgs, 88.5 to 95.5 feet bgs, 119 to 121.5 feet bgs, 130 to 131 feet bgs, and 134 to 138 feet bgs based on caliper log, fluid temperature, heat pulse flowmeter, and ATV (Plates A-1 and A-4, Appendix E). The largest caliper deflections were recorded from 119 to 121.5 feet bgs and from 134 to 138 feet bgs, which were also two of most transmissive zones encountered during drilling (Table 1). Based on the flowmeter measurements under pumping conditions, most of the water enters the borehole at these two zones and

moves up the borehole. The ATV log shows that the two zones have fractures generally striking north-northeast and dip between 21 to 77 degrees to the west-northwest.

- **08-6723**—Bedrock well 08-6723 was constructed with approximately 20.5 feet of open borehole (88 to 108.5 feet bgs). Potentially transmissive fractures were identified at 88.5 to 89.5 feet bgs, at 94.4 feet bgs, at 97.5 feet bgs, and at 105.5 feet bgs based on caliper log, fluid temperature, heat pulse flowmeter, and ATV (Plates B-1 and B-4, Appendix E). During drilling, top of bedrock was encountered at 79.5 feet bgs, and the competent bedrock was estimated to be at 82 feet bgs. The shallow bedrock was fractured and transmissive as indicated by a 30-gallon per minute (gpm) flow rate of the 80.5 to 89 feet bgs zone during air-lifting. The flow rate increased to 40 gpm when reaching 92 feet bgs. The bottom of the permanent steel casing was set at 88 feet bgs to include a suspected fracture in the 89 to 92 foot zone. The caliper and ATV logs confirmed a fracture from approximately 88.5 to 89.5 feet bgs and second fracture at 94.4 feet bgs. The two zones produced 20 gpm and 30 gpm respectively during air-lifting (Table 1). The heat-pulse flowmeter indicated that the fractures at 97.5 and 105.5 feet bgs are not transmissive and that water in the borehole flows downward and exits the borehole through the fracture at 94.4 feet bgs. The ATV log shows that the two transmissive fractures at 88.5-89.5 feet and at 94.4 feet strike to the northeast and dip to the southeast at angles of 34 and 49 degrees respectively.
- 08-6724—Bedrock well 08-6724 was constructed with approximately 161.6 feet of open borehole (19.2 to 180.8 feet bgs). Potentially transmissive fractures were identified at 19.2 feet bgs, 24 to 24.5 feet bgs, 35 to 35.5 feet bgs, 37 feet bgs, 64 to 64.5 feet bgs, 66 to 66.5 feet bgs, 113.5 feet bgs, 126.5 to 127 feet bgs, 129.5 feet bgs, 131 feet bgs, 157 to 164 feet bgs, 165.5 to 169 feet bgs, and 171 to 178 feet bgs based on caliper log, fluid temperature, heat pulse flowmeter, and ATV (Plates C-1 and C-4, Appendix E). Most of the productive zones encountered during drilling match up well with fractures identified during geophysical logging (Table 1). The ATV log shows that the most productive zone (approximately 10 gpm during airlifting) from 165.5 to 169 feet bgs is comprised of five fractures striking northnortheast and dip to the west-northwest at angles between 30 and 67 degrees. In well 08-6724, NGS measured the highest fluid conductivity of the four wells with a median value of over 2,900 microsiemens per centimeter (µS/cm). Under ambient conditions, a strong downflow was measured with water entering the borehole just below the casing at 19.2 feet bgs. Additional water was entering the borehole between 35 and 37 feet and moved downwards. There was an abrupt increase in fluid conductivity and a temperature deflection at this depth. Water moves downwards in

the borehole and exits the borehole through fractures at 66 feet and below. A possible explanation for the high conductivity in 08-6724 is that it is being affected by road salt or by septic water from a nearby school septic field located approximately 100 feet from the borehole. In order to assess potential septic water impacts, additional groundwater samples were collected (Section 2.8.3).

08-6725—Bedrock well 08-6725 was constructed with approximately 200.5 feet of open borehole (27.5 to 228 feet bgs). Potentially transmissive fractures were identified at 28 to 28.5 feet bgs, 36 feet bgs, 40 to 43 feet bgs, 48 feet bgs, 63 feet bgs, 75.5 to 76.5 feet bgs, 80 feet bgs, 189.2 feet bgs, and 221.2 to 225.2 feet bgs based on caliper log, fluid temperature, heat pulse flowmeter, and ATV (Plates D-1 and D-4, Appendix E). The ambient heat-pulse flowmeter measurements in borehole 08-6725 showed strong downflow with water entering the borehole through fractures located between 28.5 and 63 feet. Water moves downward in the borehole, and most of the water exits the borehole through fractures located at the bottom of the borehole below 220 feet. The fluid conductivity in 08-6725 was third highest of the four boreholes logged with a median value of $1,045 \,\mu$ S/cm. In order to assess if road salt or septic water from the neighboring property is causing the elevated conductivity readings, additional groundwater samples were collected (Section 2.8.3). Two highly productive fractures near the borehole bottom produced approximately 46 gpm during air-lifting. Based on the ATV log, the fractures are located at 224.4 feet bgs and 225.2 feet bgs. The two fractures strike to the west-northwest and northwest and dip to the south-southwest and southwest at angles of 23 degrees and 19 degrees, respectively.

2.7 Rehabilitation of Open Borehole Bedrock Well 08-6046

Bedrock well 08-6046 (**Figure 3**) is located adjacent to the cemetery in the town of Newington and has historically been the northernmost well of the Site 8 monitoring network. Well 08-6046 was installed in 1992 with a 6-inch open hole section from 85 to 282 feet bgs. The ground elevation was 108.86 feet amsl, and bedrock was encountered at 65 feet bgs. The 08-6046 boring and well construction log (**Appendix F**) notes fractures from 145 to 150 feet bgs, a possibly larger fracture in the 155 to 160 feet bgs zone, and a possibly large fracture at 259 feet bgs.

Due to an obstruction in the well, groundwater samples have not been collected as part of the LTM program from well 08-6046 since 2007. Since VOCs were not detected in this well from 1998 through 2007, when the well was last sampled, it was recommended that well 08-6046 be abandoned and removed from the LTM program. In 2015, the NHDES asked that well 08-6046 be rehabilitated or replaced in order to use the well for monitoring of PFCs.

On August 18 and 19, 2015, NEBC performed rehabilitation activities of well 08-6046. It was determined that the well had been vandalized and an obstruction was gauged at 42.2 feet bgs. To clear the obstruction, a 3-7/8-inch diameter roller bit was lowered/drilled down the well while blowing compressed air out of the roller bit. NEBC drilled through the obstruction and cleaned out the well to its bottom at 282 feet bgs. The obstruction and materials in the well bottom included cobbles, gravel, tree branches, beer bottles, and polyethylene sample tubing. The borehole produced approximately 10 gpm during air-lifting. A potential fracture zone was noted from 159 to 164 feet bgs during air-lifting as indicated by a flow increase to 5 gpm and brown water indicative of silt/clay being washed out of a fracture zone. A total of 1,400 gallons were flushed out of well 08-6046, and the water was clear with a turbidity of 43.1 NTU at the end of re-development. The re-development log is included in **Appendix C**.

2.8 Groundwater Sample Collection and Analysis

Groundwater sampling activities for PFCs and other parameters are described in Sections 2.8.1 through 2.8.3. All groundwater samples were collected according to AMEC field sampling protocols (AMEC, 2014). All PFC groundwater samples were submitted to ALS Environmental in Kelso, Washington, for analysis of PFOA, PFOS, and nine other PFCs using liquid chromatography/tandem mass spectrometry (summarized in **Exhibit 2**). This method provides a limit of quantitation of 0.005 μ g/L for all 11 analytes to meet the current PHAs. CB&I validated 100 percent of the data for each sample matrix using validation criteria from the *DoD Quality Systems Manual for Environmental Laboratories, Version 5.0* (Quality Systems Manual; U.S. Department of Defense [DOD], 2013). The quality control criteria and control limit values specified in the Final IWQPP (Shaw, 2012) and Appendix F of the Quality Systems Manual (DOD, 2013) will be used as the validation criteria. The Data Quality Summary Report is provided in **Appendix G**.

PERFLUORINATED COMPOUND INVESTIGATION STATUS

REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

Parameter Name	CAS No.	EPA PHAs (µg/L)	LOQ (µg/L)	MDL (µg/L)
Perfluorooctanoic Acid (PFOA)	335-67-1	0.4	0.005	0.002
Perfluorooctane Sulfonate (PFOS)	45298-90-6	0.2	0.005	0.0007
Perfluoropentanoic Acid	2706-90-3	-	0.005	0.0009
Perfluorobutane Sulfonate	45187-15-3	-	0.005	0.0008
Perfluorohexanoic Acid	307-24-4	-	0.005	0.0007
Perfluoroheptanoic Acid	375-85-9	-	0.005	0.001
Perfluorohexane Sulfonate	10827-53-8	-	0.005	0.0007
Perfluorononanoic Acid	375-95-1	-	0.005	0.002
Perfluorodecanoic Acid	335-76-2	-	0.005	0.001
Perfluoroundecanoic Acid	2058-94-8	-	0.005	0.002
Perfluorododecanoic Acid	307-55-1	-	0.005	0.003

Exhibit 2 Summary of Analyzed PFC Compounds

- denotes not applicable.

µg/L denotes micrograms per liter.

CAS denotes Chemical Abstracts Service.

EPA denotes U.S. Environmental Protection Agency.

LOQ denotes limit of quantitation.

MDL denotes method detection limit.

PHA denotes Provisional Health Advisory.

2.8.1 Discrete Interval PFC Groundwater Sampling

Based on the geophysical logging results and drilling observations, fractures were identified for discrete interval groundwater sampling. The results of the geophysical logging and proposed sample zones were shared with AFCEC and the NHDES, and their input was used to update proposed sample zones. The zones proposed for groundwater PFC sampling are listed in **Table 1**. Since well 08-6723 has only 20.5 feet of open borehole, it was decided not to use packers in this well and instead collect a single sample from the entire borehole, as described in Section 2.8.2.

NGS conducted packer sampling of wells 08-6722, 08-6724, and 08-6725 from October 6 through October 9, 2015, with oversight by a CB&I geologist. The selected intervals were isolated by use of a straddle packer assembly to allow for sampling of groundwater from discrete fractures without mixing of groundwater from other fractures in the same borehole. The packer assembly consisted of two inflatable rubber packers placed at each end of a 1-3/8-inch diameter perforated steel pipe. After the packer assembly was placed in the borehole, the rubber packers were inflated with nitrogen gas to seal off the select interval for

sampling. NGS had to adjust multiple packer sampling zones slightly in order to center the straddle-packers over fractures or to avoid damaging the packers (e.g. the packer might rupture when inflated on the edge of a fracture or on the edge of permanent casing). A comparison of proposed sample zones versus actual sample zones is provided in **Table 1**.

A stainless steel submersible pump (model: Geotech Geosub) and polyethylene tubing was used for purging and sample collection. During purging, water level readings were collected both inside and outside the packer riser pipe to confirm the packer seal. The water levels were generally stable indicating a good packer seal with the exception of the sample zones at 08-6722 and the 218-to-228-foot bgs zone at 08-6725, which showed some changing water levels in the zone above the packer. NGS confirmed that the packer was firmly seated against the borehole and indicated that interconnected fractures are likely the reason for the water level fluctuations. Three casing volumes were purged before PFC groundwater samples were collected from each of the packer zones. Groundwater sample collection and purge logs are provided in **Appendix H**. PFC analytical results are presented on **Figure 9** and summarized in **Table 2** and below:

- 08-6722—PFOA and PFOS were detected above their respective PHA values of 0.4 μg/L and 0.2 μg/L in all four sampled bedrock zones with the exception of PFOA in the deepest sample zone (128 to 140.5 feet bgs). PFOA concentrations were 0.96 μg/L, 0.66 μg/L, and 0.47 μg/L for sample zones 74 to 84 feet bgs, 88 to 98 feet bgs, and 115.5 to 125.5 feet bgs, respectively. The PFOA concentration of 0.3 μg/L at 128 to 140.5 feet bgs was just below the PHA limit. PFOS concentrations were 2.8 μg/L, 2.3 μg/L, 1.6 μg/L, and 0.89 μg/L for sample zones 74 to 84 feet bgs, 88 to 98 feet bgs, 115.5 to 125.5 feet bgs, and 128 to 140.5 feet bgs, respectively.
- 08-6724—PFOA and PFOS were detected below their respective PHA values of 0.4 μg/L and 0.2 μg/L in all four sampled bedrock zones. PFOA concentrations were 0.032 μg/L, 0.02 μg/L, 0.034 μg/L, and 0.029 μg/L for sample zones 17 to 27 feet bgs, 60 to 70 feet bgs, 110 to 120 feet bgs, and 160 to 170 feet bgs, respectively. PFOS concentrations were 0.013 μg/L, 0.024 μg/L, 0.018 μg/L, and 0.016 μg/L for sample zones 17 to 27 feet bgs, 60 to 70 feet bgs, 60 to 70 feet bgs, 60 to 70 feet bgs, and 160 to 170 feet bgs, respectively.
- 08-6725—PFOA and PFOS were detected below their respective PHA values of $0.4 \ \mu g/L$ and $0.2 \ \mu g/L$ in both sampled bedrock zones. In the sample taken from 27.5 to 37.5 feet bgs, PFOA and PFOS were detected at concentrations of 0.014 $\mu g/L$ and 0.038 $\mu g/L$, respectively. In the sample taken from 218 to 228 feet bgs, PFOA was detected at 0.018 $\mu g/L$ in both parent and duplicate sample and PFOS was detected at 0.055 $\mu g/L$ in the parent sample and 0.058 $\mu g/L$ in the duplicate sample.

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

2.8.2 Low-Flow PFC Groundwater Sampling

On October 14, 2015, one groundwater sample each was collected for PFC analysis from wells 08-6723 and 08-6046 via low-flow methods. Newly installed well 08-6723 has an open borehole from 88 to 108.5 feet bgs, and the pump intake was lowered to 93 feet bgs for sample collection. As discussed in Section 2.7, well 08-6046 was rehabilitated on August 19, 2015. The pump intake at this well location was placed at 160 feet bgs, which is consistent with the historic LTM sample depth for this well. In addition, a transmissive fracture is indicated at this depth based on the boring log (**Appendix F**) and observations made during well rehabilitation. Groundwater sample collection and purge logs are provided in **Appendix H**. PFC analytical results are presented on **Figure 9** and summarized in **Table 2** and below:

- 08-6046 (sample depth: 160 feet bgs)—PFOA was detected below the PHA limit (0.4 μg/L) at 0.0061 μg/L in the parent sample and 0.0069 μg/L in the duplicate sample. PFOS was detected below the PHA limit (0.2 μg/L) at 0.025 μg/L in the parent sample and 0.028 μg/L in the duplicate sample.
- 08-6723 (sample depth: 93 feet bgs)—PFOA and PFOS were detected above PHA values (0.4 μg/L and 0.2 μg/L) with concentrations of 1.5 μg/L and 3.7 μg/L, respectively.

2.8.3 Coliform Groundwater Sampling

During borehole geophysical logging conducted in August 2015 (Section 2.6), elevated groundwater electric conductivities were measured in boreholes 08-6724 and 08-6725. The electric conductivities in 08-6724 and 08-6725 (2,900 μ S/cm and 1,045 μ S/cm, respectively) were higher than the electric conductivities in boreholes 08-6722 and 08-6723 (296 μ S/cm and 726 μ S/cm, respectively). In well 08-6724, water was entering the borehole at a fracture in between 35 and 37 feet bgs and moved downwards. There was an abrupt increase in fluid conductivity and a temperature deflection at this depth. Possible causes for the increased conductivity in wells 08-6724 and 08-6725 include road salt and septic water from close-by leach fields. On October 19, 2015, two groundwater grab sample were collected from each well, 08-6724 and 08-6725, in order to investigate the nature of the elevated conductivity readings.

At well 08-6724, one sample was collected at 24 feet bgs (approximately 5 feet below the permanent casing bottom) and at 169 feet bgs (approximately 12 feet above the well bottom). At well 08-6725, one sample was collected at 32.5 feet bgs (approximately 5 feet below the permanent casing bottom) and at 223 feet bgs (approximately 5 feet above the well bottom). A peristaltic pump and polyethylene tubing were used for purging and sample collection. Water was purged until clear (turbidity smaller than 5 NTU) prior to sample collection.

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

Groundwater samples were submitted to Seacoast Analytical Services in Lee, New Hampshire, for analysis of fluoride, chloride, nitrite, nitrate, pH, hardness, sodium, iron, manganese, copper, lead, arsenic, total coliform bacteria, and *Escherichia coli* (*E. coli*) bacteria. Groundwater sample collection logs and purge logs are provided in **Appendix H**. Groundwater analytical results are presented in **Appendix I**.

All four samples tested positive for the presence of total coliform bacteria. No *E. coli* bacteria were detected in any of the samples. The samples from well 08-6724 were high in sodium and chloride. Based on this information alone, it is difficult to determine if infiltration from leach fields is the cause of the coliform bacteria detections.

Two NHDES fact sheets (**Appendix J**) provide information regarding coliform bacteria in groundwater:

- Fact Sheet WD-DWGB-4-1, Interpreting the Presence of Coliform Bacteria in Drinking Water (NHDES, 2010a)
- Fact Sheet WD-DWGB-4-2, Causes of Positive Bacteria Results in Water Samples (NHDES, 2010b)

The fact sheets state the following:

- The total coliform test is considered an indicator, since the presence of bacteria in this group presents the possibility, but not the certainty, that disease organisms may be present in the water (NHDES, 2010a).
- *E. coli* is a species within the fecal coliform group. *E. coli* originate only in the intestines of animals including humans. As with other fecal coliform, they have a relative short life span compared to non-fecal coliform bacteria. Their presence indicates a strong likelihood that human or animal wastes are entering the water system (NHDES, 2010a).
- Total coliform bacteria are prolific in the soil. Their presence does not necessarily imply contamination from wastewater nor the presence of other sanitation-based risks. The presence of total coliform bacteria by itself does not imply an imminent health risk but does indicate the need for analysis of all water system facilities and their operations to determine how these organisms entered the water system (NHDES, 2010a).
- Outside the host, coliform bacteria die off quickly, typically within 30 days. Therefore, if coliform bacteria are identified in a well over a long period of time, it is presumed that bacteria are continuously entering the well (NHDES, 2010b).

- Poor well construction is by far the most common explanation for bacteria in water samples from wells. Drilling a new well can also create localized short-term bacterial contamination of bedrock fractures (NHDES, 2010b).
- In many cases, errors (e.g., poor sampling practice, old/contaminated sample bottles) creating positive bacterial results can be differentiated from those bacteria attributed to poor well construction and/or poor soil filtration by taking additional bacterial samples. Errors will not likely be repeated, whereas real construction or filtration problems will show either a constant or highly irregular presence of bacteria (NHDES, 2010b).

Based on the available data, it appears that the total coliform detections in well 08-6724 and 08-6725 could have different causes:

- 1. Coliform bacteria contamination during sampling. Resampling the wells might produce results without coliform bacteria.
- 2. Coliform bacteria were introduced to the borehole during drilling and/or geophysical logging. Resampling the wells may produce results without coliform bacteria, since coliform bacteria typically die off within 30 days.
- 3. Coliform bacteria may be continuously entering the borehole from the overburden and/or leach field. Overburden groundwater might be entering the borehole through the shallow fractured bedrock or along the well casing. The coliform bacteria could be originating from overburden soils and/or sewage water. Bacteria levels should be consistently present in the wells for this scenario. The highest conductivity was measured at well 08-6724 at a fracture in between 35 and 37 feet bgs, which speaks against a poorly constructed well casing. Resampling might provide helpful information.

2.9 Decontamination of Equipment and Supplies

All field cleaning and decontamination of equipment was conducted in accordance with the standard operating procedures presented in Appendix E of the Final IWQPP (Shaw, 2012) and AMEC's *Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFC) Sites*, Revision 1 (2014). Heavy equipment including drill rig, drill pipes, and packers with associated piping were steam cleaned and allowed to air dry. Smaller equipment, including water level indicators and geophysical logging tools, were cleaned using Liquinox and/or potable water rinses followed by a rinse with PFC-free deionized water.

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

2.10 Investigation-Derived Waste Management and Disposal

Investigation-derived waste generated during drilling included noncontaminated soil and water (purge and decontamination). Soil cuttings were screened using a photoionization detector as documented on the boring logs (**Appendix B**). All soil photoionization detector readings were non-detected results of 0.0 parts per million by volume, and the drill cuttings were distributed onto the ground surface at either the well location or Site 8. Water generated during well development was discharged to the ground. Decontamination water and water from groundwater sampling activities was containerized in portable tanks and transferred to the Site 8 GWTS for disposal/treatment.

2.11 Site Restoration

The ground surface at well locations 08-6722 through 08-6725 was restored to its original condition once drilling was completed. Restoration activities included minor soil regrading and reseeding of grass.

This page intentionally left blank.

3.0 BEDROCK HYDROGEOLOGY DOWNGRADIENT OF SITE 8

This section supplements the existing CSM (Section 1.6) with observations made during the 2015 PFC investigation and provides an updated interpretation of the hydrogeology downgradient of Site 8 (Section 1.5).

3.1 Orientation of Bedrock Fractures

The existing CSM describes overburden groundwater flow to the northeast along a bedrock trough. Groundwater enters the bedrock along the western limb of the trough where groundwater flow continues along northwest-striking fractures towards Knights Brook. A dominant northeast-striking fracture corridor underlying Site 8 was noted in a USGS report prepared for EPA entitled *Geophysical Characterization of Fractured Bedrock at Site 8* (USGS, 2003b). The report concluded that fracture-correlated lineaments and regional structure correlation may indicate the presence of regional northeast-southwest anisotropy to the fractured rock. The report also discusses two wells (08-636A and 08-6022) in the northern half of Site 8 where the fractures contributing the majority of the yield are northeast-striking. The 2015 PFC investigation data confirmed a dominant northeast-striking fractures of a second set of northwest striking fractures:

- In borehole 08-6722, three transmissive fractures in between 122.1 to 138.3 feet bgs produce the majority of the yield (45 gpm) and strike northeast with dip angles of 21 to 77 degrees to the northwest. A set of low-yielding fractures in the shallower bedrock from 75 to 95 feet bgs strikes predominantly northwest (Plate A-1, Plate A-2, and Table A-1 in Appendix E).
- In borehole 08-6723, two transmissive fractures at 88.5–89.5 feet (20 gpm) and at 94.4 feet bgs (30 gpm) strike northeast and dip to the southeast at angles of 34 and 49 degrees respectively. One probable low-yielding fracture is located at 99.8 feet bgs and strikes northwest and dips 41 degrees to the southwest (Plate B-1, Plate B-2, and Table B-1 in **Appendix E**). Since 08-6723 is located northeast of 08-6722, it could be possible that the two northeast-striking fracture sets in the two boreholes are hydraulically connected (**Figure 10**).
- In borehole 08-6724, almost all fractures strike northeast including the most productive zone (10 gpm) from 165.5 to 169 feet bgs, which is comprised of five fractures striking north-northeast with dip to the west-northwest at angles between 30 and 67 degrees (Plate C-1, Plate C-2, and Table C-1 in **Appendix E**).

3-1

In borehole 08-6725, the predominant fracture orientation is northeast-southwest • parallel to Pickering Brook. The exceptions are two highly productive fractures (combined 46 gpm) near the borehole bottom at 224.4 feet bgs and 225.2 feet bgs, which strike to the west-northwest and northwest and dip to the south-southwest and southwest at angles of 23 and 19 degrees, respectively (Plate D-1, Plate D-2, and Table D-1 in Appendix E).

Strike and dip directions of the highest yielding fracture zones in boreholes 08-6722 through 08-6725 are displayed on Figure 10.

3.2 Contaminant Migration Flow Pathways

The 2015 PFC investigation was focused on the bedrock aquifer, which is likely the main pathway for PFCs northeast of the bedrock trough located along the northern Site 8 boundary. According to the current CSM, the majority of Site 8 overburden groundwater is leaving Site 8 through the bedrock trough in the north where a portion of the groundwater is believed to enter northwest-striking fractures. Data collected during the 2015 PFC investigation and historical geophysical information confirmed two main sets of fractures, one striking to the northeast and one striking to the northwest. Overburden groundwater enters the bedrock aquifer already in the area of the Site 8 air sparge/SVE field, as indicated by PFC concentrations above PHA limits in well 08-623 (Figure 4). Bedrock groundwater travels both along northeast-striking fractures and northwest-striking fractures:

- Northeast-trending fractures parallel to the bedrock trough channel some bedrock • groundwater to the northeast towards Pickering Brook, as indicated by transmissive northeast striking fractures observed in wells 08-6022 and 08-636A north of Site 8 (USGS, 2003b), which were above EPA PHA limits in 2013 (Figure 4). During the 2015 PFC investigation, numerous lower-yielding northeast-striking fractures were detected in bedrock well 08-6725, which is located right next to Pickering Brook. A 2014 detection of PFOS above the PHA limit in residential bedrock well RES17 is along this likely flow path (Figure 10).
- Northwest-trending fractures channel some bedrock groundwater to the northwest • towards Knights Brook, as indicated by PFCs detected above PHA limits (Watering Spring, 08-6722, and 08-6723) and northwest-striking fractures detected in borehole 08-6722 and 08-6723. The northwest-striking fractures in those two boreholes have low yields, and it is likely that additional (potentially higher yielding) northweststriking fractures are present in between wells 08-6722/08-6723 and Site 8. None of the higher-yielding fractures detected in well 08-6722 are oriented northwestsoutheast towards Recharge Trench E, which could indicate that the PFC

3-2

SITE 8

contamination in well 08-6722 might have traveled in northwest-trending fractures located north of Recharge Trench E, before intersecting the fractures in well 08-6722.

3.3 Bedrock PFC Plume

An approximation of the Site 8 bedrock PFC plume boundaries is provided on **Figure 10**. The boundaries are based on the results that were provided herein as part of the 2015 PFC investigation. The leading edge of the plume appears to be in between RES06 and well 08-6722 in the east, might be at or around the area of Watering Spring to the northwest, appears to be bound in the north by well 08-6046 and RES02, and appears to be in between RES17 and well 08-6725 in the northeast. A productive fracture zone with PFCs above PHA limits in borehole 08-6723 is striking northeast and dipping to the southeast does not intersect the nearby 08-6046 borehole. It is possible that one or more northwest-striking fractures are located in between wells 08-6722 and 08-6723 and discharge into Watering Springs and Knights Brook. The 2015 PFC investigation was focused on the bedrock aquifer with residential wells towards the west, northwest, north, and northeast. Therefore, only limited information is available to refine the plume boundary towards the southwest, south, southeast and east of Site 8.

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

4.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This section summarizes results of the 2015 PFC investigation that was conducted to delineate off-site migration of PFCs at Site 8 and provides the conclusions and recommendations for the further evaluation of PFCs that may be associated with the historical activities at Site 8.

4.1 Summary

Following 2-D soil resistivity testing in May 2015, four bedrock wells (08-6722 through 08-6725) were installed north of Site 8 to assess PFCs in bedrock downgradient of Site 8.

Downhole geophysical logging was completed at all four boreholes. Geophysical logging identified multiple fractures per borehole. The majority of fractures strike to the northeast. A secondary set of fractures strikes to the northwest.

Groundwater from different fracture zones within each borehole was collected for PFC analysis utilizing packers or low-flow technique (well 08-6723). In addition, historic well 08-6046 was rehabilitated and sampled via low-flow technique. Only the groundwater samples from bedrock well 08-6722 and the groundwater sample from bedrock well 08-6723 were above PHA limits for PFOA and PFOS. PFC concentrations were decreasing with sample depth in well 08-6722, which had a upward gradient within the borehole.

Groundwater samples for coliform bacteria and general water chemistry were collected from wells 08-6724 and 08-6725 to assess potential causes (e.g., road salt, sewage water) of elevated groundwater conductivity readings. All groundwater samples indicated the presence of total coliform bacteria, and the samples from well 08-6724 were also high in sodium and chloride. *E. coli* bacteria were absent in all samples.

4.2 Conclusions

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

The following statements can be made based on the results of the 2015 PFC investigation:

- Bedrock groundwater flow north of Site 8 is primarily along the orientation of northeast-striking and northwest-striking fracture sets.
- The bedrock PFC groundwater plume extends to the northeast to the headwaters of Pickering Brook, but is bound by well 08-6725. The plume extends to the northwest past wells 08-6722 and 08-6723 to the headwaters of Knights Brook (**Figure 10**). The bedrock PFC groundwater plume is not fully delineated and may extend further to the northwest (east of Watering Springs). Northeast-striking fractures in 08-6722 may also allow PFC-impacted groundwater to travel to the southwest. Additionally, the

plume has not been delineated towards the southwest, south, southeast, and east, which was not an objective of this field investigation.

- Due to the absence of high-yielding northwest-striking fractures in well 08-6722, it is unlikely that Recharge Trench E is the primary migration pathway for PFC-impacted bedrock groundwater in between Site 8 and Watering Spring.
- PFOS and PFOA concentrations in well 08-6724 are just below one-tenth of their respective PHA limits, with the exception of one PFOS detection (0.024 µg/L) just above one-tenth the PHA limit in the 60-to-70-foot bgs sample. This indicates that the fracture(s) carrying PFCs toward residential wells RES19 through RES22 was not intercepted in the 08-6724 borehole. A highly productive fracture zone at approximately 225 feet bgs in borehole 08-6725 strikes to the west-northwest (224.4 feet bgs fracture) and northwest (225.2 feet bgs fracture) with PFC concentrations (PFOS: 0.058 µg/L, PFOA: 0.018 µg/L) similar to the concentrations in RES19 through RES22 (2014: PFOS up to 0.089 µg/L and PFOA up to 0.06 µg/L). The fractures run approximately parallel to Fox Point Road and could potentially channel groundwater with PFC concentrations below PHA limits towards residential wells RES19 through RES22.
- It is uncertain if sewage water from leach fields has caused elevated groundwater conductivity readings in wells 08-6724 and 08-6725, since no *E. coli* bacteria were detected in 2015 groundwater samples. The presence of total coliform bacteria does not necessarily imply contamination from wastewater nor the presence of other sanitation-based risks. Water with high conductivity is entering the 08-6724 borehole at a fracture zone from 35 to 37 feet bgs, which indicates that a poorly constructed well casing is not the reason for elevated conductivities in that well.

4.3 Recommendations

Based on the results of the 2016 PFC investigation and the conclusions that were made, the following recommendations are provided for further evaluation of PFCs associated with the historical activities at Site 8:

• Install two additional bedrock wells (08-6726 and 08-6727) as shown on **Figure 10**. Follow the same methodology (2-D resistivity logging, well installation, geophysical logging, packer sampling) used for wells 08-6722 through 08-6725. Wells 08-6726 and 08-6727 will further refine the bedrock groundwater PFC plume boundary towards the northwest and west. Select the final 08-6726 boring location based on the results of 2-D soil resistivity line oriented northeast to southwest, which could identify northwest-striking fractures. Select the final 08-6727 boring location based

on the results of 2-D soil resistivity line oriented northwest to southeast, which could identify northeast-striking fractures extending towards 08-6722.

- Sample existing bedrock wells west, south, and east of Site 8 for PFCs to refine the bedrock PFC plume boundary.
- Sample all available overburden monitoring wells in the area of wells 08-6722 and 08-6723 to assess the overburden PFC migration pathway in those areas.
- Resample wells 08-6724 and 08-6725 for total coliform bacteria and *E. coli* bacteria. If total coliform bacteria persist in the wells, meet with NHDES to discuss if a health risk is present and if further steps are required.

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Final • Revision 0 • September 2016 • CBI-PL-00641

This page intentionally left blank.

PERFLUORINATED COMPOUND INVESTIGATION STATUS REPORT, SITE 8, AT008, FIRE DEPARTMENT TRAINING AREA 2

5.0 REFERENCES

AMEC Environment & Infrastructure, Inc. (AMEC), 2014. Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFCs) Sites, SOP AMEC-01 (PFCs), Revision 1, July 21.

CB&I Federal Services LLC (CB&I), 2014. Accident Prevention Plan, Former Pease Air Force Base, Portsmouth, New Hampshire, Final, November.

CB&I, 2015a. Perfluorinated Compound Investigation Work Plan, Site 8, AT008, Fire Department Training Area 2, Former Pease Air Force Base, Portsmouth, New Hampshire, Final, April.

CB&I, 2015b. Perfluorinated Compounds Results for the Fire Department Training Area 2, Site 8 (AT008) and the Burn Area 1, Site 22 (AB022), Former Pease Air Force Base, Portsmouth, New Hampshire, April.

MWH Americas, Inc., 2005. Site 8 Fire Department Training Area (FDTA) 2 Alternatives Analysis, Former Pease Air Force Base, Portsmouth, New Hampshire, Malvern, Pennsylvania, March.

New Hampshire Department of Environmental Services (NHDES), 2010a. Fact Sheet WD-DWGB-4-1, Interpreting the Presence of Coliform Bacteria in Drinking Water.

NHDES, 2010b. Fact Sheet WD-DWGB-4-2, Causes of Positive Bacteria Results in Water Samples.

Roy F. Weston, Inc. (Weston), 1992. *IRP Site 8 Remedial Investigation, Former Pease Air Force Base, Portsmouth, New Hampshire,* West Chester, Pennsylvania, November.

Weston, 1994. Record of Decision for Site 8, Former Pease Air Force Base, Portsmouth, New Hampshire, West Chester, Pennsylvania, September.

Shaw Environmental & Infrastructure, Inc. (Shaw), 2012. *Installation-Wide Quality Program Plan, Former Pease Air Force Base, Portsmouth, New Hampshire*, Final, September.

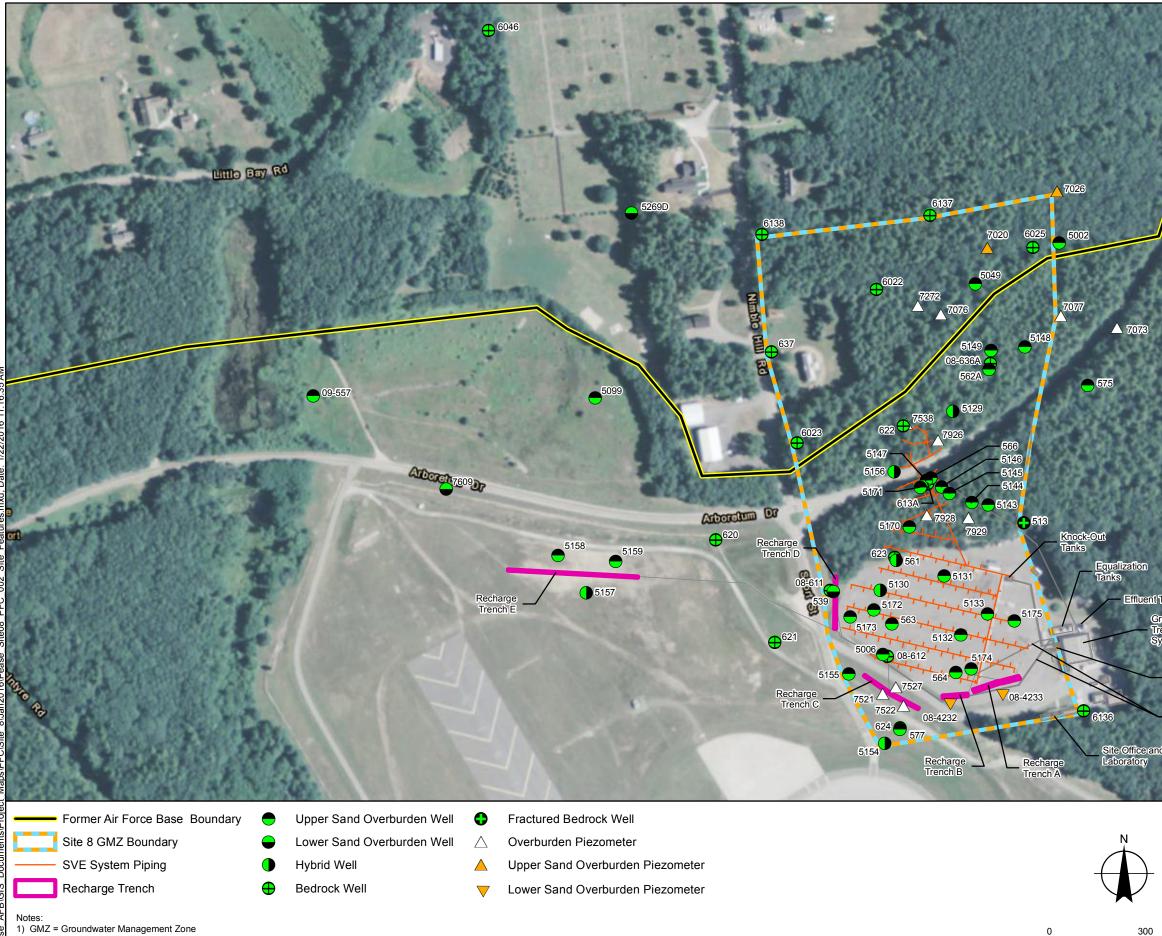
Shaw, 2013. 2012 Annual Report, Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508), Former Pease Air Force Base, Portsmouth, New Hampshire, August.

U.S. Air Force, 2012. Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations.

U.S. Department of Defense (DOD), 2013. *DoD Quality Systems Manual for Environmental Laboratories, Version 5.0*, U.S. Department of Defense Environmental Data Quality Workgroup, July.

U.S. Environmental Protection Agency (EPA), 2009. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS), January 8.

EPA, 2015. Administrative Order for Response Action, EPA Docket No. SDWA-01-2015-0061, August 3.

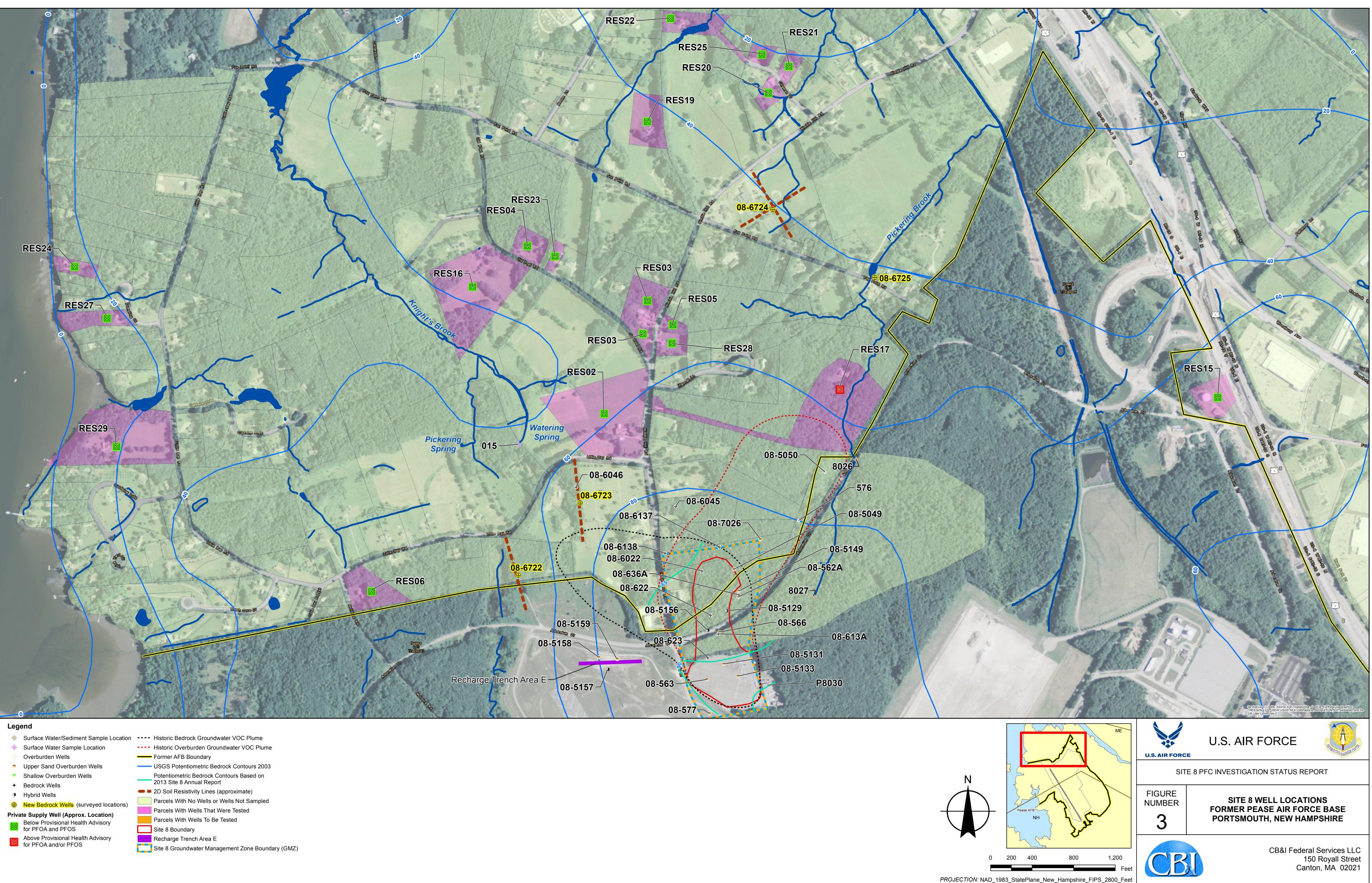

U.S. Geologic Survey (USGS), 2003a. Great Bay Bedrock Potentiometric Map.

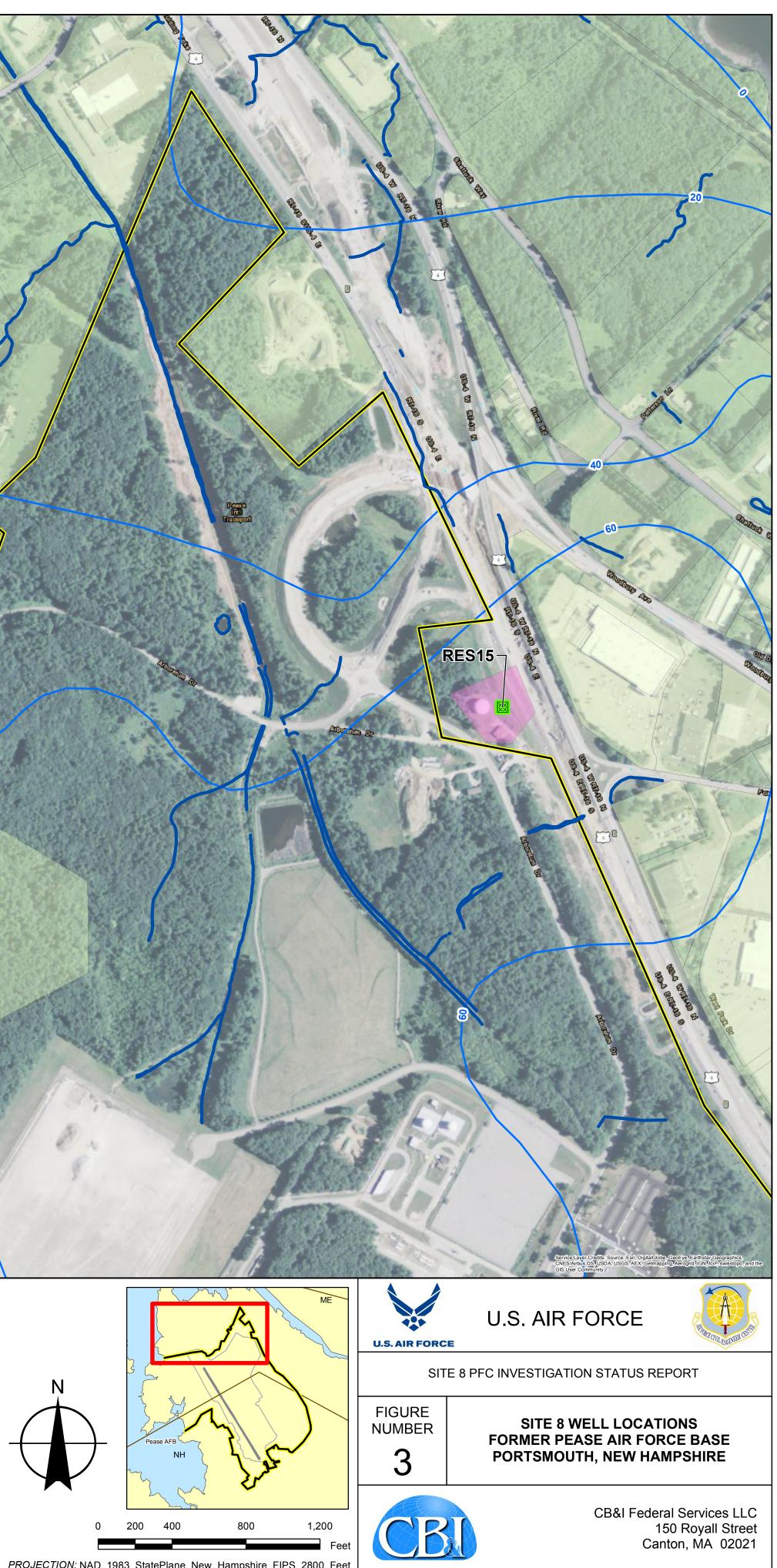
USGS, 2003b. *Geophysical Characterization of Fractured Bedrock at Site 8, Former Pease Air Force Base, Newington, New Hampshire.*

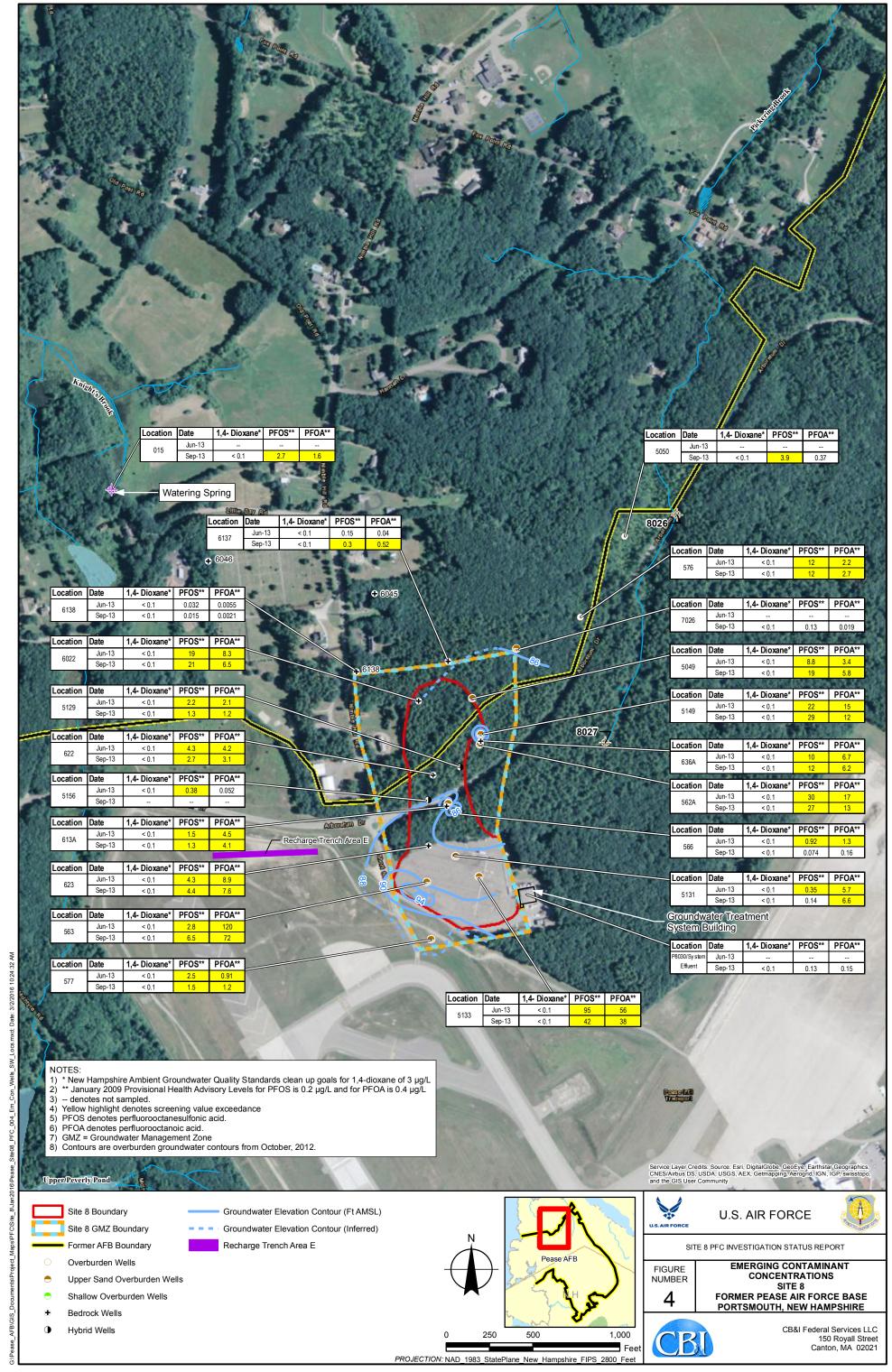
URS Group, Inc., 2007. Site 8 Fire Department Training Area (FDTA) 2 Remedial Process Optimization Plan Using Air Sparging, Former Pease Air Force Base, Portsmouth, New Hampshire, Buffalo, New York, November.

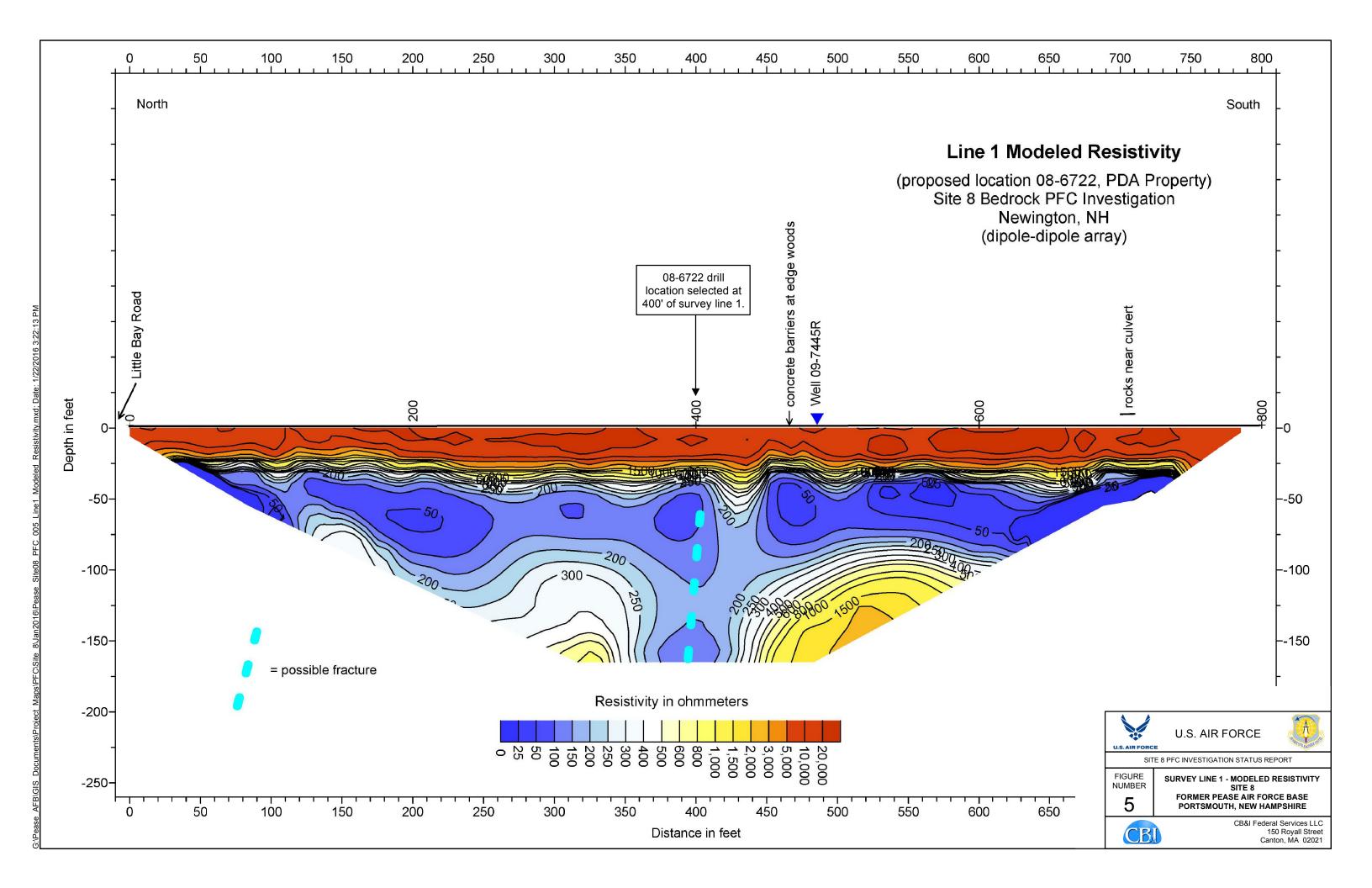
Figures

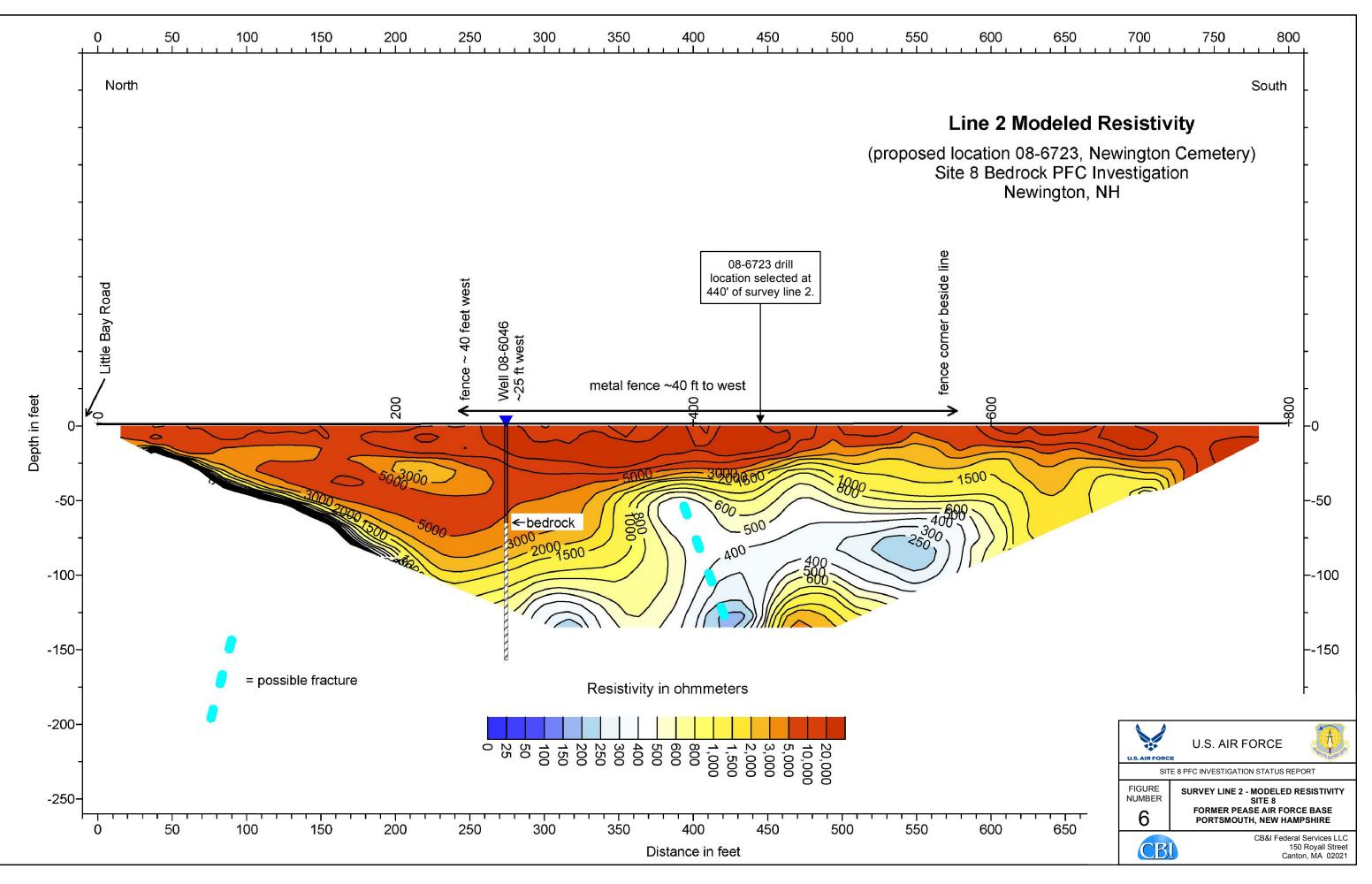
Projection : NAD_1983_StatePlane_New_Hampshire_FIPS_2800_Feet

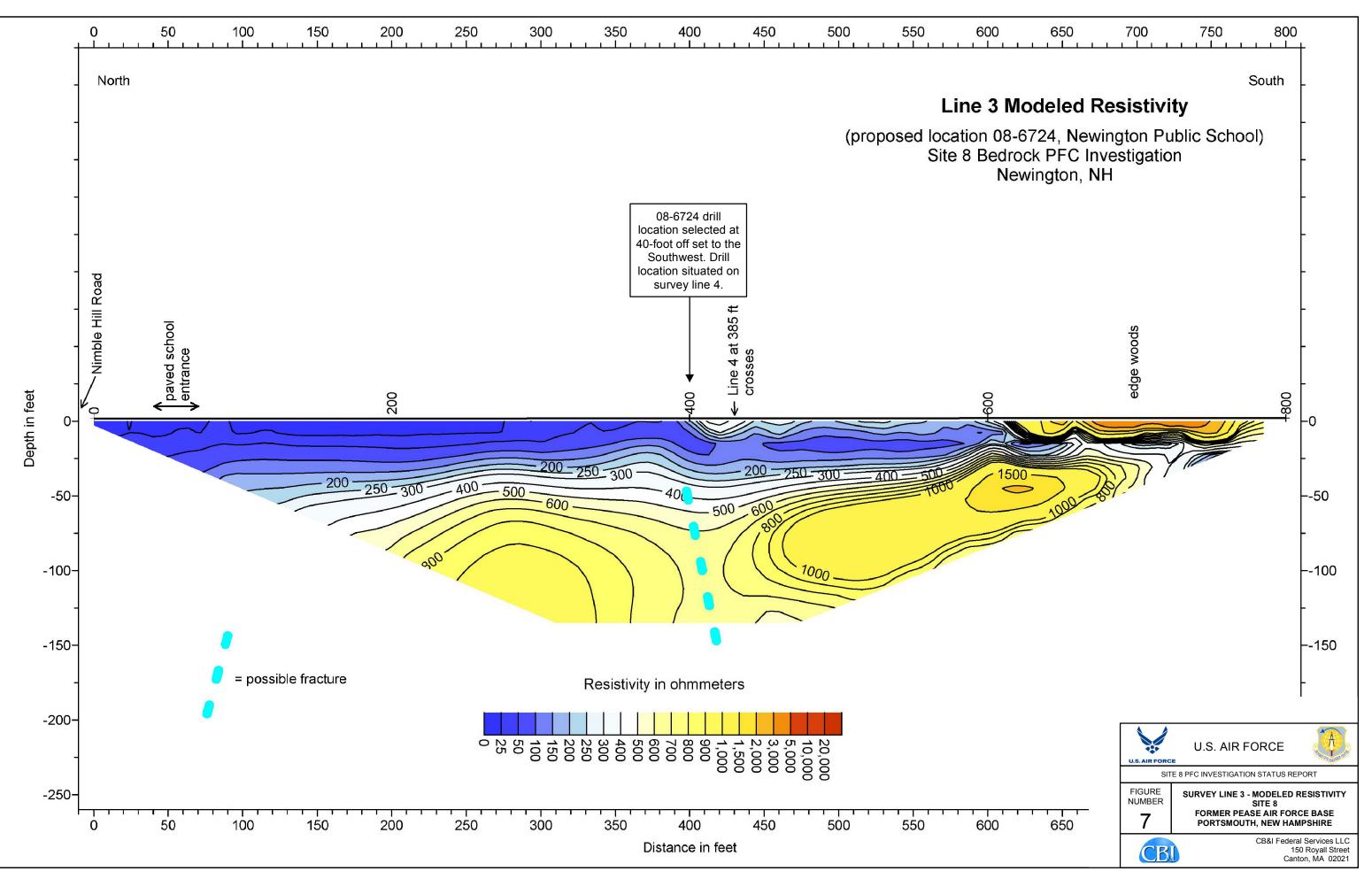

nt Tank

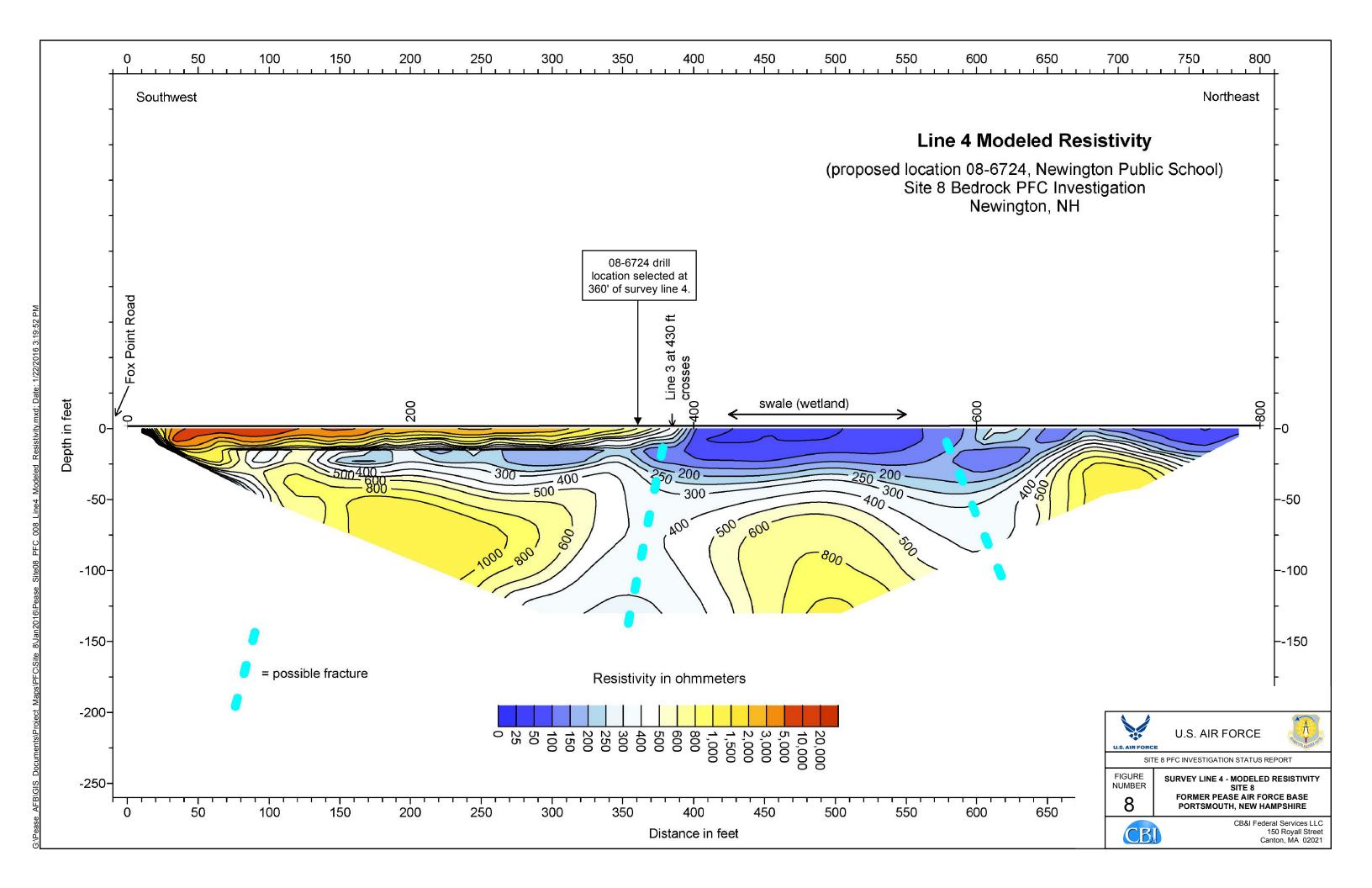

~

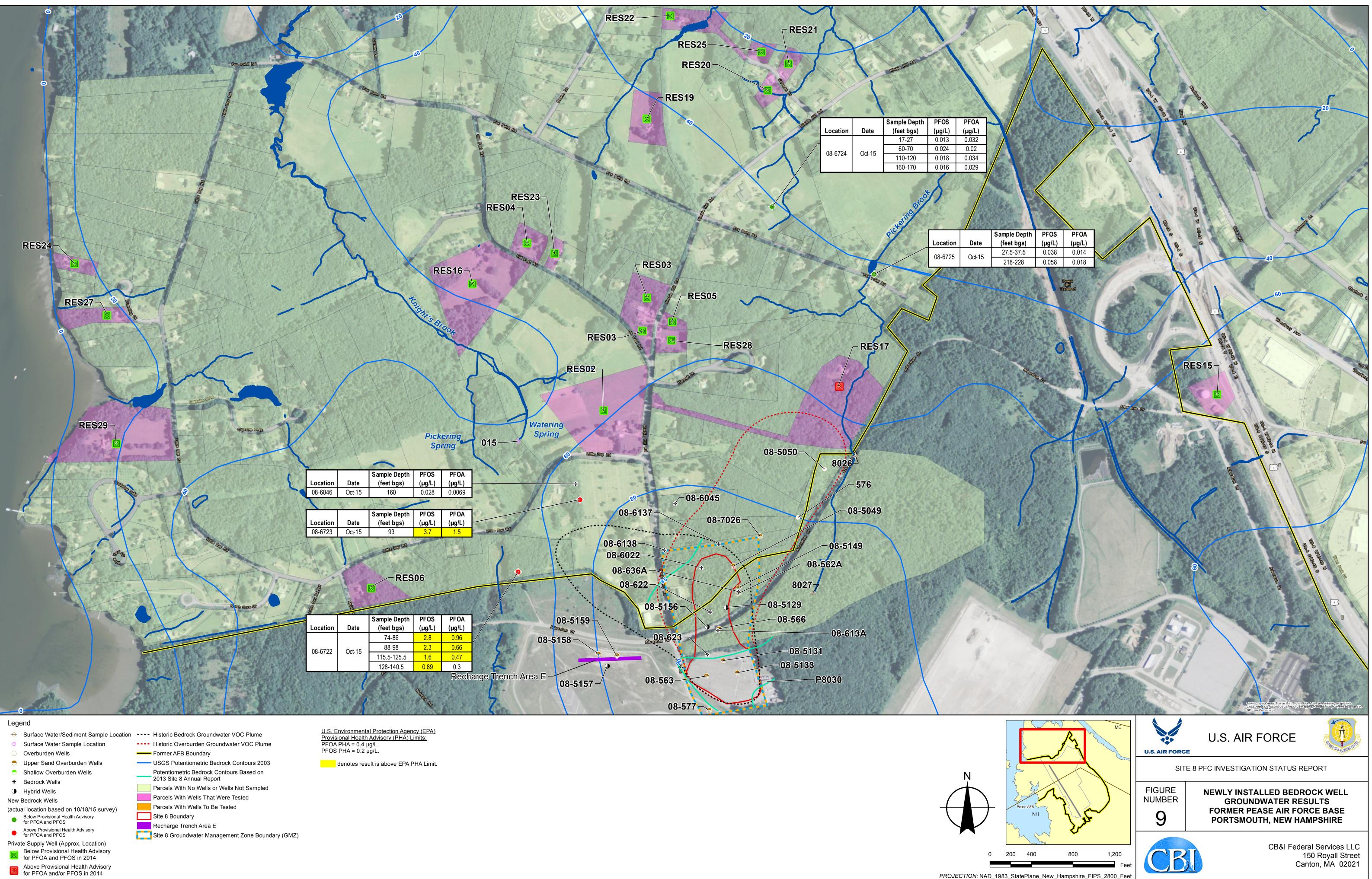

300

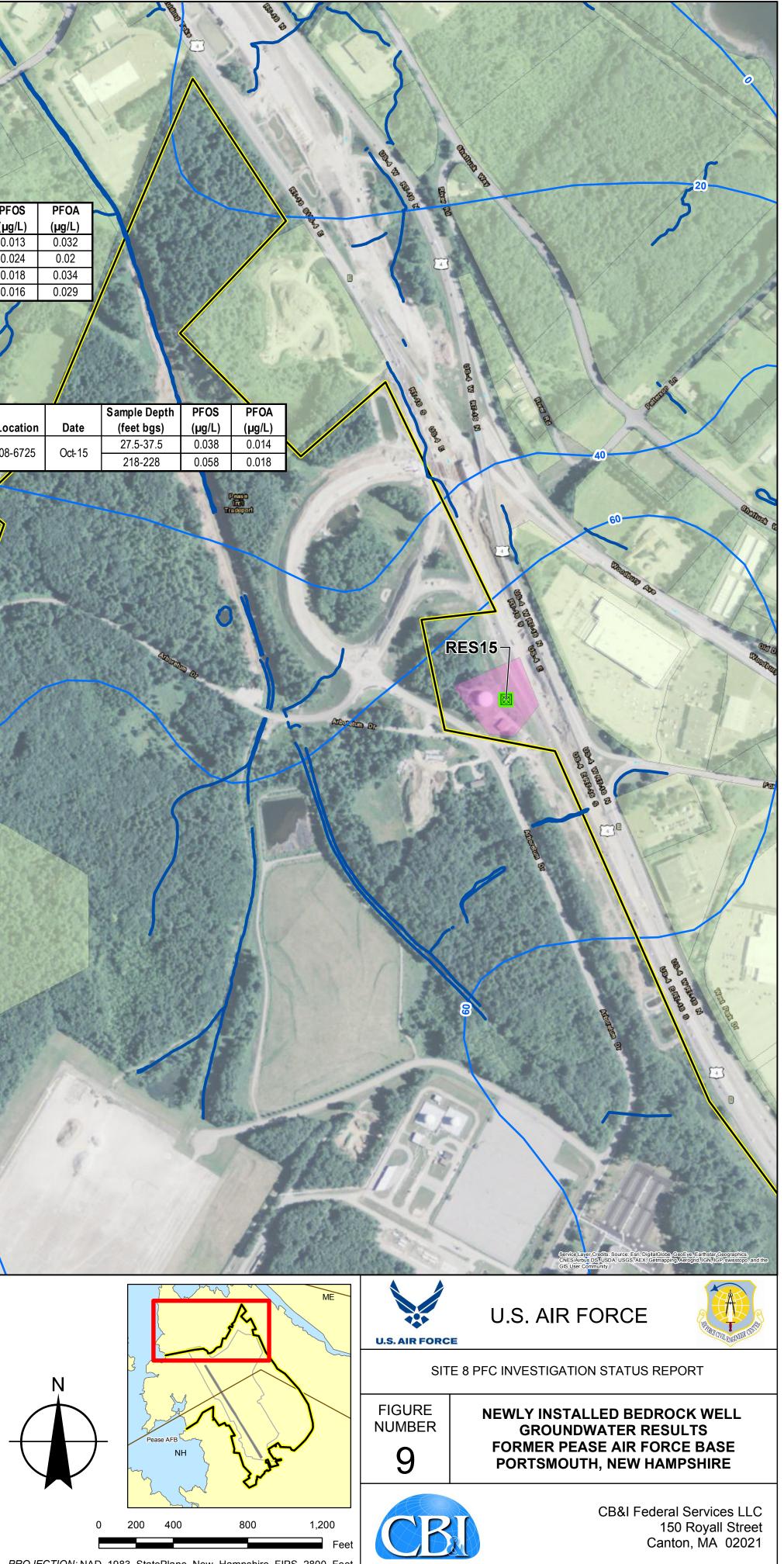

rvice,Layer,Credits: Source: Esri,DigitalGlobe, GeoEye, Earthstar Geographics, NES/Airbus,DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo,

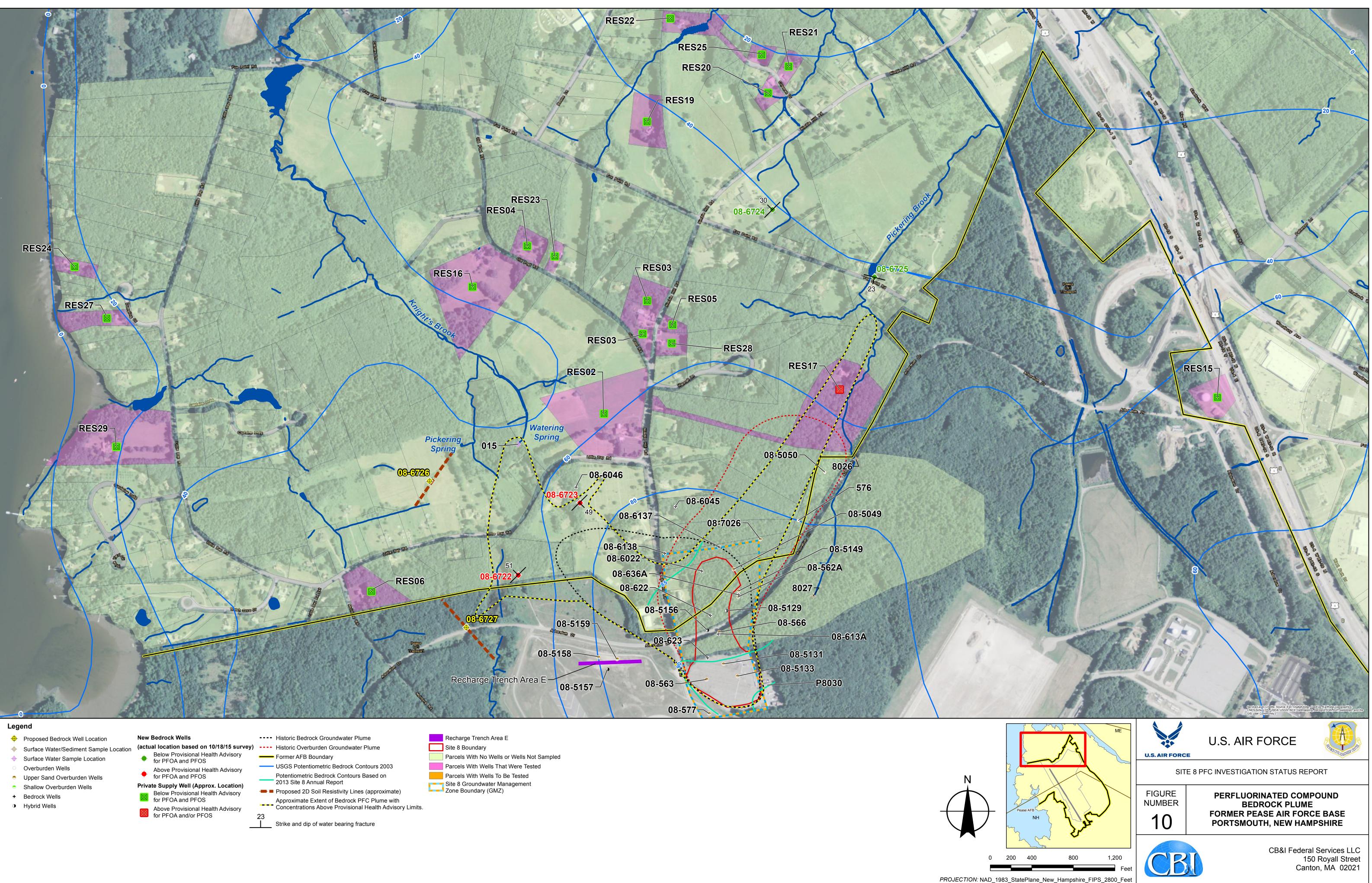


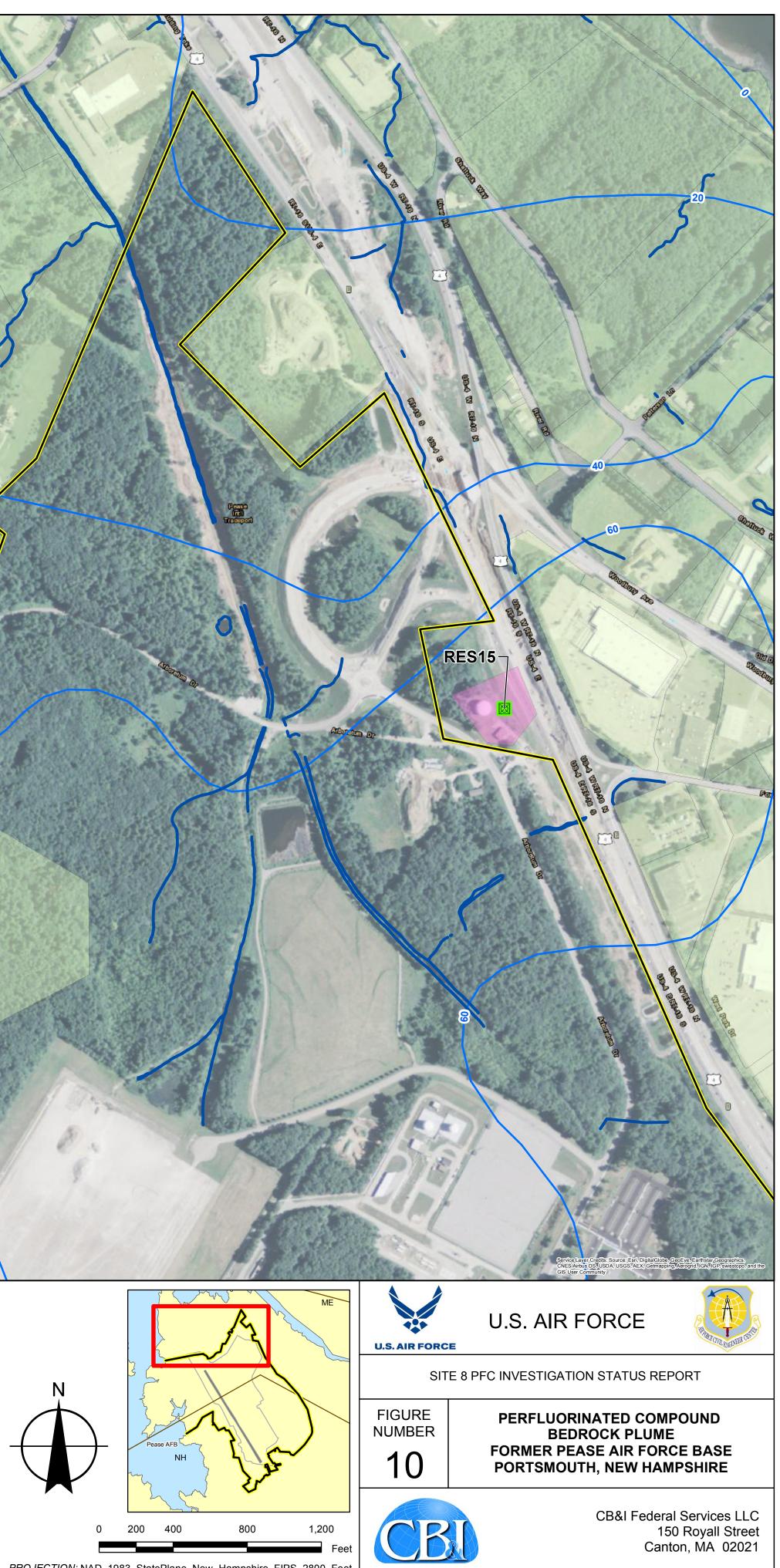












G:\Pease_AFB\GIS_Documents\Project_Maps\PFC\Site_8\Jan2016\Pease_Site08_PFC_009_GW_PFOS_PFOA_Results_22x34.mxd; Date: 3/2/2016 10:43:42 AM

Tables

Table 1Summary of Transmissive Zones and Sample ZonesSite 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well Identification	Drilling: Transmissive Zones ^a	Geophysical: Transmissive Zones (feet bgs)	Proposed Sample Zone (feet bgs)	Actual Sample Zone (feet bgs)		
		possible 74.5-75'	74.04	74.0/		
		possible 79-80'	/4-84	74-86'		
08-6722		possible 88.5-95.5'	89-99'	88-98'		
(open bedrock hole 74-140.5 feet bgs)	115.5-120.5': 4 gpm 120 5-125 5': 10 gpm	likely 119-121.5'	115.5-125.5'	115.5-125.5'		
ŀ	Drilling: Transmissive Zones ^a Transmissive Zones (feet bgs) Zone (feet bg					
	÷.	· · · · · · · · · · · · · · · · · · ·	130-140'	128-140.5'		
	ę.	,				
08-6723	÷.	-	-			
			pump intake at	93' (low flow)		
88-108.5 leet bys)			-			
	19.2-20': 1 gpm		40.00			
		-	19-29'	17-27'		
ľ		-				
	35-40': 1 gpm					
ľ	60-65': 2 gpm	possible 64-64.5'		(0.70)		
		likely 66-66.5'	64-74'	60-70'		
08-6724	72-73': 6 gpm					
(open bedrock hole	75-80': 3 gpm					
19.2-180.8 feet bgs)	110-115': 5 gpm	possible 113.5'	110-120'	110-120'		
08-6723 135.5-140.5: 20 gpm like 08-6723 88-90': 20 gpm like (open bedrock hole 93.5-94.5': 30 gpm like 93.5-94.5': 1 gpm like 35-40': 1 gpm like 60-65': 2 gpm poss 65-70': 2 gpm like 35-40': 1 gpm like 60-65': 2 gpm poss 65-70': 2 gpm like 72-73': 6 gpm poss 65-70': 2 gpm poss 19.2-180.8 feet bgs) 110-115': 5 gpm poss 110-115': 5 gpm poss poss poss poss poss poss poss poss poss	possible 126.5-127'					
		possible 129.5'				
	Image: set base Image: set					
		possible 157-164'				
	166-168': 10 gpm	likely 165.5-169'	166-176'	160-170'		
		possible 171-178'				
		likely 28-28.5'	27 E 27 E'	27.5-37.5'		
		likely 36'	27.0-37.0	27.3-37.5		
		likely 40-43'				
08-6725		possible 48'				
		likely 63'				
27.5-228 feet bgs)		possible 75.5-76.5'				
		possible 80'				
		possible 189.2'				
Ī	221.5-226.5: ~46 gpm	likely 221.2-225.2'	215.5-225.5'	218-228'		

^a denotes zones producing 1 gpm or more during air lifting.

' denotes feet.

--- denotes no data to report.

bgs denotes below ground surface.

gpm denotes gallons per minute.

Table 2Groundwater PFC Results, October 2015Site 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well ID	Field Sample ID	Groundwater Sample Depth (feet bgs)	Sample Method	Sample Date	Lab Sample ID	Parameter	Units	Result	VQ	LOQ	LOD	DL	Dilution Factor
					Perfluoro Perfluoro Perfluoro Perfluoro K1511678-002 Perfluoro Perfluoro	Perfluorobutane sulfonate	µg/L	0.0016	J	0.0045	0.002	0.0008	1
	S8-0485	160'	low flow	10/14/2015		Perfluorodecanoic acid	µg/L	0.0015	U	0.0045	0.002	0.0015	1
08-6046						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0016	J	0.0045	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.014		0.0045	0.002	0.0007	1
						Perfluorohexanoic acid	µg/L	0.0075		0.0045	0.002	0.0006	1
						Perfluorononanoic acid	µg/L	0.0014	U	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.025		0.0045	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.0061		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.0033	J	0.0045	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
	S8-0486 (duplicate)	160' duplicate	low flow			Perfluorobutane sulfonate	µg/L	0.0018	J	0.0044	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.0044	0.002	0.0015	1
					K1511678-003	Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0018	J	0.0044	0.002	0.0005	1
				10/14/2015		Perfluorohexane sulfonate	µg/L	0.016		0.0044	0.002	0.0007	1
08-6046						Perfluorohexanoic acid	µg/L	0.0086		0.0044	0.002	0.0006	1
						Perfluorononanoic acid	µg/L	0.0014	U	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.028		0.0044	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.0069		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.0036	J	0.0044	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
	S8-0487	128 to 140.5'	packer sample			Perfluorobutane sulfonate	µg/L	0.15		0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.005	0.002	0.0015	1
				10/05/2015	K1511321-001	Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.076		0.005	0.002	0.0005	1
08-6722						Perfluorohexane sulfonate	µg/L	0.75		0.25	0.1	0.0340	50
						Perfluorohexanoic acid	µg/L	0.43		0.25	0.1	0.0310	50
						Perfluorononanoic acid	µg/L	0.0015	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.89		0.25	0.1	0.0900	50
						Perfluorooctanoic acid (PFOA)	µg/L	0.3	J	0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.18		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1

Table 2 (continued)Groundwater PFC Results, October 2015Site 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well ID	Field Sample ID	Groundwater Sample Depth (feet bgs)	Sample Method	Sample Date	Lab Sample ID	Parameter	Units	Result	VQ	LOQ	LOD	DL	Dilution Factor
08-6722			packer sample	10/06/2015	K1511321-002	Perfluorobutane sulfonate	µg/L	0.24		0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.12		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	1.2		0.25	0.1	0.0340	50
	S8-0488	115 to 125.5'				Perfluorohexanoic acid	µg/L	0.66		0.25	0.1	0.0310	50
						Perfluorononanoic acid	µg/L	0.0027	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	1.6		0.25	0.1	0.0900	50
						Perfluorooctanoic acid (PFOA)	µg/L	0.47		0.25	0.25	0.0750	50
					-	Perfluoropentanoic acid	µg/L	0.29		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
-		88 to 98'	packer sample			Perfluorobutane sulfonate	µg/L	0.26		0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.16		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	1.6		0.25	0.1	0.0340	50
08-6722	S8-0489			10/06/2015	K1511321-003	Perfluorohexanoic acid	µg/L	0.82		0.25	0.1	0.0310	50
						Perfluorononanoic acid	µg/L	0.0042	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	2.3		0.25	0.1	0.0900	50
						Perfluorooctanoic acid (PFOA)	µg/L	0.66		0.25	0.25	0.0750	50
						Perfluoropentanoic acid	µg/L	0.45		0.25	0.1	0.0470	50
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
-	S8-0490	74 to 86'	packer sample			Perfluorobutane sulfonate	µg/L	0.22		0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.005	0.002	0.0015	1
08-6722				10/06/2015	K1511321-004	Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.22		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	2.2		0.25	0.1	0.0340	50
						Perfluorohexanoic acid	µg/L	1		0.25	0.1	0.0310	50
						Perfluorononanoic acid	µg/L	0.0064		0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	2.8		0.25	0.1	0.0900	50
					-	Perfluorooctanoic acid (PFOA)	µg/L	0.96		0.25	0.25	0.0750	50
						Perfluoropentanoic acid	µg/L	0.73	1	0.25	0.1	0.0470	50
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1

Table 2 (continued)Groundwater PFC Results, October 2015Site 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well ID	Field Sample ID	Groundwater Sample Depth (feet bgs)	Sample Method	Sample Date	Lab Sample ID	Parameter	Units	Result	VQ	LOQ	LOD	DL	Dilution Factor
						Perfluorobutane sulfonate	µg/L	0.24	J	0.01	0.004	0.0015	1
						Perfluorodecanoic acid	µg/L	0.003	U	0.01	0.004	0.0030	1
						Perfluorododecanoic acid	µg/L	0.0096	U	0.01	0.01	0.0096	1
						Perfluoroheptanoic acid	µg/L	0.31		0.01	0.004	0.0010	1
						Perfluorohexane sulfonate	µg/L	2.8	J	0.2	0.08	0.0280	20
08-6723	S8-0491	93'	low flow	10/14/2015	K1511678-001	Perfluorohexanoic acid	µg/L	1.2		0.2	0.08	0.0250	20
						Perfluorononanoic acid	µg/L	0.0083	J	0.01	0.01	0.0028	1
						Perfluorooctane sulfonate (PFOS)	µg/L	3.7		0.2	0.08	0.0720	20
						Perfluorooctanoic acid (PFOA)	µg/L	1.5		0.2	0.2	0.0600	20
						Perfluoropentanoic acid	µg/L	0.87		0.01	0.004	0.0019	1
						Perfluoroundecanoic acid	µg/L	0.0052	U	0.01	0.01	0.0052	1
						Perfluorobutane sulfonate	µg/L	0.0017	J	0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0044	J	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0076		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.0074		0.005	0.002	0.0007	1
08-6724	S8-0492	160 to 170'	packer	10/07/2015	K1511425-001	Perfluorohexanoic acid	µg/L	0.042		0.005	0.002	0.0006	1
			sample			Perfluorononanoic acid	µg/L	0.003	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.016		0.005	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.029		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.06		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0032	J	0.005	0.005	0.0026	1
						Perfluorobutane sulfonate	µg/L	0.0026	J	0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0031	J	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0089		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.013		0.005	0.002	0.0007	1
08-6724	S8-0493	110 to 120'	packer sample	10/07/2015	K1511425-002	Perfluorohexanoic acid	µg/L	0.053		0.005	0.002	0.0006	1
			sample			Perfluorononanoic acid	µg/L	0.0031	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.018		0.005	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.034		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.066		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1

Table 2 (continued)Groundwater PFC Results, October 2015Site 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well ID	Field Sample ID	Groundwater Sample Depth (feet bgs)	Sample Method	Sample Date	Lab Sample ID	Parameter	Units	Result	VQ	LOQ	LOD	DL	Dilution Factor
						Perfluorobutane sulfonate	µg/L	0.0032	J	0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0017	J	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0043	J	0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.022		0.005	0.002	0.0007	1
08-6724	S8-0494	60 to 70'	packer sample	10/08/2015	K1511425-004	Perfluorohexanoic acid	µg/L	0.026		0.005	0.002	0.0006	1
			Sample			Perfluorononanoic acid	µg/L	0.0016	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.024		0.005	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.02		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.028		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
						Perfluorobutane sulfonate	µg/L	0.0018	J	0.005	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0024	J	0.005	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0087		0.005	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.0078		0.005	0.002	0.0007	1
08-6724	S8-0495	17 to 27'	packer sample	10/08/2015	K1511425-005	Perfluorohexanoic acid	µg/L	0.054		0.005	0.002	0.0006	1
			sample			Perfluorononanoic acid	µg/L	0.0027	J	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.013		0.005	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.032		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.076		0.005	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
						Perfluorobutane sulfonate	µg/L	0.0099		0.0043	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.0043	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0037	J	0.0043	0.002	0.0005	1
						Perfluorohexane sulfonate	µg/L	0.03		0.0043	0.002	0.0007	1
08-6725	S8-0496	27.5 to 37.5'	packer sample	10/09/2015	K1511544-003	Perfluorohexanoic acid	µg/L	0.016		0.0043	0.002	0.0006	1
			sample			Perfluorononanoic acid	µg/L	0.0014	U	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.038		0.0043	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.014		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.007		0.0043	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1

Table 2 (continued)Groundwater PFC Results, October 2015Site 8, Fire Department Training Area 2Former Pease Air Force BasePortsmouth, New Hampshire

Well ID	Field Sample ID	Groundwater Sample Depth (feet bgs)	Sample Method	Sample Date	Lab Sample ID	Parameter	Units	Result	VQ	LOQ	LOD	DL	Dilution Factor
						Perfluorobutane sulfonate	µg/L	0.011		0.0045	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.0045	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.0047		0.0045	0.002	0.0005	1
			nackor			Perfluorohexane sulfonate	µg/L	0.04		0.0045	0.002	0.0007	1
08-6725	S8-0497	218 to 228'	packer sample	10/09/2015	K1511544-001	Perfluorohexanoic acid	µg/L	0.02		0.0045	0.002	0.0006	1
			Sumple			Perfluorononanoic acid	µg/L	0.0014	U	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.055		0.0045	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.018		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.0088		0.0045	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1
						Perfluorobutane sulfonate	µg/L	0.012		0.0045	0.002	0.0008	1
						Perfluorodecanoic acid	µg/L	0.0015	U	0.0045	0.002	0.0015	1
						Perfluorododecanoic acid	µg/L	0.0048	U	0.005	0.005	0.0048	1
						Perfluoroheptanoic acid	µg/L	0.005		0.0045	0.002	0.0005	1
	S8-0498		nackor			Perfluorohexane sulfonate	µg/L	0.042		0.0045	0.002	0.0007	1
08-6725	(duplicate)	218 to 228' duplicate	packer sample	10/09/2015	K1511544-002	Perfluorohexanoic acid	µg/L	0.023		0.0045	0.002	0.0006	1
	(uuplicate)		Sumple			Perfluorononanoic acid	µg/L	0.0014	U	0.005	0.005	0.0014	1
						Perfluorooctane sulfonate (PFOS)	µg/L	0.058		0.0045	0.002	0.0018	1
						Perfluorooctanoic acid (PFOA)	µg/L	0.018		0.005	0.005	0.0015	1
						Perfluoropentanoic acid	µg/L	0.0094		0.0045	0.002	0.0009	1
						Perfluoroundecanoic acid	µg/L	0.0026	U	0.005	0.005	0.0026	1

denotes result is above U.S. Environmental Protection Agency Provisional Health Advisory (PHA) Limit (PFOA PHA = 0.4 μg/L; PFOS PHA = 0.2 μg/L).

' denotes feet.

µg/L denotes micrograms per liter.

bgs denotes below ground surface.

DL denotes detection limit.

ID denotes identification.

J denotes estimated.

LOD denotes limit of detection.

LOQ denotes limit of quantitation.

U denotes nondetect.

VQ denotes validation qualifier.

This page intentionally left blank.

Appendix A Electrical Resistivity Report

ELECTRICAL RESISTIVITY SURVEY AT THE FORMER PEASE AIR FORCE BASE, PORTSMOUTH, NH

For:

CB&I, INC.

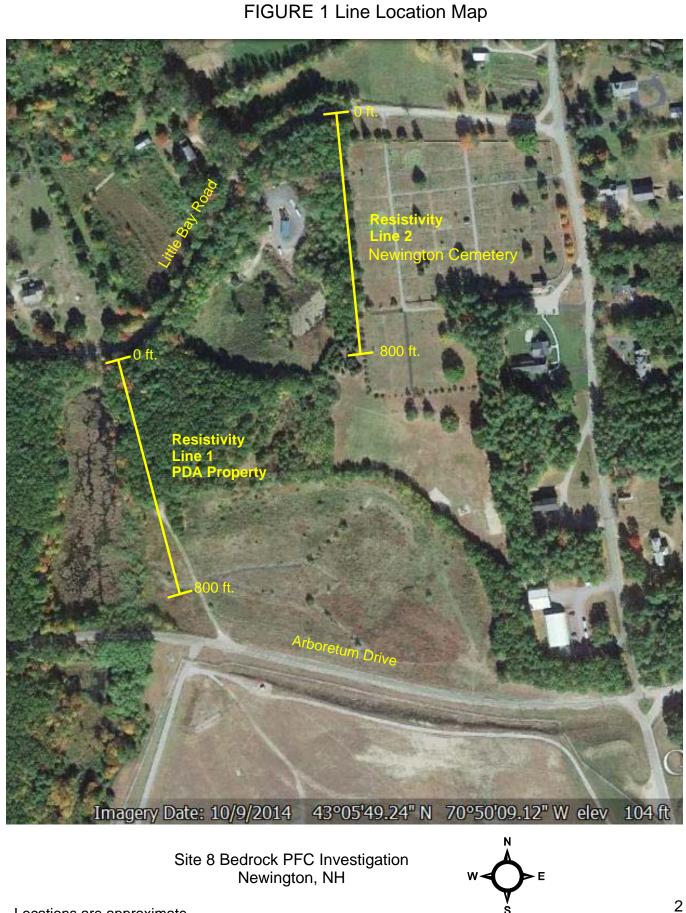
Northeast Geophysical Services 4 Union Street, Suite 3 Bangor, Maine 04401 June, 2015

ELECTRICAL RESISTIVITY SURVEY AT THE FORMER PEASE AIR FORCE BASE, PORTSMOUTH, NH

INTRODUCTION

At the request of CB&I, Inc. an electrical resistivity survey was completed by Northeast Geophysical Services (NGS) near the Former Pease Air Force Base property in Portsmouth, New Hampshire as part of the Site 8 Bedrock PFC Investigation. Four survey lines totaling 3,200 feet were surveyed. Fieldwork was done on May 18 and 19, 2015 by Rudy Rawcliffe and Wayne Campbell of NGS assisted by Christian Buerkle of CB&I. The results of the survey will be used to assist in the selection of well drilling locations. This report describes the equipment and methods used and the results of the survey. Vertical profiles that show the modeled 2-D resistivity for each survey line are included with the report.

LOCATION AND SITE CONDITIONS


Resistivity Lines 1 and 2 are located just north of the runway. Line 1 trends 800 feet north to south along a dirt pathway and field beginning at the Little Bay Road in the north and approaching the Arboretum Road to the south. Line 2 trends 800 feet north to south just west of a cemetery beginning at the Little Bay Road in the north. Figure 1, on the following page shows the approximate location and orientation of Lines 1 and 2.

Resistivity Lines 3 and 4 are located in the Newington Elementary School property. Line 3 trends 800 feet north to south across the school athletic fields beginning at the Nimble Hill Road in the north and approaching the Fox Hill Road Road to the south. Line 2 trends 800 feet southwest to northeast across the school athletic fields beginning at the Fox Hill Road Road in the southwest. Figure 2, on page 3, shows the approximate location and orientation of Lines 3 and 4.

Surface conditions along Lines 1 and 2 was generally dry sand or gravel. Surface conditions along Lines 3 and 4 was generally moist loamy soil. Each line was marked at 200-foot intervals with a pink pin flag.

SUMMARY OF RESULTS

The interpreted data are presented in the appendix as colorized vertical profiles of the modeled resistivity for each of the four survey lines. The lowest resistivities, which are shown in blue, are interpreted to represent saturated soils or highly fractured saturated bedrock. The highest resistivities, shown in dark red-brown, are interpreted to represent dry sand and gravel soil or massive (unfractured) bedrock. Intermediate colors (yellows to light orange) are interpreted to represent intermediate conditions, i.e. - moist silty or sandy soils or saturated fractured bedrock. Possible fracture zones are shown as dashed blue lines in the models.

Locations are approximate

FIGURE 2 Line Location Map

(proposed location 08-6724, Newington Public School) Site 8 Bedrock PFC Investigation Newington, NH

3

Locations are approximate

RESISTIVITY METHOD AND INSTRUMENTATION

Electrical resistivity is the resistance (in ohms) to the flow of electricity across a volume of material. Resistivity values are commonly expressed in ohmmeters. The resistivity of earth material is determined by measuring the voltage drop between two electrodes when current is applied into the earth through two other electrodes located a set distance away. Resistivity is calculated by dividing the voltage by the current multiplied by a constant. This constant is determined by the electrode spacing and configuration. The resistivity of earth material is primarily determined by its water content and the water salinity. Lower resistivities can be caused by increasing the water content or by increasing the water salinity or both. Thus, dry soil or rock typically has a higher resistivity than if it is saturated. And generally, the more porous or highly fractured that saturated material is, the lower its resistivity will be. The following table shows some general ranges in resistivity of some common earth materials.

Material	Resistivity (ohmmeters)
Wet to moist clayey soil and wet clay	1s to 10s
Wet to moist silty soil and silty clay	Low 10s
Wet to moist silty and sandy soils	10s to 100s
Sand and gravel with layers of silt	Low 1000s
Course dry sand and gravel deposits	High 1000s
Well-fractured to slightly fractured saturated rock	100s
Slightly fractured rock with dry, soil filled cracks	Low 1000s
Massively bedded rock	High 1000s

(from Burger, H. R., 1992, <u>Exploration Geophysics of the Shallow Subsurface pp. 295</u> Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632)

At the Former Pease AFB site resistivity data were collected using an ABEM Terrameter SAS 4000 resistivity meter with an ABEM LUND 10-64e electrode selector. This is an automated multi-electrode resistivity system. The survey was conducted using the gradient array.^{1*} The gradient configuration consists of pairs of potential electrodes that are inside a pair of current electrodes. Depth of investigation is determined by the spacing between the current electrodes with the wider spacing penetrating more deeply into the earth.

C1	P1 P2	P3 P4	C2
∇	∇ ∇	∇ ∇	∇

gradient configuration

SURVEY RESULTS

The data were interpreted using the RES2DINV interpretation software written by M.H. Loke. This program creates a 2-dimensional model of the subsurface resistivity based on the apparent resistivities measured at the surface. The effectiveness of the model to match the surface measurements is calculated as a percentage of the root-mean-square (% RMS) difference between the modeled and actual measurements. In general, a RMS value of 10% or less is

A Division of NGS, Inc.

^{*}Line 1 was done using the dipole-dipole array, however, because of background noise, the other lines were done using the gradient array which has a higher signal strength.

considered a close match between the model and field measurements. At the Former Pease AFB site the RMS values for the models was generally good, averaging about 7%. The exception was Line 1 which had an RMS value of 17.6%.

The interpreted data was then contoured using the Surfer contouring program by Golden Software and presented as colorized vertical sections of apparent resistivity for each line. The colors in these sections depict the modeled resistivity with light orange-red to dark red-brown representing areas of high resistivity (2,000 to >20,000 ohmmeters) and low resistivities (below 400 ohmmeters) shown in blue shades. Resistivities from 500 to 2,000 ohmmeters are represented by white to yellow tones.

Modeled resistivity profiles of each survey line are appended. Following is a description of each resistivity model:

Line 1

Line 1 (800 feet) trends north to south. The ground surface along Line 1 was dry gravel. Because of this the amount of current injected into the ground averaged less than 20 milliamps. As a result the data for Line 1 was noisier than the other lines and the model has more uncertainty. The model shows a high resistivity surface layer generally ranging from 25 to 30 feet thick. This likely represents dry sand and gravel. Beneath this layer there is a layer of lower resistivity. This probably represents saturated soil. Below this layer the resistivity then increases with depth beginning anywhere from 75 to 100 feet deep along the line. This probably represents the bedrock.

The modeled results for Line 1 show a steep cross-cutting low resistivity zone that may represent a bedrock fracture zone located at about 400 feet along the line.

Line 2

Line 2 (800 feet) trends north to south. The resistivity model for Line 2 shows a high resistivity surface layer that is thickest in the north and thins towards the south. Resistivity is generally lower at depth. The model depicts a cross-cutting low resistivity zone that may represent a bedrock fracture zone located at about 390 to 420 feet along the line.

One concern about the model for Line 2 is that starting at about 240 feet along the line there is a wire fence that roughly parallels the line. This fence gradually gets closer to the line until about 580 feet at a corner where it is about two feet from the resistivity line. It is possible that this fence may have influenced the resistivity measurements and that the apparent low resistivity measurements at depth in the model are a result of the nearby fence rather than geologic changes

Line 3

Line 3 (800 feet) trends north to south. The model for Line 3 shows a low resistivity surface layer that probably represents saturated soil. This layer is thickest to the north about 50 feet and thins towards the north. Below this layer the resistivity then increases with depth beginning anywhere from less than 25 feet in the north to over 50 feet deep to the south along the line. This probably represents the bedrock.

The modeled results for Line 3 show a subtle cross-cutting low resistivity zone that may represent a bedrock fracture zone located at about 410 feet along the line as shown on the Line 3 model.

A Division of NGS, Inc.

Line 4

Line 4 (800 feet) trends southwest to northeast. The model shows a thin high resistivity surface layer about 15 feet thick or less from about 0 to 300 feet along the line. This likely represents dry soil. Beneath this layer there is a layer of lower resistivity. This probably represents saturated soil. Below this layer the resistivity then increases with depth beginning anywhere from 30 to over 50 feet deep along the line. This probably represents the bedrock.

The modeled results for Line 1 show two steep, cross-cutting low resistivity zones that may represent bedrock fracture zones. One is located at about 350 feet along the line which is near to the intersection with Line 3. The second zone is at about 610 feet along the line as shown on the Line 4 model.

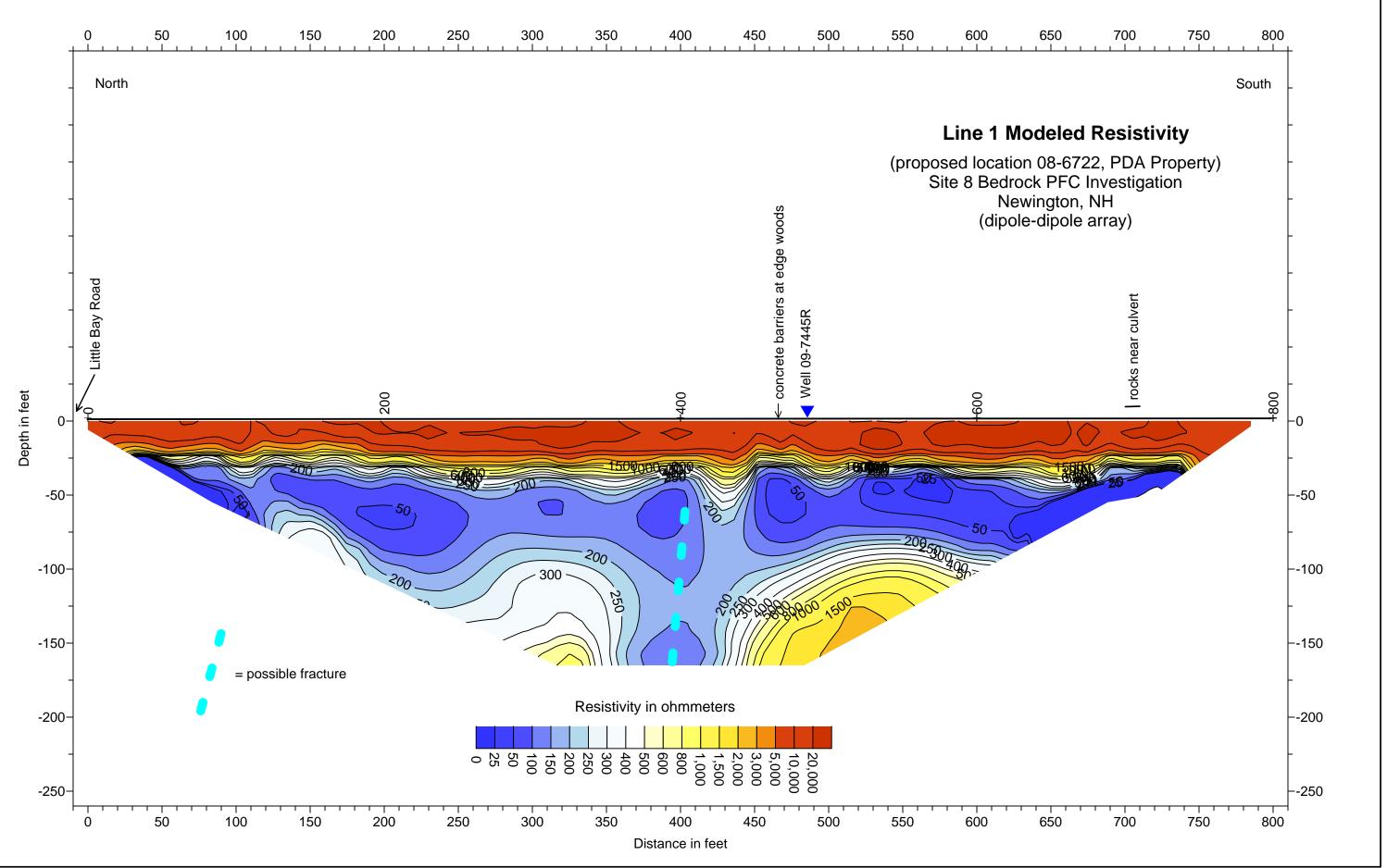
LIMITATIONS

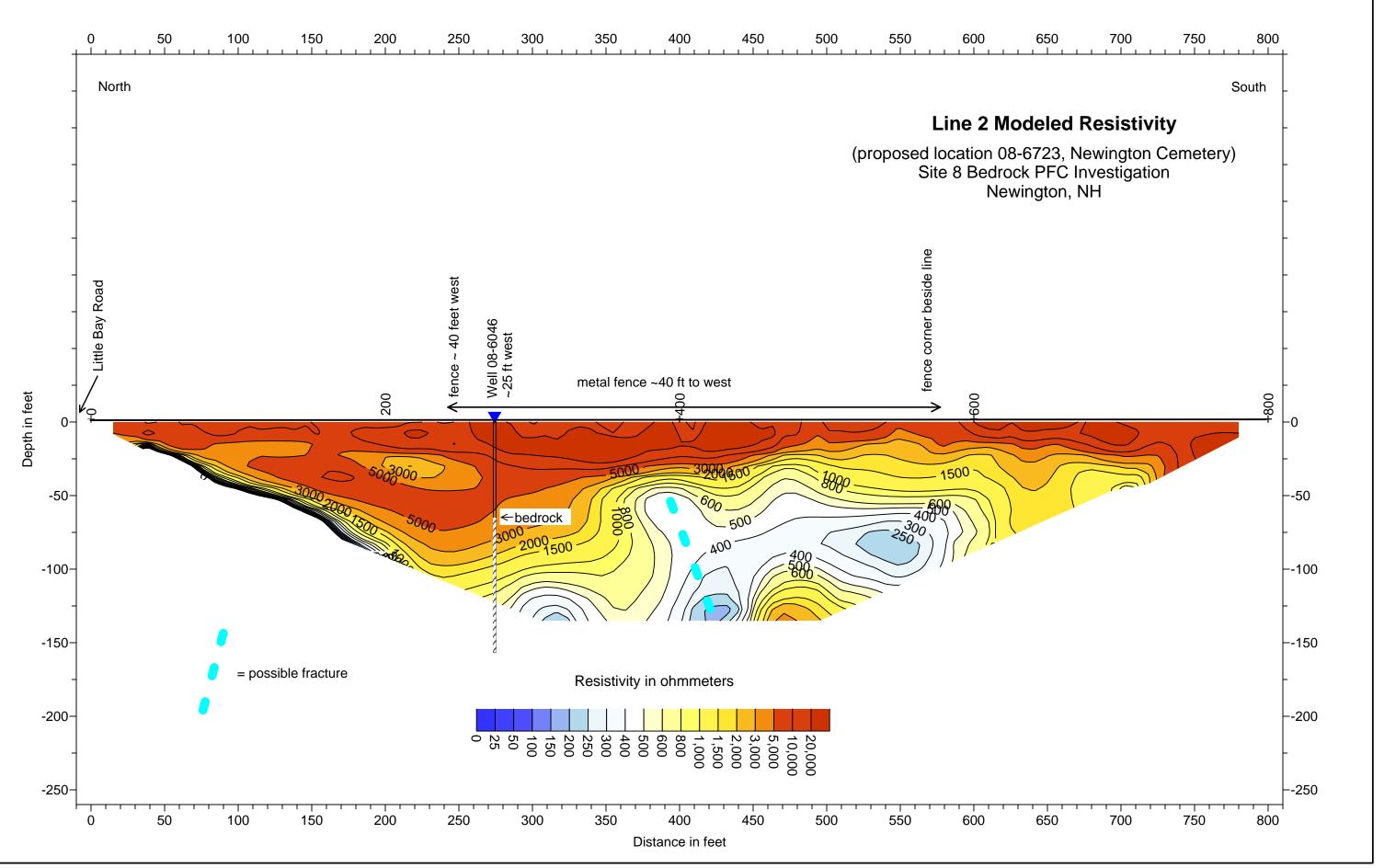
The interpreted resistivity sections in this report provide an indication of subsurface conditions at the sites surveyed. This information should be used along with other sources such as geologic mapping, photo-lineament mapping and other geophysical surveys in order to prioritize and optimize drill hole locations.

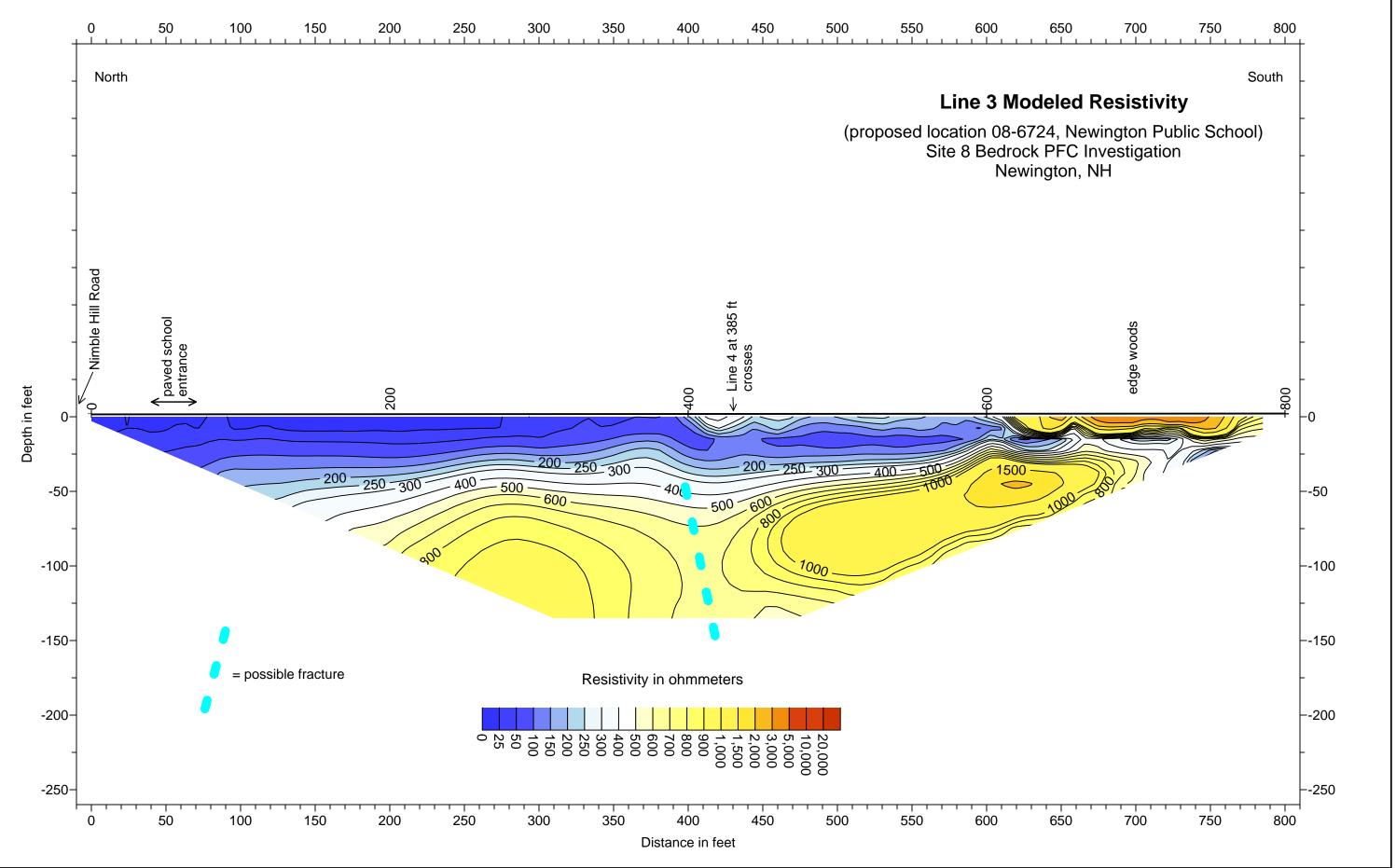
Electrical resistivity is an effective tool for mapping subsurface features such as saturated sediment or bedrock fracture zones. However, as with any indirect measurement, there are limitations to this method that should be kept in mind. First, it is possible that erroneous or bad data points may have been collected. Bad data would result in incorrect interpretations of the subsurface. A common difficulty in resistivity surveys is high contact resistance between the electrodes and the ground. Ideally, contact resistance should be about 1,000 ohms. The dry soil along much of survey lines 1 and 2 was challenging but the data collected at the Former Pease AFB site appeared to be generally good.

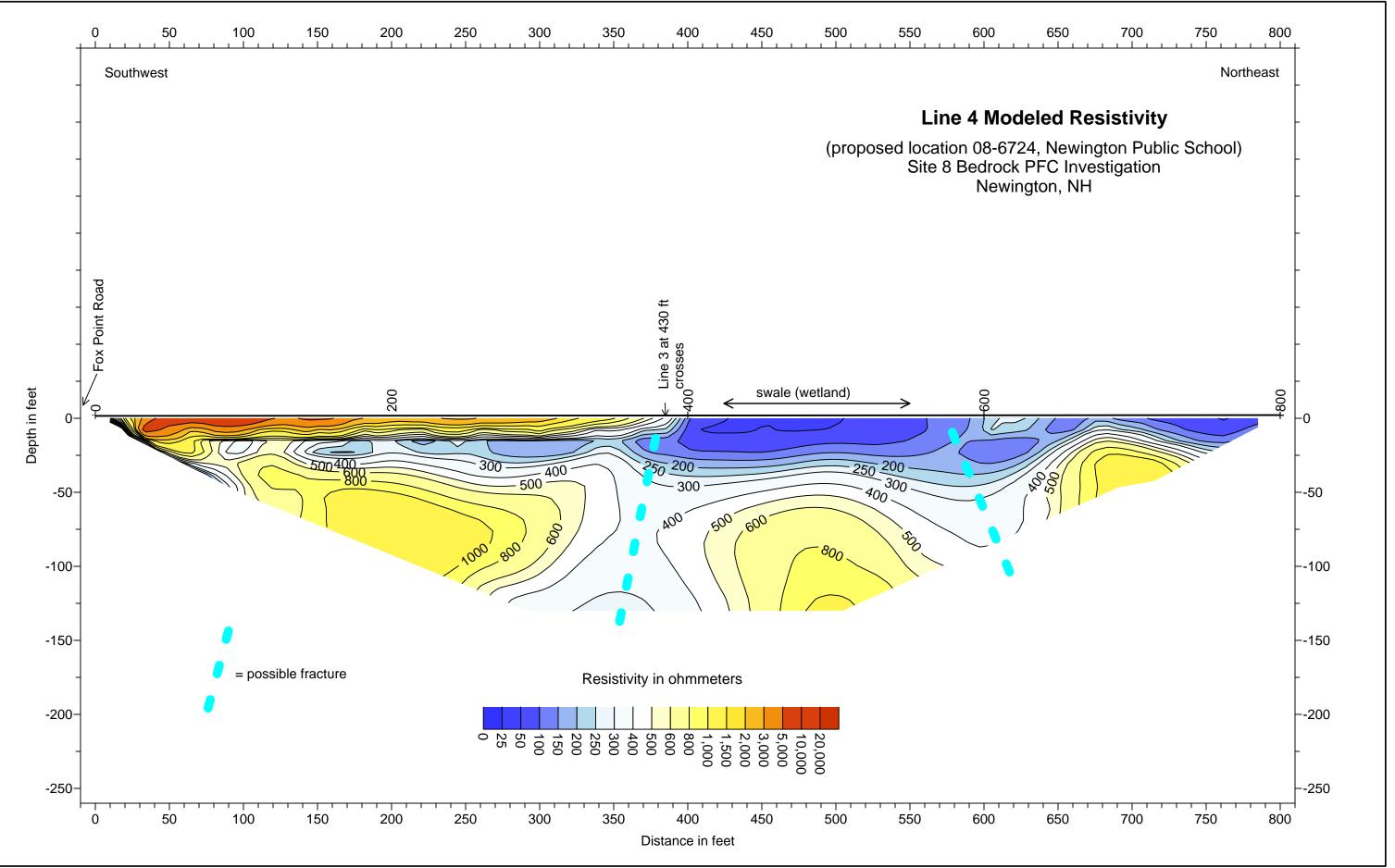
Data quality was assessed in two ways. During data acquisition the instrument makes resistivity readings at each point using forward and reversed polarities (pulsing from electrode A to electrode B and then pulsing from B to A). Unless the data is noisy, these readings should repeat to less than 1%. The difference between the forward and reversed polarity measurements in the resistivity readings at the Former Pease AFB site was generally less than 1%. The exception was Line 1 which had the noisiest data, due to dry soil that caused high contact resistance. On Line 1 206 of the 1,113 measurements exceeded 1% error.

After the data had been collected, profiles of the apparent resistivity for each "n" level on each of the lines surveyed were examined. Normally, these resistivity profiles should be relatively flat or smoothly varying. Bad data points can be identified as data points that abruptly deflect either upwards or downwards from the profile. There were a few bad data points observed in each of lines of the Former Pease AFB site data set. Obviously bad data points were removed before each profile was interpreted.


The modeled resistivity sections presented in this report created interpretations of the subsurface that closely agree mathematically with the field measurements. However, it is possible that other models of the subsurface exist that could also match the field measurements.


It should also be kept in mind that the modeled interpretations assume that changes in resistivity occur in two dimensions, either with depth or distance along the line. In reality the resistivity measurements also measure material to the left and right of the survey line. Thus it is possible


A Division of NGS, Inc.


that the program might model a feature that is not actually directly below the electrodes. A worst case scenario of this would be if a resistivity survey line were run parallel to a vertical conductor such as a metal pipeline or a vertical bedrock fracture. This feature might be detected and shown on the profile as a resistivity low zone even though it is not below the electrodes. Ideally, the resistivity lines should be oriented so as to cross any suspected features (such as bedrock fractures) at right angles to the strike of that feature. Of the four lines, Line 2 had a wire fence that paralleled the line about 40 feet away for about 340 feet. It is possible that the wire fence may have influenced the measurements on this line which would then distort the model.

MODELED RESISTIVITY PROFILES

Appendix B Boring and Well Construction Logs

CBI					Drilling Log Monitoring Well	
Project <u>Former Pease</u> Location <u>Portsmouth</u> Surface Elev. <u>77.2 ft</u> Top of Casing <u>78.18</u> Screen: Dia <u>4.5 in.</u> Casing: Dia <u>5.0ID/5.</u> Fill Material <u>(see weat</u> Drill Co. <u>New Englar</u> Driller <u>Gregg Leavitt</u> Checked By <u>Chris Bu</u>	n, NH ft. 50D in. Il materia nd Boring	Total Hole Dep Water Level In Length <u>66.5</u> Length <u>74 ft.</u> als in comments g Contr. Meth	oth <u>140</u> itial <u>NA</u> ft. s) nod <u>Driv</u> s Buerkle	0.5 ft. _ Riq /e and	Static <u>24.8 ft.</u> Diameter <u>4.5 in.</u> Type/Size <u>open hole</u> Type <u>mild steel</u> G/Core <u>Failing Strata Star 15</u> Wash / Air Hammer Date <u>6/28/15</u> Permit #	140.5' bgs: 0.0 to 0.4 ppm. <u>Well 08-6722:</u> 1.0 ft stick up, 5"ID/5.5"OD mild steel casing grouted into 5-7/8" borehole to 74' bgs, 4.5-inch open hole section from 74 to 140.5' bgs. Note: 5-7/8" hole drilled to 79' bgs but 5.5-inch casing got stuck at 74' bgs and was grouted in
Depth (ft.) (ft.) Vell Completion	OId (mdd)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structur Geologic Descriptions are Based on	,
- 0	0.0	100%		OH	0-0.5': Organic topsoil, loose, very dark bro 0.5-5': Poorly graded SAND with gravel (SI dense, dark yellowish brown 10YR 4/6, 60 35% fine to coarse gravel (angular to subro coarse sand, no odor, (Upper Sand). 5-20': Same as 0.5-5' (gravel portion gettin bit), (Upper Sand).	P), moist, medium % fine to medium sand, bunded), 5% silt, trace
R					Continued Next Page B-1	

Monitoring Well

08-6722 Page: 2 of 5

ocation _	Portsmouth	n, NH					Proj. No. <u>143279</u>
Depth (ft.)	Well Completion	(mqq) DIA	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 24 - Ţ					° ° () ?		<i>Continued</i> 20-33': Poorly graded SAND with gravel (SP), dark yellowish
- 26 — _ - 28 —					。○ (。○ °		brown 10YR 4/6, fine to medium sand, trace coarse sand, gravel percentage unknown: ground up by roller bit, no odor, (Upper Sand).
- 30 -						SP	
- 32 -					∘ ○ (<u>> ○ </u>		
- 34 — _ - 36 —						SP	33-38': Poorly graded SAND (SP), 100% fine to medium sand, trace coarse sand, 10YR 4/6, no odor, (Upper Sand).
- 38 -							38-42.5': Slity CLAY (CL), 80% clay, 20% silt, dark greenish gray
- 40 - -						CL	Gley1 4/10Y, no odor, (Marine Clay/Silt).
42 —					• • _ •	SP	42.5-45': Poorly graded SAND with gravel (SP), fine sand, gravel, trace cobble, Gley1 4/10Y, (Lower Sand).
44 — - 46 —							
- 48 —							45-53': Silty SAND (SM), fine sand, silt (unknown amount), gray 10YR 5/1, (Lower Sand).
- 50 —						SM	
- 52							53-55': Silty SAND (SM), fine sand, ~25% silt, trace fine gravel, gray 10YR 5/1, no odor, (Lower Sand).
56 -	W W						

Monitoring Well

08-6722 Page: 3 of 5

Depth (ft.)	Well Completion	(mqq) DIA	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	Class.	Description
De (ff	Comp	Id dj	Samp % Rec	Blow	Gra	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
56 —					리이라		Continued
- 58 — -							55-64': Silty SAND (SM), fine sand, ~25% silt, dark yellowish brown 10YR 5/6, (Lower Sand).
60 —							
- 62 —						SM	
64 —							
66 —							64-69.5': Silty SAND (SM), fine sand, ~25% silt, gray 10YR 5/1, (Lower Sand).
68 — _							
70 —							69.5-72': Highly weathered phyllite, dark bluish gray Gley2 4/5PB rust-brown weathering, trace calcite, (highly weathered bedrock).
72 — - 74 —							72-80.5': Weathered phyllite, Gley2 4/5PB, some rust-brown weathering, trace calcite, (weathered bedrock). Driller indicates competent bedrock at 72' bgs based on downhole pressure. Note bottom of 5-inch casing installed at 74' bgs.
- 76 —							[5-7/8" hole drilled to 79' bgs but 5.5-inch casing got stuck at 74' bgs and was grouted in place.]
- 78 —							
- 80 —							Flow (Q) 74-80.5': Very small amount of water.
82 —							80.5-85.5': Slightly weathered metasediment (siltstone/mudstone), some calcite pieces, dark bluish gray Gley2 4/5PB.
84 —							
86 —							85.5-90.5': Slightly weathered metasediment (siltstone/mudstone), some calcite and quartz pieces, dark bluish gray Gley2 4/5PB. Fast drill rate 84-84.5' bgs.

Monitoring Well

08-6722 Page: 4 of 5

ation _							Proj. No <u>143279</u>
ŧ_	Well Completion	Q F	Sample ID % Recovery	Blow Count Recovery	hic	USCS Class.	Description
Depth (ft.)	We	(mqq)	Reco	ow C	Graphic Log	CS CS	(Color, Texture, Structure)
	ö		, wi	퓚쬬	0	N	Geologic Descriptions are Based on the USCS.
88 –	1 1						Continued
_							
90 —							
90							Q at 90.5': Still very small amount of water.
_							90.5-95.5': Weathered metasediment (siltstone/mudstone), some
92 —							calcite and quartz pieces, dark bluish gray Gley2 4/5PB.
-							
94 —							
-							Q at 95.5': Still very small amount of water.
96 —							- -
_					XXX		95.5-100.5: Slightly weathered to weathered metasediment (siltstone/mudstone) ~40% calcite pieces, bluish gray Gley2
98 –							6/10B.
_							
100 —							
100							100.5-105.5': Slightly weathered metasediment
102 —							(siltstone/mudstone) ~15% calcite pieces, bluish gray Gley2 6/10B.
-							0,100.
104 —							
_							
106 —							
_							105.5-110.5: Slightly weathered metasediment (siltstone/mudstone) ~25% calcite pieces, dark bluish gray Gley2
108 —							4/5PB. Zone is producing water.
_							
110 —							O at 110 5': 0.0 apm
_							<u>Q at 110.5': 0.9 gpm.</u>
112 -							110.5-115.5: Slightly weathered metasediment
··· ~ _)))		(siltstone/mudstone) ~20% calcite pieces, dark bluish gray Gley2 4/5PB.
1							
114 —							
-							
116 —) X X X		
-							115.5-120.5': Slightly weathered metasediment (siltstone/mudstone) ~20% calcite pieces, dark bluish gray Gley2
118 —							4/5PB. Increase in water, fast drill rate 116-120.5', gravel up to 3/4" blowing out of fracture zone.
_							-
120 —						ı	<u>Q at 120.5': 5 gpm.</u>

Monitoring Well

08-6722 Page: 5 of 5

	۲ ۲			t I		ý	
Depth (ft.)	Well Completion	(mqq)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Color, Texture, Structure)
120 —				_			Geologic Descriptions are Based on the USCS. Continued
120 -							
122 —							120.5-125.5': Weathered metasediment (siltstone/mudstone), ~40% calcite pieces. <u>Increase in Q by 10gpm (total Q: 15 gpm).</u> <u>1.5" gravel pieces blowing out of fracture zone.</u>
124 —							
126 —							
- 128 — _							125.5-130.5': Slightly weathered metasediment (siltstone/mudstone), ~15% calcite pieces, dark bluish gray Gley2 3/5PB. No noticable increase in Q.
130 —							<u>Q at 130.5': 15 gpm.</u>
132 —							130.5-135.5': Weathered metasediment (siltstone/mudstone), ~20% calcite pieces, Gley2 3/5PB. <u>Increase in Q. Gravel up to</u> <u>1.5" blowing out of fracture zone.</u>
134 —							
400							<u>Q at 135.5': 30 gpm.</u>
136 —							135.5-140.5': Weathered metasediment (siltstone/mudstone), ~15% quartz pieces, Gley2 3/5PB. Increase in Q. Gravel up to 2"
138 —							blowing out of fracture zone.
140 —							<u>Q at 140.5': ~50 gpm.</u>
_ 142 —							140.5' Total Depth (Stopped drilling due to rig limitations. Flow our of hole too high to manage and gravel pieces are starting to lock up air hammer).
144 —							
146 —							
148 —							
150 —							
-							

This page intentionally left blank.

Monitoring Weil 096-8723 Degr: 1 of 4 Project Former Prese ASE - Site 8 Betricock PFCs Owner AFCEC Location 100-8728 Total Hole Depth 108.5 ft. 142279 Strates Env. 1992.8.1 Total Hole Depth 108.5 ft. 1790.4.129228-8777.ft. task 129028-8777.ft. task Strates Env. 1992.7.8.1 Water Lovel Initial Mark Lovel Initial Strate Type Mid attent 379.8.1. 179.8.1.0.2018.0.2018.0.2018 Strates Env. 1992.7.8.1 Water Lovel Initial Mark Lovel Initial Strate Start 15 Dameler 378.8.1. 179.8.2.2018.0.2018.0.2018 Dill Co. New England Extrate Lovel Initial Mark Lovel Initial Mark Hammer Date QU7115 Permit #				Drilling Log	
Project Former Prese APE - Site 8 Bedrock PPCs Owner AFCEC -0-37 and ordered Location Formation M.M Proj. No. 143279 -0-37 and ordered Strates Elex, 108.2.1 Top of Cealing, 10.0.6.1 Water Level Intella (S. 51.0.1 State Cealing, 20.57 North 219225477.1 Feast 1200519.0176 -0-37 and ordered Casing, Dia 4.2504.4000 it Longh 88.1. Type mild stell Type mild stell State Stellar, 4.4 Diameter 3.778 in Lengh 20.56 Dia Co. Media Marcial (See well metricate in comments) Rig/Core Feast Marcial (See Stellar) Rig/Core 7 alling State Stor 15 Fill Meterial (See Stellar) Feast 200500 for Store 2000	CBI			Monitoring Well	
0 0.0 100% 0.5" Well graded GRAVEL with silt and sand (GW-GM), dry, medium dense, dark yellowish brown 10YR 4/4, 55% fine to coarse gravel (ang. to subang.), 30% fine sand, 10% silt, 5% cobbles. 0 -4 - - -6 - - - -7 - - - -8 - - - -10 - - - 10 - - - 10 - - - 10 - - - 10 - - - 10 - - - 11 - - - 12 - - - 14 - - - 16 - - - 18 - - - - 20 - - - - 18 - - - - 18 - - - - 20 - - - -	Location <u>Portsmouth, NH</u> Surface Elev. <u>108.2 ft.</u> Top of Casing <u>110.16 ft.</u> Screen: Dia <u>3-7/8 in.</u> Casing: Dia <u>4.25ID/4.5OD in</u> Fill Material <u>(see well materia</u> Drill Co. <u>New England Boring</u> Driller <u>Gregg Leavitt</u>	Total Hole Depth _10 Water Level Initial Length _20.5 ft. Length _88 ft. als in comments) g Contr. Method Log By Chris Buerkle	8.5 ft. 51.0 ft Rig	Proj. No. 143279 North 219225.477 ft. East 1206319.8175 ft. Static NA Diameter 3-7/8 in. Type/Size open hole 0 0 Type mild steel 0 0 //Core Failing Strata Star 15 0 0 Wash / Air Hammer 0 0 0	COMMENTS - 0-5' hand cleared. - No soil analytical samples collected. - PID readings of cuttings 5 to 108.5' bgs: all 0.0 ppm. <u>Well 08-6723:</u> 2.0 ft stick up, 4.25"ID/4.5"OD mild steel casing grouted into 5-7/8" borehole to 88' bgs, 3-7/8 inch open hole section from 88
100 100% 0.0 0.0 0.0 0.5": Well graded GRAVEL with silt and sand (GW-GM), dry, medium dense, dark yellowish brown 10YR 4/4, 55% fine to coarse gravel (ang. to subang.), 30% fine sand, 10% silt, 5% cobbles. 10	Completion (ft.) (ft.) Completion PID	Sample ID % Recovery Blow Count Recovery Graphic Log	USCS Class.	(Color, Texture, Structur	
SW 20-25': Well graded SAND with gravel (SW), moist, dark yellowish brown 10YR 4/4, 70% fine to coarse sand, 30% fine to coarse gravel (ang. to subang.).	- 2	100%	GM	medium dense, dark yellowish brown 10YF coarse gravel (ang. to subang.), 30% fine s cobbles. 5-10': Well graded SAND (SW), moist, 10Y coarse sand. 10-15': Well graded SAND (SW), moist, 10	R 4/4, 55% fine to sand, 10% silt, 5%
Coarse graver (ang. to subang.).	Bev Balls		· · · · · · · · · · · · · · · · · · ·	15-20': Poorly graded SAND (SP), moist, y 5/4, fine to medium sand, trace coarse san 20-25': Well graded SAND with gravel (SW yellowish brown 10YR 4/4, 70% fine to coa	d. ′), moist, dark

Monitoring Well

08-6723 Page: 2 of 4

<u>د</u>	l etion		e ID very	ount ery	jc	lass.	Description
Ueptn (ft.)	Well Completion	(mqq) DIG	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
24 —					*********		Continued
- 26 —							
- 28 —							25-30': Well graded SAND with gravel (SW), moist, 10YR 4/4, 80% fine to coarse sand, 20% fine to coarse gravel (ang. to subang.).
- 30 — -						sw	
32 — -							30-35': Well graded SAND with gravel (SW), moist, 10YR 4/4, 70% fine to coarse sand, 25% fine gravel (ang. to subang.), 5% silt.
34 —							
36 —							
- 38 — -						GP GM	35-40': Poorly graded GRAVEL with silt and sand (GP-GM), moist, brown 10YR 4/3, 65% fine gravel (ang. to subang.), 25% fine to coarse sand, 10% silt.
40 — - 42 —						sw	40-43': Well graded SAND with gravel (SW), moist brown 10YR 4/3, 70% fine to coarse sand, 25% fine gravel (ang. to subang.), 5% silt.
+2							43-44': Boulder.
44 — - 46						sw	44-45': Well graded SAND with gravel (SW), moist, brown 10YR 4/3, 70% fine to coarse sand, 25% fine gravel (ang. to subang.), 5% silt.
46 — - 48 —						GP	45-50': Poorly graded GRAVEL with sand (GP), moist, 10YR 4/3 70% fine gravel (ang. to subang.), 25% fine to coarse sand, 5% silt.
- 50 —							Sitt.
50 — ⊻ 52 —							
52 - 54 -						GM	50-55': Silty GRAVEL with sand (GM), moist, wet at 51', 10YR 4/3, 50% fine gravel (ang. to subang.), 35% fine to coarse sand, 15% silt, trace coarse gravel.
-							

Monitoring Well

08-6723 Page: 3 of 4

ocation	Portsmouth	n, NH					Proj. No
Depth (ft.)	Well Completion	(mqq) DIA	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
56 —							Continued
- 58 —							55-60': Silty GRAVEL with sand (GM), wet, 10YR 4/3, 60% fine gravel (ang. to subang.), 25% fine to coarse sand, 15% silt.
60 —						GM	
- 62 — -							60-65': Silty GRAVEL (GM), wet, brown 10YR 4/3, 75% fine to coarse gravel (ang. to subang., different components: quartz, metasediment, quartzite), 15% silt, 10% fine to coarse sand.
64 —							
66 —							
68 —							65-70': Well graded GRAVEL (GW), wet, 10YR 4/3, 90% fine to coarse gravel (ang. to rounded, different components: granite, metasediment, sandstone, mafic, quartzite), 5% fine to coarse
- 70 -						GW	sand, 5% silt.
72 —							70-75': Well graded GRAVEL (GW), wet, 10YR 4/3, 90% fine to coarse gravel (ang. to rounded, different components: mostly metasediment), 5% fine to coarse sand, 5% silt.
74 —							metaseument), 5% nne to coarse sand, 5% sitt.
76 —					。 。 () ()		
- 78 —					。 () () () () () () () () () () () () ()	SP	75-79.5': Poorly Graded SAND with gravel (SP), wet, brown 10YR 4/3, 75% fine to medium sand, 20% fine gravel (ang. to subrounded, different components), 5% silt, trace coarse sand.
80 —							79.5-88': Weathered bedrock: metasediment (phyllite), dark
82 —							bluish gray Gley2 3/5B, trace quartz pieces. Competent bedrock at 82' bgs. Bottom of steel casing set at 88' bgs.
- 84						Bedrock	
- 86 —							
- 88 -) Y (() Y		

Drilling Log

Monitoring Well

08-6723 Page: 4 of 4

	~			÷		ن.	
Depth (ft.)	Well Completion	DID (mdd)	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description
De (f	N Muo	P q	s Re	Blow	Gra	scs	(Color, Texture, Structure)
	0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ш			Geologic Descriptions are Based on the USCS.
- 88 -					×///~		Continued
							88-90': Highly weathered bedrock: metasediment (phyllite),
							Gley2 3/5B, fast drilling, increase in Q, fracture zone.
- 90 -							Flow (Q) at 92': 20 gpm. Approximately 20 gpm produced by
-							88-90' fracture zone.
- 92 —							00.02': Weathered bedreek: metacodiment (phyllite), dark bluich
_							90-92': Weathered bedrock: metasediment (phyllite), dark bluish gray Gley2 3/5B, trace quartz pieces.
- 94 —							92-98': Weathered metasediment (phyllite), Gley2 3/5B.
-							93.5-94.5' fast drilling, increase in Q. fracture zone.
- 96 -							
_							
- 98 -							Q at 98': 50 gpm. Approximately 30 gpm produced by 93.5-94.5'
30						Bedrock	fracture zone.
-							
- 100 -							98-103': Slightly weathered metasediment (phyllite), dark bluish
							gray Gley2 3/5B, no noticable increase in Q.
- 102 -							
							Q at 103': ~50 gpm.
- 104))))))		
· _							103-108.5': Slightly weathered metasediment (phyllite), dark
- 106 -							bluish gray Gley2 3/5B, no noticable increase in Q.
400							Q at 108.5': ~50 gpm.
- 108 -		-					
_							108.5' Total Depth (Reached target depth per discussions with Air
- 110 -							Force and NH DES).
_							
110							
- 112 -							
-							
- 114 -						$\ $	
_						$\ $	
- 116 -							
-						$\ $	
- 118 -						$\ $	
11			1			I	
_							

CIPI					Drilling Log	
CDI					Monitoring Well	08-6724 Page: 1 of 6
Project <u>Former Peat</u> Location <u>Portsmout</u> Surface Elev. <u>49.2 f</u> Top of Casing <u>48.84</u> Screen: Dia <u>3-7/8 ir</u> Casing: Dia <u>4.25ID/</u> Fill Material <u>(see we</u> Drill Co. <u>New Engla</u> Driller <u>Gregg Leavit</u> Checked By <u>Chris E</u>	h, NH t. 3 ft. 9. 4.50D i 4.50D i with mater and Borir t	Total Ho Water L Length ^{n.} Length <i>ials in con</i> <i>ng Contr.</i> Log By	ble Depth evel Initial <u>161.6 ft.</u> <u>19.2 ft.</u> hments) Method <i>Chris Bu</i>	180.8 ft. 4.5 ft. Rig Rig Drive and erkle	Proj. No. 143279 North 222052.0672 ft ast 1208174.0573 ft Static NA Diameter 3-7/8 in. Type/Size open hole	COMMENTS - 0-5' hand cleared. - No soil analytical samples collected. - PID readings of cuttings 5 to 180.8' bgs: all 0.0 ppm. <u>Well 08-6724:</u> flush mounted, 4.25"ID/4.5"OD mild steel casing grouted into 5-7/8" borehole to 19.2' bgs, 3-7/8 inch open hole section from 19.2 to 180.8' bgs.
Depth (ft.) Well Completion	(mqq)	Sample ID % Recovery	Blow Count Recovery Granhic	USCS Class.	Description (Color, Texture, Structur Geologic Descriptions are Based on	,
	0.0	100%	ER .	ML	0-1': Sandy SILT (ML), moist, medium stiff, 10YR 4/4, no odor, (Fill, roots)	, dark yellowish brown
$\begin{bmatrix} 2 \\ - \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	0.0	100%	1992	ML	1-6': Sandy SILT (ML), moist, stiff, wet at 4 6/6, (native soil).	.5', olive yellow 2.5Y
- 6					6-8.5': Sandy SILT (ML), wet, very stiff, dar 10YR 4/4, 60% silt, 20% clay, 20% fine gra mudstone/siltstone).	avel (metasediment:
tg- ₽ 10 -					8.5-9': Silty GRAVEL (GM), wet, very dens gravel (siltstone/mudstone), 30% silt, 10% bedrock): Top of bedrock at 8.5' bgs.	
о ш- пар- 12 —					9-12': Metasediment (siltstone/mudstone), 5/4 (brown due to weathering), (highly wea	thered bedrock).
FO (FINAL)					<u>12-12.5': fracture zone producing ~10 gpm</u> blowing out of fracture zone during air liftin	<u>, gravel up to 2"</u> g <u>.</u>
2015 PEASE SITE 8 BEDROOK PEC (FINAL) GPJ - 10				Bedrock	12.5-19.2': Metasediment (mudstone/siltstor <u>Q increased to ~15 gpm</u> but no major fract indicates competent rock at 12.5' bgs base pressure. Bottom of 4" casing installed at 1	ures noticed. Driller d on down hole
- I INSANA INSANA						
8013 - 20 -					19.2-20': Highly weathered metasediment (gray 10YR 5/1 and dark yellowish brown 10 <u>19.2-20': ~1 gpm.</u>	
22 - 4 - 22 - 4 - 4 - 4 - 24 - 24					20-25': Weathered metasediment (siltstone quartz pieces, gray 10YR 5/1, no increase	
^{OD} – 24 –					Continued Next Page B-11	

Monitoring Well

08-6724 Page: 2 of 6

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nouth, NH	Proj. No. <u>143279</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PID (ppm) Sample ID % Recovery Blow Count Recovery Log	Big Description 03 (Color, Texture, Structure) 03 Geologic Descriptions are Based on the USCS.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Continued
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25-30': Weathered metasediment (siltstone/mudstone), ~10%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		quartz pieces, gray 10YR 5/1, no increase in Q (still ~1 gpm).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		30-35': Metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B.
- 40 - 42 44 - 46 - 48 - 50 - -		35-40': Slightly weathered metasediment (siltstone/mudstone), Gley2 4/10B.
42 44 46 48 50 -		Q increased to ~2 gpm in 35-40' zone.
- 46 — 48 — 50 —	Bec	40-45': Fresh metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B, (Q still ~2 gpm).
- 48 — - 50 — -		
_		45-50': Slightly weathered metasediment (siltstone/mudstone), Gley2 4/10B, (Q still ~2 gpm).
54 -		50-55': Slightly weathered metasediment (siltstone/mudstone), Gley2 4/10B, (measured Q: 2 gpm).
56 —		Continued Next Page

Drilling Log

Monitoring Well

08-6724 Page: 3 of 6

cation _	Portsmout						Proj. No. <u>143279</u>
f	Well Completion		<u>Sample ID</u> % Recovery	Blow Count Recovery	hic D	USCS Class.	Description
Depth (ft.)	Wel	(mqq)	Reco	ow C	Graphic Log	cs c	(Color, Texture, Structure)
	ö		, NS	퓚ᇝ	Ũ	N	Geologic Descriptions are Based on the USCS.
56 —							Continued
- C 0							55-60': Fresh metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B, (Q still ~2 gpm).
58 —							
-							
60 —							
-							
62 —							60-65': Fresh to slightly weathered metasediment
-							(siltstone/mudstone), dark bluish gray Gley2 4/10B, <u>probable</u> fracture zone 62.5-63.5' as indicated by fast drilling, Q at 65': 4
64 —							gpm.
_							
66 —							
							65-70': Weathered metasediment (siltstone/mudstone), gray 10YR 5/1 and brown weathered pieces, <u>probable fracture zone</u>
68 —							66-68' as indicated by fast drilling, Q at 70': 6 gpm.
-							
70 —							
-							
72 –						edrock	70-75': Slightly weathered metasediment (siltstone/mudstone),
-							gray 10YR 5/1, <u>probable fracture zone 72-73' as indicated by fast</u> drilling, Q at 75': 12 gpm.
74 —							<u>unning, Q at 75 . 12 gpm.</u>
_							
76 —							
10							
]							75-80': Fresh metasediment (siltstone/mudstone), gray 10YR 5/1, no fractures noticed during drilling but <u>Q increased to 15 gpm</u>
78 —							(when measured at 80' bgs).
-							
80 —							
-							
82 —							80-85': Fresh metasediment (siltstone/mudstone), gray 10YR 5/1,
-							Q at 85' still 15 gpm.
84 —							
_							
86 —							
00))))		
						$\ $	85-90': Slightly weathered metasediment (siltstone/mudstone), gray 10YR 5/1, Q at 90' still 15 gpm.
88 –							Gray TOTR 5/1, Q at 90 Still 15 gpm. Continued Next Page

Monitoring Well

08-6724 Page: 4 of 6

cation _	Portsmou	in, NH					Proj. No. <u>143279</u>
Depth (ft.)	Well Completion	(mqq)	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
88 —							Continued
90 -							
92 —							90-95': Fresh metasediment (siltstone/mudstone), gray 10YR 5/1, Q at 95' still 15 gpm.
94							
- 98 -							95-100': Slightly weathered metasediment (siltstone/mudstone), gray 10YR 5/1, Q at 100' still 15 gpm.
100 -							
102 — _ 104 —						edrock	100-105': Fresh metasediment (siltstone/mudstone), gray 10YR 5/1, Q at 105' still 15 gpm.
106 -							
108 —							105-110': Fresh metasediment (siltstone/mudstone), gray 10YR 5/1, Q at 105' still 15 gpm.
110 —							
112 — 114 —							110-115': Fresh to slightly weathered metasediment (siltstone/mudstone), gray 10YR 5/1, fast drilling 113.5-114', possible fracture, Q increased. Q at 115': 20 gpm.
116 —							
- 118 — -							115-120': Fresh to slightly weathered metasediment (siltstone/mudstone), greenish gray Gley1 4/5GY, fast drilling 117.5-119.5'. Q at 120' still 20 gpm.
120 -) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		Continued Next Page

Monitoring Well

08-6724 Page: 5 of 6

-	ormer Pea Portsmout		Site 8 Bed	lrock PF	<u>Cs</u>	Owner <u>AFCEC</u> Proj. No. <u>143279</u>
Depth (ft.)	Well Completion	(mqq) DIA	Sample ID % Recovery	Blow Count Recovery	Log Log	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 120 —						Continued
- 122 -						120-125': Fresh to slightly weathered metasediment (siltstone/mudstone), greenish gray Gley1 4/5GY. Q at 125' still 20 gpm.
- 124						20 gpm.
- 126 — _ - 128 — _						125-130': Fresh metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B. Q at 130' still 20 gpm.
- 130 —						
- 132 —						130-135': Fresh metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B. Q at 135' still 20 gpm.
- 134						
- 136					Bedr	^{ook} 135-140': Fresh metasediment (siltstone/mudstone), dark bluish
- 138 — _						gray Gley2 4/10B. Q at 140' still 20 gpm.
- 140 — _						
- 142 — _						140-145': Slightly weathered metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B. Q at 145' still 20 gpm.
- 144						
- 146 — _						145-150': Fresh metasediment (siltstone/mudstone), dark bluish
- 148 — _						gray Gley2 4/10B. Q at 150' still 20 gpm.
- 150 — _						
- 152 —						Continued Next Page

Monitoring Well

08-6724 Page: 6 of 6

			,				
Depth (ft.)	Well Completion	(mdd)	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	Class	Description
De	Comp	ਰ ਬੁ	Sam % Re	Blow Rec	Gra	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
450							Continued
152 —							150-155': Fresh metasediment (siltstone/mudstone), dark bluish gray Gley2 4/10B. Q at 155' still 20 gpm.
154 —							
-							
156 —							
-							155-160': Fresh metasediment (siltstone/mudstone), gray 10YR
158 —							5/1. Q at 160' still 20 gpm.
-							
160 —							
100							
162 —							160-165': Fresh to slightly weathered metasediment (siltstone/mudstone), greenish gray Gley1 5/5GY. Q at 165' still
164 —							20 gpm.
_							
166 —						odrock	
-						Bedrock	165-170': Fresh to slightly weathered metasediment
168 —							(siltstone/mudstone), ~20% quartz pieces, greenish gray Gley1 5/5GY. <u>Q increased, fast drilling 166-168, possible fracture, Q at</u>
-							<u>170': 30 gpm.</u>
170 —							
172 -							
1/2							170-176': Slightly weathered metasediment (siltstone/mudstone), ~20% quartz pieces, greenish gray Gley1 5/5GY. Q at 175' still 30
174 —							gpm.
-							
176 —							
-							
178 —							176-180.8': Fresh metasediment (siltstone/mudstone), very
-							hard/quartzitic, black, Q at 180.8' still 30 gpm.
180 —					Ì		
182 —							180.8' Total Depth (Stopped drilling since maximum capacity of
							silt fence was met at 30 gpm).
184 —							

Wonitoring Well Mode-R725 Project Family 1 of 8 Project Family 1 of 8 Surface Elvx, 32.8.1 Total Hole Depth 228.0.1 Surface Elvx, 32.8.1 Total Hole Depth 228.0.1 North 221403 4261 art 20187 0719 million Conternation Screen: Dia 3.78.1. Longth 200.6.1 Type million Diameter 3-78 in: Type million Static North 221403 4260 ft. Contention S in Contention S in 237 Bar. Contenin 237 Bar. Contention S in 237 Bar. </th <th></th> <th></th> <th>Drilling Log</th>			Drilling Log
Project Former Press APB - Site 8 Bedrock PFCs Owner AFCEC Proj. No. 143272 Content Content <thc< th=""><th>CBI</th><th></th><th>5</th></thc<>	CBI		5
0 0.0 100% 0.5': Well graded SAND, dry to moist, dark brown 10YR 3/3, 90% fine to coarse sand, 10% fine gravel. 4 - - - - 6 - - - - 8 - - - - 9 - - - - - 10 - - - - - 10 - - - - - 10 - - - - - 10 - - - - - 10 - - - - - - 10 - - - - - - - 11 -	Location Portsmouth, NH Surface Elev. 38.2 ft. Top of Casing 37.68 ft. Screen: Dia 3-7/8 in. Casing: Dia 4.25/D/4.50D ir Fill Material (see well material) Drill Co. New England Boring Driller Gregg Leavitt	Total Hole Depth 220 Water Level Initial \checkmark Length 200.5 ft. n Length 27.5 ft. ials in comments) in comments Ig Contr. Method Dr. Log By Chris Buerkle	Owner AFCEC Proj. No. 143279 28.0 ft. North 221400.3463 ft_ast 1209157.0159 ft 9.0 ft. Static NA Diameter 3-7/8 in. Type/Size open hole Well 08-6725: Flush mounted, 4.25"ID/4.5"OD Type mild steel mild steel casing grouted into Five and Wash / Air Hammer 5 7/8 inc. Pate 7/29/15 Permit #
 8 - 2 - 0.0 90.0 100% 90 SW 0-5: Well graded SAND, dry to moist, dark brown 10YR 3/3, 90% fine to coarse sand, 10% fine gravel. 6 - 6 - 5.7: Sity SAND with clay, moist, dark olive brown 2.5Y 3/3, -55% fine sand, -30% sitt, 10% clay, 5% medium to coarse sand. 7-9: Sity SAND with clay, moist, dark brown 10YR 3/3, ~50% fine sand, -30% sitt, 10% clay, 10% medium sand, trace coarse sand and fine gravel. 9-18: Sandy GRAVEL with sitt, moist, wet ~9', dark yellowish brown 10YR 4/4 to bluish gray Gley2 6/1, 50% fine to coarse gravel (subangular to rounded), 40% fine to coarse sand, 10% sitt. 18-18.5: Poorly graded SAND, wet, 90% medium to coarse sand, 10% fine gravel (rounded). 18-5-21: Weathered metasediment (siltstone/mudstone), gray 10% Fi/1, (weathered bedrock). Competent rock at 20.5 fgs. 	Depth (ff.) (ff.) (ff.) Completion	Sample ID % Recovery Blow Count Recovery Graphic Log	single Description SO SO SO SO SO SO SO SO SO SO SO SO SO S
Property of the second	0.0 - 2 - 0 - 4 - 0 - 6 - 0 - 6 - 0 - 10 - 12 - 0 - 12 - 12 - 0 - 14 - 0 - 12 - 12 - 0 - 14 - 0 - 12 - 0 - 14 - 0 - 12 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		 fine to coarse sand, 10% fine gravel. 5-7': Silty SAND with clay, moist, dark olive brown 2.5Y 3/3, ~55% fine sand, ~30% silt, 10% clay, 5% medium to coarse sand. 7-9': Silty SAND with clay, moist, dark brown 10YR 3/3, ~50% fine sand, ~30% silt, 10% clay, 10% medium sand, trace coarse sand and fine gravel. 9-18': Sandy GRAVEL with silt, moist, wet ~9', dark yellowish brown 10YR 4/4 to bluish gray Gley2 6/1, 50% fine to coarse gravel (subangular to rounded), 40% fine to coarse sand, 10% silt. I8-18.5': Poorly graded SAND, wet, 90% medium to coarse sand, 10% fine gravel (rounded). I8-5-21': Weathered metasediment (siltstone/mudstone), gray 10YR 5/1, (weathered bedrock). Competent rock at 20.5' bgs. 21-23': Highly weathered metasediment (siltsone/mudstone), bluish black Gley2 2.5/5PB.

Drilling Log

Monitoring Well

08-6725 Page: 2 of 8

c	tion	(<u>e ID</u> very	ount ery	lic	Class.	Description
Uepth (ft.)	Well Completion	(mqq) DID	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS CI	(Color, Texture, Structure)
	Ŭ		ଅ%	щ к	Ŭ	SN	Geologic Descriptions are Based on the USCS.
24 —	nova nova				×/// X		Continued
- 26 —	-						23-27.5': Weathered metasediment (siltsone/mudstone), bluish black Gley2 2.5/5PB. Steel casing installed to 27.5' bgs.
-							
28 –							27.5-31.5': Fresh metasediment (siltsone/mudstone), bluish black
-							Gley2 2.5/10PB. No water 27.5-31.5' bgs (waited 10 min before blowing air).
30 —							
-							
32 —							
-							31.5-36.5': Fresh metasediment (siltsone/mudstone), 5% calcite pieces, bluish black Gley2 2.5/10PB, (No water in borehole).
34 —							
- 36 —							
30 -							
38 —							
							36.5-41.5': Fresh metasediment (siltsone/mudstone), trace calcit
40 —						Bedrock	pieces, bluish black Gley2 2.5/10PB, (No water in borehole).
	-						
42 —	-						
-							
44 —	-						41.5-46.5': Fresh metasediment (siltsone/mudstone), trace calcitripieces, dark bluish gray Gley2 3/5B, (No water in borehole).
-	-						
46 —							
-							
48 —							46.5-51.5': Fresh metasediment (siltsone/mudstone), dark bluish
-							gray Gley2 4/5B, (No water in borehole).
50 —					Y		
-					XXX		
52 —							
-							E1 E E6 E4 Freeb metooodiment (silteens (mudstens)) dart, blaist
54 —							51.5-56.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, (No water in borehole).
-	4				$ \rangle\rangle\rangle \rangle $		

Monitoring Well

08-6725 Page: 3 of 8

cation _		th, NH				Proj. No <u>143279</u>
Depth (ft.)	Well Completion	(mqq)	Sample ID % Recovery Blow Count	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
56 —						Continued
58 — 60 —						56.5-61.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, trace water (not enough to measure Q).
62 -						61.5-66.5': Fresh metasediment (siltsone/mudstone), dark bluish
64 – 66 –						gray Gley2 4/5B, no increase in Q (still trace water).
68 –						CC E 71 El Fronh motore diment (siltere (sud-terre)) de la babar
70 -						66.5-71.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, no increase in Q (still trace water: 1 gallon total blew out of borehole after waiting 40 min.
72 — - 74 —					Bedrock	71.5-76.5': Fresh quatzitic metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, no increase in Q (still trace water).
76 –						
78 – - 80 –						76.5-81.5': Fresh quatzitic metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, no increase in Q (still trace water).
82 -						
84 – - 86 –						81.5-86.5': Fresh quatzitic metasediment (siltsone/mudstone), dark bluish gray Gley2 4/5B, no increase in Q (waited 30 min before blowing air: still trace water).
_						
88 —				[/>X////		Continued Next Page

Monitoring Well

08-6725 Page: 4 of 8

-	ormer Pea Portsmout		- Site 8 Be	edrock	PFCs	_ Ow	_{/ner} <u>AFCEC</u> Proj. No. <u>143279</u>
Depth	Well Completion	(mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 88 -							<i>Continued</i> 86.5-91.5': Fresh metasediment (siltsone/mudstone), dark bluish
- 90 -							gray Gley2 3/10B, no increase in Q (still trace water).
- 92 -							
- 94							91.5-96.5': Fresh metasediment (siltsone/mudstone), dark gray Gley2 4/N, <u>Q increased to 0.7 gpm.</u> Likely fracture in 96-98' zone.
- 96 -							
- 98							96.5-101.5': Fresh metasediment (siltsone/mudstone), ~5% calcite pieces, dark bluish gray Gley2 3/5B, <u>Q increased to 0.85 gpm.</u>
- 100							
- 104						Bedrock	101.5-106.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>slight increase in Q, now 0.9 gpm.</u>
 - 106							bidish gray Gleyz 3/3D, <u>siight hiclease in Q, now 0.9 gpm.</u>
 - 108							
- 110							106.5-111.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, no increase in Q (still 0.9 gpm).
- 112							
- 114 -							111.5-116.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, no increase in Q (still 0.9 gpm).
- 116							
- 118							116.5-121.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>slight increase in Q, now 1.0 gpm.</u>
- 120							biaish yray dicyz ordd, <u>silynt indicase in Q, now no ypin.</u>

Monitoring Well

08-6725 Page: 5 of 8

ے ا	l	Ē	e ID very	ount ery	.ij	lass.	Description
Depth (ft.)	Well Completion	(mqq)	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
120					×///		Continued
- 122							
- 124 — -							121.5-126.5': Fresh metasediment (siltsone/mudstone), ~5% calcite pieces, dark bluish gray Gley2 3/5B, <u>slight increase in Q, now 1.05 gpm.</u>
126							
- 128 — - - 130 —							126.5-131.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>slight increase in Q, now 1.1 gpm.</u>
- 132							
- 134 -							131.5-136.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>slight increase in Q, now 1.2 gpm.</u>
- 136 —						Bedrock	
- 138 —							136.5-141.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>increase in Q to 1.6 gpm.</u>
140							
- 142 — - - 144 —							141.5-146.5': Fresh metasediment (siltsone/mudstone), dark
- 144							bluish gray Gley2 3/5B, no increase in Q.
- 148							
- 150							146.5-151.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, larger cuttings up to 3/4", <u>increase in Q to</u> <u>2.0 gpm.</u>
-							

Monitoring Well

08-6725 Page: 6 of 8

ocation _	Portsmout	th, NH	1				Proj. No. <u>143279</u>
Depth (ft.)	Well Completion	(mqq)	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
	0			ш			Geologic Descriptions are Based on the USCS.
- 152 —							Continued
- 154							151.5-156.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, no increase in Q.
- 156							
- 158 —							
- 160							156.5-161.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, <u>increase in Q to 2.15 gpm.</u>
- 162							
- 164							161.5-166.5': Fresh metasediment (siltsone/mudstone), dark bluish gray Gley2 3/5B, no increase in Q.
- 166 -							
- 168						edrock	166.5-171.5': Fresh metasediment (siltsone/mudstone), dark
- 170							greenish gray Gley2 4/5BG, no increase in Q.
- 172							
- 174 —							171.5-176.5': Fresh metasediment (siltsone/mudstone), dark greenish gray Gley2 4/5BG, no increase in Q.
- 176							
- 178 —							176.5-181.5': Fresh metasediment (siltsone/mudstone), dark
- 180							greenish gray Gley2 4/5BG, no increase in Q.
- 182							
184 —							181.5-186.5': Fresh metasediment (siltsone/mudstone), ~20% Continued Next Page

Drilling Log

Monitoring Well

08-6725 Page: 7 of 8

cation _	Portsmout					Proj. No. <u>143279</u>						
Depth (ft.)	Well Completion	(mqq) OIq	Sample ID % Recovery Blow Count	Recovery Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.						
184 —						<i>Continued</i> quartz pieces, dark greenish gray Gley2 4/5BG, no increase in Q.						
186 —												
188 –						186.5-191.5': Fresh metasediment (siltsone/mudstone), ~20%						
190 —						quartz pieces, dark greenish gray Gley2 4/5BG, <u>increase in Q to</u> <u>3.0 gpm.</u>						
192 —												
194 —						191.5-196.5': Fresh metasediment (siltsone/mudstone), ~20% quartz pieces, dark greenish gray Gley2 4/5BG, no increase in Q.						
196 —												
198 —						196.5-201.5': Fresh metasediment (siltsone/mudstone), ~20% quartz pieces, dark greenish gray Gley2 4/5BG, no increase in Q.						
200 -					Bedrock							
202 -												
204						201.5-206.5': Fresh metasediment (siltsone/mudstone), ~20% quartz pieces, greenish gray Gley1 5/10Y, <u>increase in Q to 3.3 gpm.</u>						
206 -												
208 -						206.5-211.5': Fresh metasediment (siltsone/mudstone), greenish gray Gley1 5/10Y, 210.5-211.5' black Gley1 2.5/N, no increase in						
210-						Q.						
212 -												
214						211.5-216.5': Fresh metasediment (siltsone/mudstone), gray Gley1 5/N, cuttings up to 3/4", <u>increase in Q to 4.0 gpm.</u>						
216												

Monitoring Well

08-6725 Page: 8 of 8

۹	tion	Ē	e ID very	ount ery	į	lass.	Description
Depth (ft.)	Well Completion	(mqq) DIA	<u>Sample ID</u> % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
216 —							Continued
_ 218 —							216 E 221 El: Essen motopodiment (eilteono/mudeteno), essu
- 220 —							216.5-221.5': Fresh metasediment (siltsone/mudstone), gray Gley1 5/N, no increase in Q.
_ 222 —						edrock	ς.
- 224 — -							221.5-226.5': Fresh metasediment (siltsone/mudstone), greenish gray Gley1 5/5GY, <u>increase in Q to ~50 gpm. Major fracure - likely in 223-223.5' zone (soft drilling).</u>
226							226.5-228': Fresh quartzitic metasediment (siltsone/mudstone), greenish gray Gley1 6/5GY, no noticable increase in Q (still ~ ~50gpm), 3/4" gravel pieces.
228							228' Total Depth (air hammer stopped advancing due to high
230 —							water pressure and air compressor overheating).
232 —							
234 —							
_ 236 —							
_ 238 —							
_ 240 —							
_ 242 —							
_ 244 —							
_ 246 —							
-							

Appendix C Well Development Logs

WELL DEVELOPMENT RECORD

Proj	ect Nan	ne: <u>For</u> a	GR PEASE AF	B, STTE										
Locati	on: <u>Sř</u>	<u>168</u>				Well/Pie	z. No.:	<u>08-6</u>	5722					
Person	nel: <u>_</u>	RIS BURRKG	6				alled:							
Date (S	Personnel: CHRIS BURPPUL Date Installed: 6 21-15 Date (Start/End): 6-30-15 -> -6-30-45 -7 -1-15 Csg. Diameter (I.D.): 5''1) RISER TO 74'; 1.0' CASUK STICKUP Method of Development: AIR LIFTING USING COmpletion Total Depth (ft. TOC): Between Set - 1 - 15 Method of Development: AIR LIFTING USING COmpletion Total Depth (ft. TOC): Between Set - 1 - 15 Method of Development: AIR LIFTING USING COmpletion Total Depth (ft. TOC): Between Set - 1 - 15 Method of Development: AIR LIFTING USING COmpletion Total Depth (ft. TOC): Between Set - 1 - 15 Method of Development: AIR LIFTING USING COmpletion Other (State Method) Devi-1 - 141 - 5 Method Difference Other (State Method) -1 - 15													
Method	l of Devel	opment: AIA	CLITTUS (ISING CON	phessen'	Total Dep	oth (ft. TOC):	Befores	BEV. 130,01 @ 3154 Am *					
Ø,	Su	rging C	B ailing	💆 Pu	mping		ther (State M	AFTen lethod)	Der. 141.5 Q 1130, 7-1-15					
<u>x</u>	Or	iginal Develo	opment	🛛 Redev	velopmen	t D	evelopment I	Date: <u>6</u>	-30-15					
Depth 1	o water be	efore develop	ing well: 2	5.75'Ŧ/	eun TOP	OF STE	el Casturo	(mprc	INSTALLED) AT 8:35 A.M.					
49'	5" 51, 4.	5"]	50ml 155gl	G	B	me (V)	Purge	Volu						
				8	Volu	me (V)	Factor	To P	urge 105 gol =					
Height	of Water	Column: <u>~~</u>	<u>11.5</u> fee	*	<u> </u>	8	gal.*	_ =	105 gel = ONGINELL VERNING					
		$V = (B * r_c^2 *$	* L _c * 7.48)+($(B^{*}(r_{w}-r_{c})^{2})^{2}$	L _s *ø _s *7.	48)=	gallons (See Note	s below)					
Depth j	ourging fro	om: 140	/ fee	t	Time p	urging be	gins: 910	3 AM						
	Depth purging from: $140'$ feet Time purging begins: 9103 AM Weather: 70_{125} , 460 feet Screened Interval (ft. BGL): $74-140.5'$ ($4.5'$ CMSN Kells)													
Equipn	Equipment Nos.: pH Meter $\frac{\mu_{00}}{\mu_{050}}$ EC Meter $\underline{\rho_{10}}$ Turbidity Meter $\underline{\mu_{00}}$ (09050<035(94)													
	Equipment decontaminated prior to development $Y = X = N$													
Descrit	Describe Dawners pers & Alpunner wire Steance on MTH Petersis Water Retro Dalle													
·		Mento TO					· •							
Date	Time	Water Level (ft. below TOC)	Volume Removed (gal.)	Temp (C or F)	рН	EC	Turbidity [NTV]	D.O.	Comments					
6-30-15	9:03	25.751	Õ	State?	~7.5	1000	71,000	entitality ³	START AIRLIFTING QN-506PM					
6-30-15	9:20	NM	\$50		7-7.5		560	farmer and a second						
6-30-15	9.20-9	·3% STAPPS	PUMPING	·BIT-tras	cocre	BYG	61/52							
630-15	9153	NM	1,600		~7.0		105)	(STIL BICHIAL OUT GENILL),					
6-30-15	10:08	NM	2,350		~7.0	and the second	46.7	and the second	(LESS GRAVER BURNAGEDT).					
630-15	10.25	MM	3,200	Manager of State	~7.0	€conset	54.2	6-00.00	(STOPPED BLAME GRACE OUT).					
6-30-15	10148	NM	4,350		~7.0	maner	25.4.							
6-30-15	11:22	MM	6,050	egergroom V	-7.0		9.2							
Notes:	Water levels	- Reported to the	らい e nearest 0.01 fo	ST WELL	anner	REMCK Where:	<u>O</u> l							

pH – Reading rounded to 0.1 pH units

- Electrical conductivity (EC) Reported to the nearest 10% mhos/cm or
- µmho/cm @25 C or in mS/cm of instrument set range
- Water temperature Reported to the nearest 0.1 C or F
- feetDissolved oxygen (D.O.) report in 0.1 mg/L
- Dissolved oxygen (D.O.) report in 0.1 mg/L
 Turbidity report in NTV nearest whole #

* 10,5 OF SEDIMENT IN WELL BOTTOM.

B=3.14

ø_s=porosity of the sand pack

r_e =radius of the well casing and screen in feet

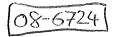
L_e=length of water column inside the casing and screen in

rw =radius of the well bore in feet

L_s =length of saturated portion of the sand pack in feet

7.48 gallons/cubic foot=conversion from cubic feet to gallons

[MA = NOT NEXCURED] 11125 PULLING DELECEPTION REDS WITH AIR HAMPER.


C-1 Page 1 of 1 7-1-15: REMARD ROCK BLOCKGEG AT 123'USS & REMARD 2'OF GRAVEL FROM WELL BERTOM, -7 HORE STATUS OPEN TO 140,5 165

				WELL	DEVEL	OPME		CORD			
	Proje	ct Nam	e: For	n.Gr. PE055	AFB,	S176 8	Hepox	12 PFC IN	NESTA	aku-	
				TON CEMET		v	Vell/Piez	z. No.: <u>C</u>	8-6	723	
				-	V					5	
	Date (St	art/End):	8-17-15.	<u>-</u> - - - - - - 	5		<u>`sg</u> . Dian	neter (I.D.):	<u>4" 01</u>	EN HOLE	
	Method	of Develo	pment: Aru	- <u>ITTUZG</u> (All Bailing	When an h	VD I	9 otal Dep	th (ft. TOC):	102.	51	
	X	Sur	ging C	Bailing	B Pu	mping		ther (State Me			
	X		ginal Develo	-	🛛 Redev	-		evelopment D		-17-15	
	Depth to	water be	fore developi	ng well: 5	1.3' BG	<u>s@ic</u>	15Am	, 8-17-15		÷	
			~			Volun	• •	Purge Factor	Volur To Pu	rge 3890=	· Ivar
	-Height o	of Water C	Column:	fee			£	<u>al.*</u>			
			$V = (B + r_c^2 + r_c^2)$	L _c * 7.48)+($B^{*}(r_{w}-r_{c})^{2*}$	L _s *ø _s *7.4	8)=	gallons_(S	See Notes	below)	
	Depth p	urging fro	m: 108	/fee	t	Time pı	irging be	gins: 102	20		
	Weather	_ଅ ଁ ୪୦	-90/05-		/	Screene	d Interva	l (ft. BGL): _	88-	108-51	
	Equipm	ent Nos.: j	pH Meter	YORION M-CHECK	EC Meter	21000-10				2100PHACH TURBLOTH	INSTOR .
`}	Equipm	ent decon	۲۸ taminated pri	or to develop	ment			Y>	<	N	
	Describ	e_STGA	nelsange	& Alp Dry	160 -						
	[Matau			<u>г г</u>		1			7
	Date	Time	Water Level (ft. below TOC)	Volume Removed (gal.)	Temp (C or F)	рН	EC	Turbidity LNUI	D.0.	Comments	
	8-17-15	10:20	51.31	0	0	6.0	-	71,000	~	Q~506Rm	
	8-17-15	1030	U	500	-Calendary (*	6.5		51,000	مختشب		
	8-17-15		-nations a	1,500	 ,	6.5		140			
	8-17-15	1110	and the second se	2,500		6.5	~	54.1	~		
	8-17-15	1030		3,500		6.5	1955.3	80.4			
	8-17-15	12:30	~	6,500		6.5		27.8	~~~		
<i></i>	8-17-15	13230	fattere 20	9,500		6.5		29.0	-	\mathbf{v}	
V		/								account of the second	
13:30 CO.MPLETEC	Notes:	Vater levels	– Reported to th	e nearest 0.01 fo	ot.	v	Where:				
Corebreese MIEUCIE	STTL P	Electrical cor umho/cm @2	25 C or in mS/en	pH units - Reported to the n of instrument s d to the nearest (et range	mhos/cm oi	r. =rac	rosity of the sand lius of the well c	asing and s	creen in feet the casing and screen in	
No apap	f	eet Dissolved ox	ygen (D.O.) rep	ort in 0.1 mg/L			r _w =ra	dius of the well b	ore in feet		
$\sim 235 \text{We}$	L • 1		ort in NTV near				L _s =le	ngth of saturated	portion of	the sand pack in feet n from cubic feet to gallons	
REAL	6.] <i>I</i> ¹	4:03 I	othe post l	A KISPMEN	T: 51.	38'BC	-				

has

(h

Page 1 of 1 C-2

WELL DEVELOPMENT RECORD

	•			5 8 BEO		TCINO	STIGT		78-6	27(1.	
				B , Pehrsyrce	th wh	r	Well/Pie	z. No.:(70.0		
			verkle, B.	-]	Date Inst	talled:	T-14	-15	
				7-14			Csg. Diar	neter (I.D.): _	373	" +'-1-6'=180.8'	
			opment: <u>Alt</u>	LIFTING		,	Fotal Dep	oth (ft. TOC) :	182.4	+-1.6'=180.8	
	X	Su	ging C	-	•	Imping		ther (State M			
	文	Ori	ginal Develo	opment	Redev	velopmen	t D	evelopment I	Date: 7-	14-15	*
	Depth t	o water be	fore develop	ing well: <u>//</u>	O MEASUN	Subjit	(Dal	CARD INFO	VITLY M	etan neaching tandes neath),
	(10	er lar	m6 x11	7 GL			me (∀)	Purge Factor	Volu To P t		
نعه	-Height	of Water (Column:	fee	t]	gal.*		(3)	
		4 1,00	V – (B * _i, ² :	*- L_* 7,48) +($B^{*}(r_{w}-r_{c})^{2}$	* <u>L_*ø_*7</u> .	48)=	gallons (See Note	s below) (2)	
				/ fee							
								egins: 9^{10}		-180.8865	
			,	ERSART							
	Equipm	ient Nos.:	pH Meter <u>P</u> ۱۸۶۱	not clety	EC Mete	r				1/1×H 2100P	
						_	<i>A</i> .			N	
	Describ	e <u>Incar</u>	KSED SIED	M CLEMED	PHan 70	Onular	SUBLU	and TO AH	2 Dr.Y.		
	Date	Time	Water Level (ft. below TOC)	Volume Removed (gal.)	Temp (C or F)	pH	EC		D.O.	Comments	
	7-14-15	9100		0	*State	7.0	4	>1,000	********	Q= 30 GRu	
	7-14-15	9110	and the second s	300	<u> </u>	7.0	Avguarden	119	- Andrewsky		
	7-14-15	9:20	-	600	-	7.0		59.6			
	7-14-15	9130	~~~	900	through "	7.0	Ì	32.1		h	
	7-14-15	9:40		1200	~	7.0		28.6			
	7-14-15	10:00	\rightarrow	1,800		7.0	-	20.9	~		
	7-14-15	10,20		2,400	NUMBER C	7.0	~·	15,6	- Therese		
0140 5	- 714-15	10140	- 100 (Jack /	3,000		7.0		9.5	·		
UNSHED SUBLEPHEN	Notes:		Damartad (- 45		レ シ25W6 oot.	il var	155			· · · · · · · · · · · · · · · · · · ·	
KIKUSPHEN		oH – Reading	grounded to 0.1	pH units			B=3.1				
				 Reported to the m of instrument s 		mhos/cm o		rosity of the sand lius of the well o	-	creen in feet	
	•			d to the nearest (-					the casing and screen in	

- Water temperature Reported to the nearest 0.1 C or F •
- feet

÷

- Dissolved oxygen (D.O.) report in 0.1 mg/L
- Turbidity report in NTV nearest whole # •

r_w =radius of the well bore in feet

 L_s =length of saturated portion of the sand pack in feet 7.48 gallons/cubic foot=conversion from cubic feet to gallons

* MR LITTING USING 3 7 1/AIR WAMMER AND AIR COMPRESSER

* * DTW ATTER DEVELOP NONT (TOC)? 7.17 @ 11:23, WATER STILL PUSING SLOWLY (7.16 @ 11:20 Page 1 of 1 C-3 TILL RISING VERY SLANY

WELL DEVELOPMENT RECORD

		ame: <u>FOR</u>				$\mathcal{M}_{1}\mathcal{M}_{1}$		- 80	67-25 (15 FP42264	Preter
		DS SILES			avar	wen/Pie	2. INO.:	-0-11		
		ILIS BURNALG			2c) I	Date Ins	talled: <u>7</u>	-21-(5 -21-(5		
	-	1): <u>7-29-1</u>		15					OPENHOLE	
、 、		elopment: 🔥	•			Fotal Dep	oth (ft. TOC):	-228	(MERSUNED WITH DRUC	strung)
À	<u>ď</u>	Surging	_		Imping	()	ther (State M	ethod)	LINE USING USING 37	&" AIR.HK
		Original Devel	-	Redev	-					compres
Dept	h to water	before develop	ping well: <u>N</u>	lot me	5UNS)	[m 7.			how balliphant	
						ne (V)	Purge Factor	<u>Volu</u> To P	me D Thou	VOLUME
Hoia	ht of Wat	ər Column:		st					Edille	
-TICIB	neor was								-147 G	62
		$V = (B * r_c^2)$	* L _c * 7.48)+	$(B^{*}(r_{w}-r_{c})^{2})^{2}$	*L _s *ø _s *7.4	48)=	gallons (See Note	s below)	
Dept	h purging	from: <u>22</u>	S' fee	t	Time p	urging be	egins: 13	:30		
Wea	ther: 8	0-901es	Ponty CU	XOX	Screene	ed Interva	al (ft. BGL):	27.5	-2281	
Equi	pment No	0-90) es s.: pH Meter	YORION	EC Mete	r 〜	<u> </u>	Turbidit	y Meter	HACH 2100P	
		ontaminated p					Y	X	N	
_	-	-	-		uso li	6112 DP.C				
							0			
Date	e Time	(ft. below	Volume Removed (gal.)	Temp (C or F)	рН	EC	Turbidity	D.O.	Comments	
7-29	-15 13:3	<u>১ ~</u>	~		7.0	~	151.5	س معد نی	Q~ 50 Qm	
T	1315	<u> </u>	1,000		7.0		22.3	~	T	
	1410	<u>→</u> ~	1,500		7.0		9.74	~~~		
	1410	5 2	1,750		7.0	-	5.48			
5									· · · ·	
···			a			Contraction of Contra		C13		
			7-7	2:45					2-29-15-	
							1 1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				15						

Electrical conductivity (EC) - Reported to the nearest 10% mhos/cm or ٥

- µmho/cm @25 C or in mS/cm of instrument set range .
- Water temperature Reported to the nearest 0.1 C or F 0 feet
- Dissolved oxygen (D.O.) report in 0.1 mg/L Turbidity report in NTV nearest whole # .
- .

(

øs=porosity of the sand pack

 $r_{\rm c}$ =radius of the well casing and screen in feet

 $L_{c}\mbox{=}\mbox{length}$ of water column inside the casing and screen in

 r_w =radius of the well bore in feet L_s =length of saturated portion of the sand pack in feet 7.48 gallons/cubic foot=conversion from cubic feet to gallons

Project Name: Top-PG-R-R-Respondence Point State Are					WELL	DEVEL	OPME	NT REC	CORD	,				
Location: $\frac{10/(4 \le \sqrt{21/6} \sqrt{4} \le \sqrt{4} \le \sqrt{5} \times \sqrt{4}}{\sqrt{6} \sqrt{4} \le \sqrt{5} \times \sqrt{6} \le \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6}$		Proje	ct Nan	ne: <u>Fon-</u>	MGn_ PK656	S AFB ,	POATS	north 1	МН					
Date (Start/End): $\underline{3}^{-1}(7-15) \rightarrow \underline{3}^{-1}(7-15)$ Method of Development: $\underline{\Delta P}_{L}$ (\underline{M}^{-1} , $$							١	Vell/Piez	z. No.:			OPNENT	r	
Method of Development: $\Delta D_{L}UPT / \Delta S_{L}$ Total Depth (ft. TOC): $2.82/RS_{L}$ Image: Constraint of the set of the s		Person	nel: <u>CHR</u>	IS BUERKL	5		Ι	Date Insta	alled: <u>O</u>	2/21/	92			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date (St	tart/End):	8-19-15	> 8-19-1	5	(Csg. Diam	eter (I.D.): _	6"		<u></u>		
Image: Contract of the second contrecond contract of the second contract of the se		Method	of Develo	pment: Alp_4	HATING (ſ	otal Dept	th (ft. TOC):	_282	21 1365			
Purge Volume (V) Volume (V) Purge Volume (V) Volume (V) <th colspa="</td"><td></td><td>¤۲</td><td>Sur</td><td>ging C</td><td>Bailing</td><td>KPu</td><td>mping</td><td>🛛 Ot</td><td>her (State M</td><td>ethod)</td><td></td><td></td><td></td></th>	<td></td> <td>¤۲</td> <td>Sur</td> <td>ging C</td> <td>Bailing</td> <td>KPu</td> <td>mping</td> <td>🛛 Ot</td> <td>her (State M</td> <td>ethod)</td> <td></td> <td></td> <td></td>		¤۲	Sur	ging C	Bailing	KPu	mping	🛛 Ot	her (State M	ethod)			
Purge Volume (V) Volume (V) Purge Volume (V) Volume (V) <th colspa="</td"><td></td><td></td><td>Ori</td><td>ginal Develo</td><td>pment</td><td>Redev</td><td>elopment</td><td>De Zulica</td><td>evelopment I</td><td>Date:<u>と</u></td><td>17-13</td><td></td><td></td></th>	<td></td> <td></td> <td>Ori</td> <td>ginal Develo</td> <td>pment</td> <td>Redev</td> <td>elopment</td> <td>De Zulica</td> <td>evelopment I</td> <td>Date:<u>と</u></td> <td>17-13</td> <td></td> <td></td>			Ori	ginal Develo	pment	Redev	elopment	De Zulica	evelopment I	Date: <u>と</u>	17-13		
Volume (V) Factor To Purge 337.6 Height of Water Column: feet gal.*		Depth to	o water be	fore develop	ing well: 5	2.55 1	65 (1	r 190 RM				N		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} V = (B + T_{6}^{+} + T_{6} + B) + (B + (t_{6} + t_{6})^{+2} + 2 + 4 + 2) & \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array}							Volur	ne (V)				337	7.9	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} V = (B + T_{6}^{+} + T_{6} + B) + (B + (t_{6} + t_{6})^{+2} + 2 + 4 + 2) & \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array}		Height (ə f Water (Column:	feet			g	al.*			=10	10 10	
Depth purging from: $281'$ feet Time purging begins: 1110 Weather: $201es_{1}45er_{1}410$ Screened Interval (ft. BGL): $85-232'$ Equipment Nos.: pH Meter $1424424er_{2}$ EC Meter Turbidity Meter $14242100P$ Equipment decontaminated prior to development V N N Describe $52444256P_{2}426P_{2}$ EC Meter 1 Turbidity D.0. Comments $100 + 3244256P_{2}426P_{2}426P_{2}620450$ D2444225 C2042440507 . Tocci (ft. below (gal.) 100		ter and a state of the state of the		+=7B * 12 8	: <u>1 ≈ 7 /\\$\</u> ±/	B*()2 *	Ι * <u>α*7</u> -	18)	gallons (See Notes	below (P)	10	LV,	
Weather: $Bles, cles, cle$													arowCanale	
Equipment decontaminated prior to development $Y _ X _ N$ Describe <u>Stand description</u> <u>being of the description <u>the description</u> <u>being of the description</u> <u>being of the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>being of the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>being of the description</u> <u>being of the description</u> <u>being of the d</u></u></u></u></u></u></u></u></u></u></u></u>		Depth p	ourging fro	om: 20	<u> </u>	t	Time p	arging be	gins: <u><u>n</u>e</u>	00	2821			
Equipment decontaminated prior to development $Y _ X _ N$ Describe <u>Stand description</u> <u>being of the description <u>the description</u> <u>being of the description</u> <u>being of the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>being of the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>the description</u> <u>being of the description <u>being of the description</u> <u>being of the description</u> <u>being of the d</u></u></u></u></u></u></u></u></u></u></u></u>		Weathe	r: <u>'%</u>	lies, ash, pl	1YORION		Screene	ed Interva	I (ff. BGL): _	<u>85 ~</u>	Hell 21000			
Describe <u>Straws Lando & Algoritho Delugitate Coupled</u> . Describe <u>Straws Lando & Algoritho Delugitate Coupled</u> . $\frac{10}{10} = \frac{10}{10} + \frac{10}{10} $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Describ	e <u>0</u> ta	and the start of	00 11/2 4-		N11-25	<u>SQUE1</u>	10,00					
$\frac{3 \cdot 19 \cdot 15}{9 \cdot 19 \cdot 15} \frac{11 \cdot 10}{11 \cdot 10} = 0 = 7 \cdot 0 = 7 \cdot 0 = 7 \cdot 0 = 9 = 10 \text{ GPm}}{7 \cdot 0 = 7 \cdot 0 = 9 = 10 \text{ GPm}}$ $\frac{3 \cdot 19 \cdot 15}{9 \cdot 19 \cdot 11 \cdot 10} = 2 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 15 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 15 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}$ $\frac{3 \cdot 19 \cdot 15}{3 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 15 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 12 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 12 \cdot 12 \cdot 20} = 7 \cdot 00 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}$ $\frac{3 \cdot 19 \cdot 11 \cdot 10}{3 \cdot 10} = 1 \cdot 1000 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 11 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 19 \cdot 11 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}$ $\frac{3 \cdot 19 \cdot 11 \cdot 100}{3 \cdot 10 \cdot 11 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 83 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 10 - 9 = 10 \text{ GPm}}$ $\frac{3 \cdot 19 \cdot 11 \cdot 100}{3 \cdot 10 \cdot 100} = 1 \cdot 1000 = 7 \cdot 0 = 7 \cdot 0 = 54 \cdot 9 = 9 = 10 \text{ GPm}}{3 \cdot 10 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 43 \cdot 1 = 9 = 10 \text{ GPm}}{3 \cdot 10 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 43 \cdot 1 = 9 = 10 \text{ GPm}}$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ GPm}}{1 \cdot 100} = 7 \cdot 0 = 7 \cdot 0 = 43 \cdot 1 = 9 = 10 \text{ GPm}}$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ Img}.$ $\frac{1000}{9 \cdot 100} = 10 \cdot 100 \text{ GPm}}{1 \cdot 100} = 10 \text{ GPm}}$		Date	Time	Level (ft. below	Removed	· ·	pН	EC		D,0.	Comme	nts		
$\frac{1}{8} - \frac{1}{1} + \frac{1}{8} + \frac{1}{1} + \frac{1}{10} - \frac{1}{200} - \frac{7}{7.0} - \frac{7}{1000} - \frac{7}{1000} - \frac{1}{9} = \frac{10}{9} - \frac{6}{9} + \frac{1}{9} + \frac{1}{1130} - \frac{2}{200} - \frac{7}{7.0} - \frac{6}{9} + \frac{6}{9} + \frac{1}{9} - \frac{1}{221} - \frac{1}{9} - \frac{1}{9} + \frac{1}{9} + \frac{1}{1130} - \frac{1}{9} + \frac{1}{900} - \frac{7}{7.0} - \frac{6}{9} + \frac{2}{9} - \frac{2}{221} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{1130} - \frac{1}{1000} - \frac{7}{7.0} - \frac{6}{9} + \frac{3}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} + \frac{1}{9$		8-19-16	2240		-0		7.0				Q=56	<u></u>	-	
$\frac{1}{2} \frac{1}{1} \frac{1}$	110 ->	8-19-15	10101	entrana	0	~	7.0	\$tomps area	71000	enangelitte.				
$\frac{ \mathbf{r} ^{1}}{ \mathbf{r} ^{2}} = \frac{ \mathbf{r} ^{2}}{ \mathbf{r} ^{2}}} = \frac{ \mathbf{r} ^{2}}{ \mathbf{r} ^{2$	tART			-++00mmmeter-	200			-	624	~			1	
$\frac{2-Fr/15}{12!50} - \frac{1}{1000} - 7.0 - 60.9 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1300} - 7.0 - 54.9 - \frac{1}{54.9}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{13!20} - \frac{1}{1400} - 7.0 - 43.1 - \frac{1}{5}$ $\frac{2-Fr/15}{14} - \frac{1}{1400} - \frac{1}{1400} - \frac{1}{1400} - \frac{1}{15}$ $\frac{2-Fr/15}{14} - \frac{1}{1400} - \frac$	source pro	8-19-15	11150	ت_	400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	221	Current				
$\frac{2-47+16}{12!50} - \frac{1}{000} - \frac{7.0}{7.0} - \frac{60.9}{-154.9} - \frac{1}{-154.9} - $		8-19-15	12120	1	700		7.0	- The second second	83.1	~				
$\frac{3}{14} = \frac{1}{12} = \frac{1}{12} = \frac{1}{14} = \frac{1}{1400} = \frac{1}{7.0} = \frac{1}{43.1} = \frac{1}{14}$ $\frac{1}{12} = \frac{1}{14} = \frac{1}$		8-F7-16	512150	ليستحد			7.0	and the second s		Carpognal."				
 Water levels - Reported to the nearest 0.01 foot. Where: pH - Reading rounded to 0.1 pH units Electrical conductivity (EC) - Reported to the nearest 10% mhos/cm or µmho/cm @25 C or in mS/cm of instrument set range Water temperature - Reported to the nearest 0.1 C or F Water temperature - Reported to the nearest 0.1 C or F Dissolved oxygen (D.O.) report in 0.1 mg/L Turbidity report in NTV nearest whole # Turbidity report in NTV nearest whole # If 000 FL PEMORE (=4.15 WELL WAY) Water temperature 55 pm Opp. 		8-19-15	-13120	- Chargesoft	1,300	dimension *	7.0		54,9					
Notes:Water levels - Reported to the nearest 0.01 foot.Where: $-DCLCarrentpH - Reading rounded to 0.1 pH unitsB=3.14-DCLCarrentElectrical conductivity (EC) - Reported to the nearest 10% mhos/cm org_a=porosity of the sand pack\cdot Electrical conductivity (EC) - Reported to the nearest 10% mhos/cm org_a=porosity of the sand pack\cdot Umho/cm @25 C or in mS/cm of instrument set rangeB=3.14\cdot Water temperature - Reported to the nearest 0.1 C or Fr_e=radius of the well casing and screen in feet\cdot Using the temperature - Reported to the nearest 0.1 C or Fr_e=length of water column inside the casing and screen in\cdot Dissolved oxygen (D.O.) report in 0.1 mg/Lr_w=radius of the well bore in feet\cdot Turbidity report in NTV nearest whole #r_w=radius of the well bore in feeti \downarrow \downarrow OOPL NGMOND (=4.15 WGLL WAND)WATER CLGAR _{I} as the tops 1 MONDA.$	130 ->	8-19-15	13130		1,400	-	7.0	ن ۔	43.1		V			
	NPLEKED >−DE(Eictive	Notes: • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	Water levels oH – Reading Electrical con umho/cm @2 Water tempe feet Dissolved ox Furbidity rep	g rounded to 0.1 nductivity (EC) 25 C or in mS/cr rature – Reporte ygen (D.O.) rep yort in NTV near	pH units – Reported to the n of instruments d to the nearest C ort in 0.1 mg/L rest whole # (-4)	e nearest 10% et range).1 C or F 15 W&LL	mhos/cm o	B=3.1 $g_s = por$ $r_o = rad$ $L_o = len$ $r_w = rad$ $L_s = len$ 7.48 g	osity of the san lius of the well o gth of water co dius of the well ngth of saturated	casing and s lumn inside bore in feet d portion of	the casing and scre the sand pack in fe	et		
Page 1 of 1			Whiter (ISAR 100	on 1555/N	oopp.								
		, <u> </u>				 	Page 1 of f	1		~	*			

manad

This page intentionally left blank.

Appendix D TFMoran Survey Report

TFMO	RAN	INC	;
------	-----	-----	---

10/18/2015 FBK 2067 STB

1534

1535

1536

211617.37

211894.03

212010.25

1213581.87

1213673.28

1213865.79

MONITOR WELLS for

DATUM : NAD83/86 VERTICAL : NGVD 29 PROJECTION : NH SP UNITS : USFT

CB&I

PEASE AIR FORCE BASE

SITE 8 1524 219225.48 1206319.82 110.16 NO PVC 108.2 08-6723 1525 221400.35 1209157.02 38.18 37.68 38.18 08-6725 1526 222052.07 1208174.06 49.19 48.88 49.19 08-6724 1527 218528.72 1205723.95 78.18 NO PVC 77.18 08-6722 1528 217528.30 1207532.31 114.87 114.55 114.87 08-5176	
1524 219225.48 1206319.82 110.16 NO PVC 108.2 08-6723 1525 221400.35 1209157.02 38.18 37.68 38.18 08-6725 1526 222052.07 1208174.06 49.19 48.88 49.19 08-6724 1527 218528.72 1205723.95 78.18 NO PVC 77.18 08-6722	
1525221400.351209157.0238.1837.6838.1808-67251526222052.071208174.0649.1948.8849.1908-67241527218528.721205723.9578.18NO PVC77.1808-6722	
1525221400.351209157.0238.1837.6838.1808-67251526222052.071208174.0649.1948.8849.1908-67241527218528.721205723.9578.18NO PVC77.1808-6722	
1526222052.071208174.0649.1948.8849.1908-67241527218528.721205723.9578.18NO PVC77.1808-6722	
1528 217528.30 1207532.31 114.87 114.55 114.87 08-5176	
SITE 17	
1529 209361.71 1217563.95 34.69 34.42 34.69 17-5034	
LANDFILL 5	
1530 218151.15 1212482.94 87.74 87.53 84.14 5-5008	
SITE 32	
1531 211528.42 1213633.30 57.28 57.08 54.78 32-5024R	
1532 211515.03 1213597.16 56.20 55.98 54.40 32-TW5297	
1533 211602.72 1213568.99 54.77 54.57 52.47 32-5267R	

SITE 36

54.68

55.01

53.94

1507	212012 72	1010045 67		50.00	50.00	00 7050	
1537	212012.72	1213245.67	59.87	59.38	58.22	36-7852	

54.47

54.57

53.79

52.48

55.01

53.94

32-6073R

32-7853

32-7548

SITE 39

1538	211863.52	1212215.67	64.67	64.42	64.67	39-MW101	
1539	212003.41	1212079.84	65.59	64.99	65.59	39-MW100	
1540	212092.69	1212158.31	65.60	65.10	65.60	39-IW002	
1541	212161.32	1212030.24	65.58	65.19	65.58	39-IW001	

This page intentionally left blank.

Appendix E Geophysical Logging Report

BOREHOLE GEOPHYSICAL LOGGING OF FOUR BEDROCK BOREHOLES AT THE FORMER PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PROJECT # 143279

> Northeast Geophysical Services 4 Union Street, Suite 3 Bangor, Maine 04401 November, 2015

BOREHOLE GEOPHYSICAL LOGGING OF FOUR BEDROCK BOREHOLES AT THE FORMER PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PROJECT # 143279

Introduction

At the request of the CBI Federal Services, four bedrock boreholes were geophysically logged by Rudy Rawcliffe of Northeast Geophysical Services (NGS). The boreholes were located the near the Site 8 area which is in located near the north portion of the former Pease Air Force Base in Portsmouth, New Hampshire. The boreholes were named 08-6722, 08-6723, 08-6724 and 08-6725. The boreholes were logged August 24 - 26, 2015.

The purpose of the geophysical logging was to identify water-bearing fractures for subsequent packer sampling. Weather during the surveys was fair.

Geophysical Methods and Instrumentation

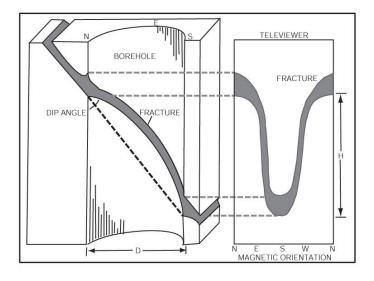
The boreholes were logged with a Mount Sopris Matrix digital logger. The boreholes were logged with a caliper tool, a fluid temperature/fluid conductivity tool and an ATV tool. In general the logging sequence was fluid temperature/fluid conductivity followed by the caliper and ATV logs. The final log on each borehole was the flowmeter measurements. Prior to entering the borehole each tool was decontaminated using soap (alconox) and deionized water rinse.

The logging procedure for the temperature probe was to lower the probe about two feet into the water column and allow the tool to equilibrate to the ambient borehole fluid temperature which takes about five to eight minutes. The temperature/fluid resistivity log is measured moving downwards in the borehole so that there is less disturbance of the water column. The caliper and ATV logs are logged from the bottom of the borehole. The final log on each borehole was the Heat pulse flowmeter. Similar to the temperature probe, the heat pulse tool is lowered into the water column and allowed to stabilize for about five to eight minutes before data collection. Logging rates for the tools were: caliper at 20 feet per minute (fpm), fluid at 10 fpm and ATV at 6 fpm.

Following is a brief description of each parameter that was measured and how that information is used to locate possible bedrock fractures.

<u>Temperature</u> (in degrees Centigrade [°C]) is measured with the probe going down each hole. Areas where water may be entering or exiting the borehole are sometimes revealed on the temperature log as abrupt temperature changes or sometimes as temperature gradient changes. Other factors that can affect the temperature log besides transmissive fractures include variations in the thermal resistivity of the rock with depth along the borehole, surface climatic changes, thermal effects of drilling activity, and localized heat sources such as radionuclides in the rock or cement setting outside the casing.

<u>Fluid conductivity</u> is the conductivity (in μ S/cm) of the water in the borehole. Fluid conductivity can be useful in identifying transmissive fractures because water entering the


borehole through fractures sometimes has a different conductivity than the water that is already in the borehole. The tool actually measures fluid resistivity in ohmmeters (Ω m) rather than fluid conductivity. Fluid resistivity is essentially the inverse of fluid conductivity. For example: 1 Ω m is equal to 10,000 µS/cm and 1,000 Ω m is equal to 10 µS/cm. Because fluid conductivity is more commonly used in groundwater investigations the fluid resistivity data were converted to fluid conductivity for presentation on the logs.

<u>Caliper</u> measures the borehole diameter. Fractures are often revealed on the caliper log as abrupt widenings of the borehole.

<u>The acoustical televiewer (ATV) log</u> provides an acoustical image of the borehole walls. The ATV works by scanning the borehole wall with an acoustic beam that is produced by a rapidly rotating piezoelectric source. Planar features such as fractures, bedding surfaces and joints can be identified with the ATV tool and the strike, dip direction and dip angle of these features can often be determined.

The ATV data are presented as "unwrapped" images of the borehole wall that are oriented to magnetic north. The dip angle and dip direction of any planar feature that intersects the borehole can be measured from this image as illustrated below.

Borehole Televiewer Data

Each identified feature was digitized using WellCad software which then calculates the dip and dip direction of the features taking into account the borehole tilt and orientation.

The temperature, caliper, fluid conductivity and ATV logs were examined and possible bedrock fractures were identified. This information was used to select measurement locations for the

A Division of NGS, Inc.

flowmeter instrument. Generally, flowmeter measurements were taken in the areas immediately above and below locations where potential transmissive fractures might exist in the boreholes. At each flowmeter measurement location a minimum of three repeatable (within 0.01 gpm) readings were made.

Borehole Geophysical Results

The following table summarizes some of the attributes of each well:

Well Summary - Former Pease AFB Site Portsmouth, New Hampshire								
Attachment: A B C D								
Well	08-6722	08-6723	08-6724	08-6725				
Total Depth (ft from toc)	141.1	110.7	179.70	226.20				
Casing Length (ft)	74.0	89.5	18.50	26.50				
Water Level (ft from toc)	26.55	53.65	6.15	7.43				
Caliper (inches*)	4.98	3.87	3.92	3.90				
maximum	>18	9.55	4.58	4.63				
Temperature (°C*)	9.70	9.50	10.50	10.37				
minimum	9.69	9.47	10.35	10.20				
maximum	9.73	9.59	11.22	10.46				
Fld Conductivity								
(uS/cm*)	296	726	2,933	1,045				
minimum	285	580	2,330	987				
maximum	605	781	4,013	1,353				
* median value								

Geophysical logs for each of the four boreholes are attached to this report as Attachments A through D respectively. Attachment A contains data from the 08-6722; Attachment B contains data from 08-6723 and so on. For each borehole the data are presented in a series of graphs (Plates 1-6) that show the results of the geophysical measurements. Tables that provide the depth and calculated strike and dip of each identified feature for each borehole are also presented in the attachments.

Plate 1 in each attachment (A-D) is a composite geophysical log containing caliper, flowmeter, temperature, fluid conductivity measurements and a tadpole plot derived from the televiewer data. Plate 1 shows the locations of potential fractures in each of the boreholes. The flowmeter results, temperature and fluid conductivity results provide indications of which of these potential fractures that may carry notable groundwater flow (i.e. are transmissive).

The fractures interpreted to be transmissive are highlighted in yellow on Plate 1. Dark yellow highlights indicate likely transmissive fractures. Lighter yellow highlights indicate possible transmissive fractures. The tadpole plot (far right column) on Plate 1 also shows possible and likely transmissive fractures. The blue colored tadpoles represent possible (light blue) and likely (dark blue) transmissive fractures. It is possible that there are other transmissive fractures in the borehole but these are the ones that are most apparent based on the geophysical measurements.

Plate 2 is a rose plot of the strike and dip angle of all the interpreted planar features in each borehole. These rose plots show that the majority of the planar features in the boreholes strike northeast at about 20° true and dip towards the northwest. This may represent the foliation in the rock or bedding.

Plate 3 is borehole deviation of each borehole. Borehole 08-6722 deviated slightly (~2.5 feet) towards the east. Borehole 08-6723 only had about 20 feet of open borehole below the casing and so had minor deviation. The largest deviations were in 08-6724 (about 23 feet to the southeast) and 08-6725 (about 35 feet southeast). This deviation direction is approximately perpendicular to the predominant strike in these boreholes and opposite the predominant dip direction.

Plate 4 is the televiewer image log plots and interpreted structure for each borehole.

Plate 5 is a repeat log of caliper and fluid temperature and conductivity for sections of each borehole. In general the caliper logs repeated fairly closely. The slight discrepancies that can be seen between the original and repeat runs on some logs are most likely due to a different orientation of the 3-armed caliper or different pathway up the borehole by the tool between the original and repeat runs.

The repeat fluid temperature and conductivity measurements also matched quite closely. The slight variations between the original and repeat runs could be due to disturbance of the water column in the borehole because of repeated runs of tools going up and down in the borehole or they may be due to warming of the electronics in the tool over time.

Plate 6 is an ATV repeat log of a section of each borehole. The ATV logs for all of the boreholes repeated very closely with the original logs.

Table 1 (A-D) provides the depth and calculated strike and dip of the planar features in each borehole that have been interpreted from the televiewer log. These planar features may be fractures or may represent cleavage, joints or bedding planes. The results in Table 1 have been categorized and also have been color-coded on the logs to provide an interpretative range of the likelihood that the associated feature signifies a transmissive fracture as follows:

- Dark blue symbol (category 107) multiple distinct borehole geophysical logging responses indicating borehole enlargement (caliper, acoustic signal), or evident change in the borehole fluid characteristic (temperature, fluid conductivity or quantified vertical flow) that provides the strongest data that the indicated bedrock feature represents a likely transmissive water-bearing fracture.
- Light blue symbol (category 108) less amount of corroborating geophysical data to support that the indicated feature will transmit groundwater compared to the dark blue symbol. However, the televiewer logs show a fairly distinct acoustic signal or optical image that perhaps under a higher stress condition (e.g. pumping rate), vertical flow could be induced in the borehole. Less degree of confidence that the feature represents a transmissive feature than category 107.
- Black symbol (category 100) bedrock feature not interpreted to transmit water; more likely to represent planes of foliation, bedding planes, healed or filled fractures, or mechanical breaks in the rock matrix due to drilling advancement.

It is possible that there are other transmissive fractures in the boreholes but the ones indicated on the logs and tables are considered the most likely based on the geophysical measurements.

A Division of NGS, Inc.

Table 2 in each attachment is a summary of the flowmeter measurements taken in the borehole.

Discussion of the results

The main objective of the geophysical logging was to identify and characterize transmissive fractures in the boreholes. Plate 1 and Table 1 in the attachments (A-D) indicate the zones in each borehole that are interpreted to be transmissive. This was based primarily on the flowmeter measurements and to a lesser degree on the temperature and fluid conductivity measurements.

Overall, of the 271 planar features (possible fractures) identified in the boreholes, 28 were interpreted as being likely transmissive and 25 as being possibly transmissive.

08-6722

In borehole 08-6722, there are several anomalously wide caliper deflections that represent likely fractures. The widest anomalies occur at 137.6 and 121.4 feet. Based on the flowmeter measurements under pumping conditions most of the water enters the borehole at these two zones. Plate A-1 and in Table A-1 show the location and orientations of fractures within these areas as well as several other possibly transmissive fractures in the borehole.

08-6723

In borehole 08-6723 there was only about 20 feet of open borehole. The caliper log shows a very wide void immediately below the casing from 89.9 to 91.2 feet and a second wide zone (likely fracture) at 96.4 feet.

Under ambient conditions the flowmeter shows that water enters the borehole through this upper void and moves downward and exits the borehole through the fracture at 96.4 feet. It is unusual to have ambient flow between fractures that are so close to each other. One possibility is that the casing is not sealed tightly into the bedrock and that surficial water from sediments is entering the borehole just below the casing and exiting through the bedrock fracture 96.4 feet.

The orientations of the possibly fractures are shown on Plate B-1 and in Table B-1.

<u>08-6724</u>

Borehole 08-6724 was an interesting borehole. It had the highest fluid conductivity of the four wells logged with a median value of over 2,900 μ S/cm. Under ambient conditions there was a strong downflow with water entering the borehole just below the casing at 19 feet as seen on Plate C-1. There is also an abrupt increase in fluid conductivity and a temperature deflection at this depth. Additional water enters the borehole between 35 and 37 feet and moves downwards. There is also an abrupt increase in fluid conductivity and a temperature deflection at this depth. Water moves downwards in the borehole and exits the borehole through fractures at 66 feet and below as show on Plate C-1.

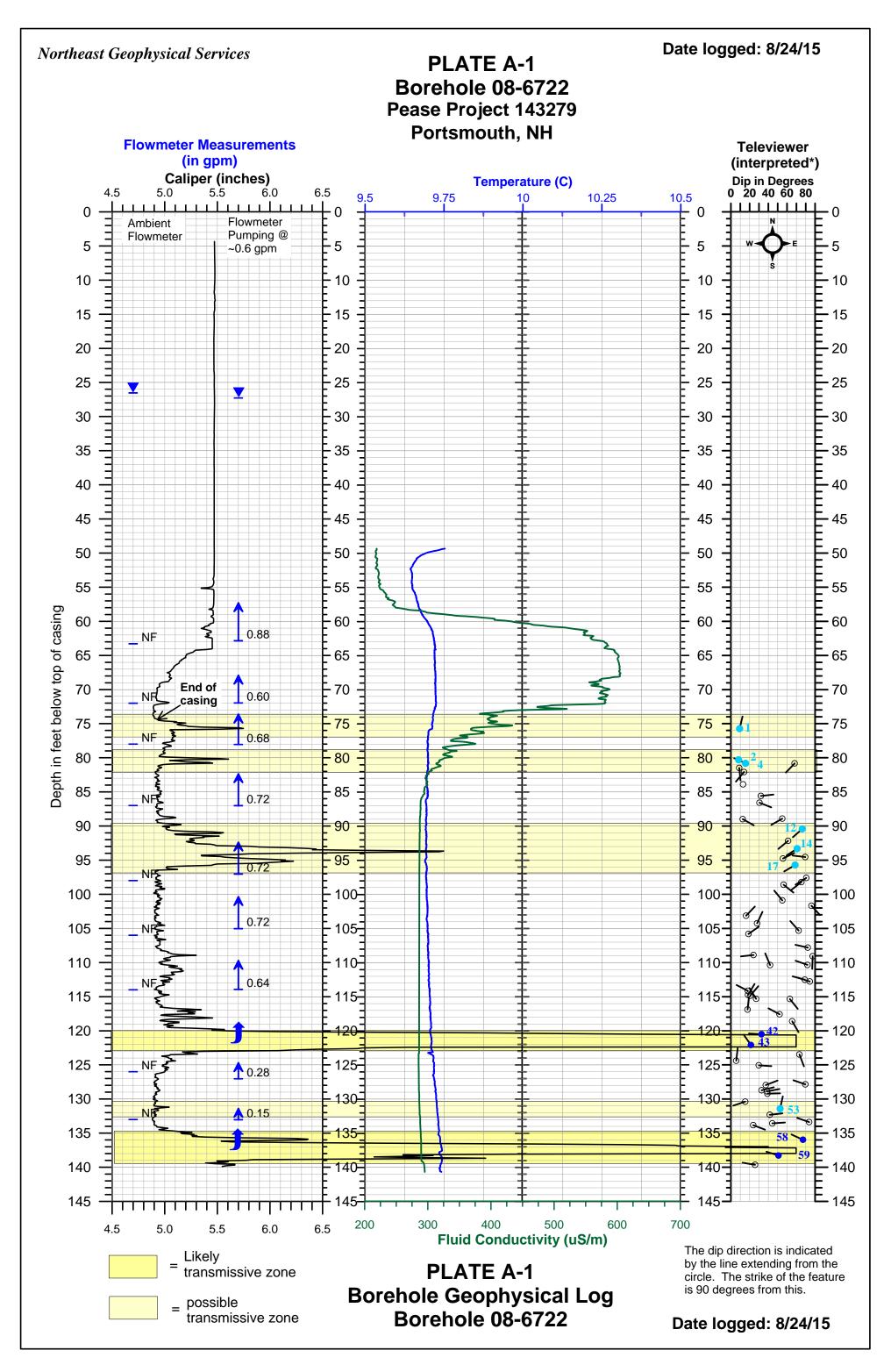
The hydraulic gradient (or head difference) between the fracture or void located at 19 feet and the fractures located deeper in the borehole was very high as the flowmeter still measured downflow below 19 feet while pumping the well at over 1 gallon per minute.

A possible explanation for the high conductivity in 08-6724 is that it is being affected by septic water from a nearby school septic field that is located upslope and less than 100 feet from the borehole.

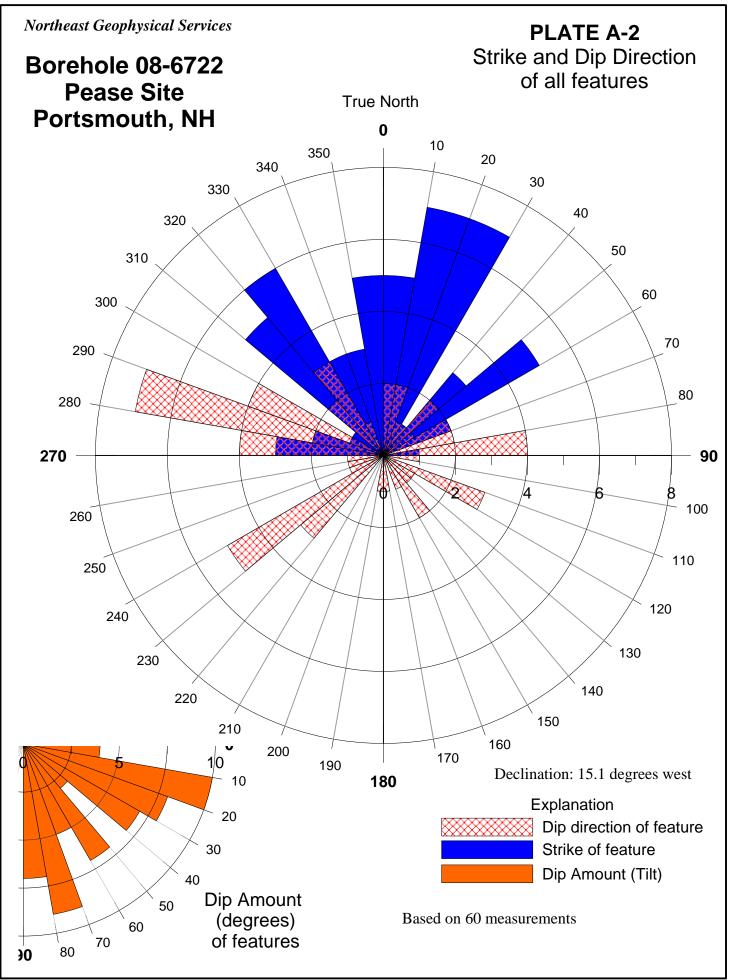
<u>08-6725</u>

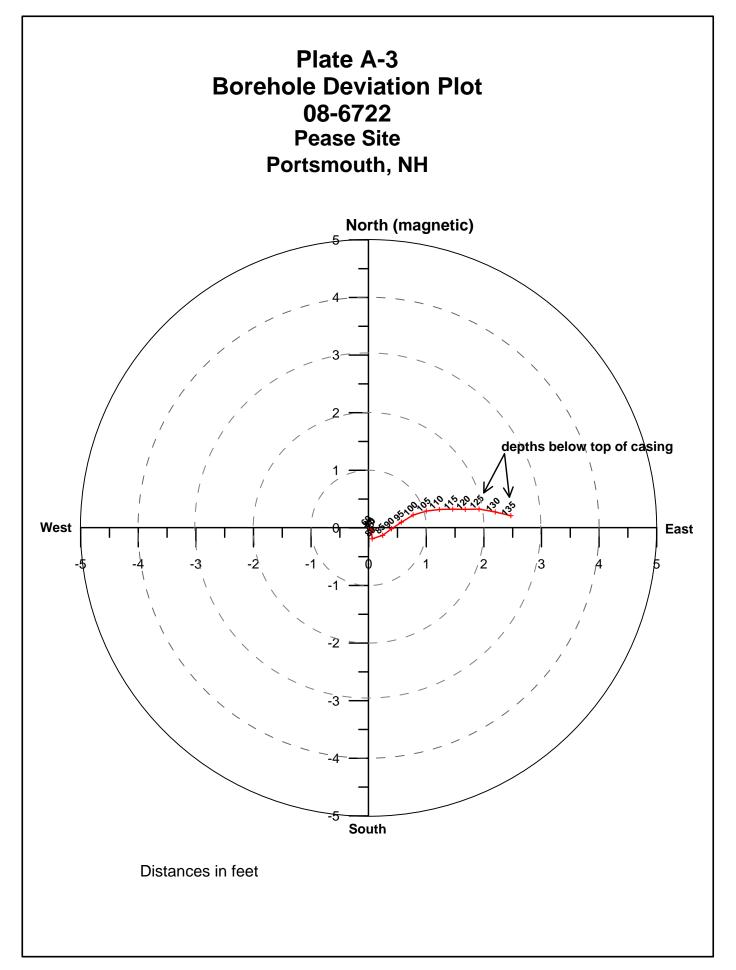
The ambient flowmeter measurements in Borehole 08-6725 show strong downflow with water A Division of NGS, Inc.

5

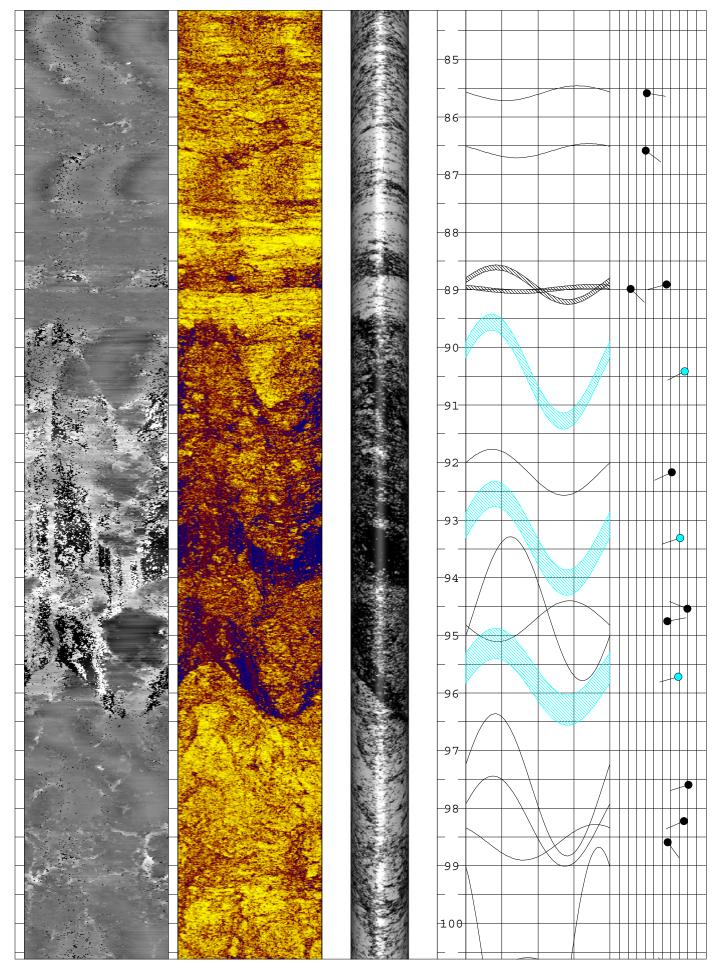

entering the borehole through fractures located between 26 and 65 feet as seen on Plate D-1. Water moves downward in the borehole and most of the water exits the borehole through fractures located at the bottom of the borehole below 220 feet.

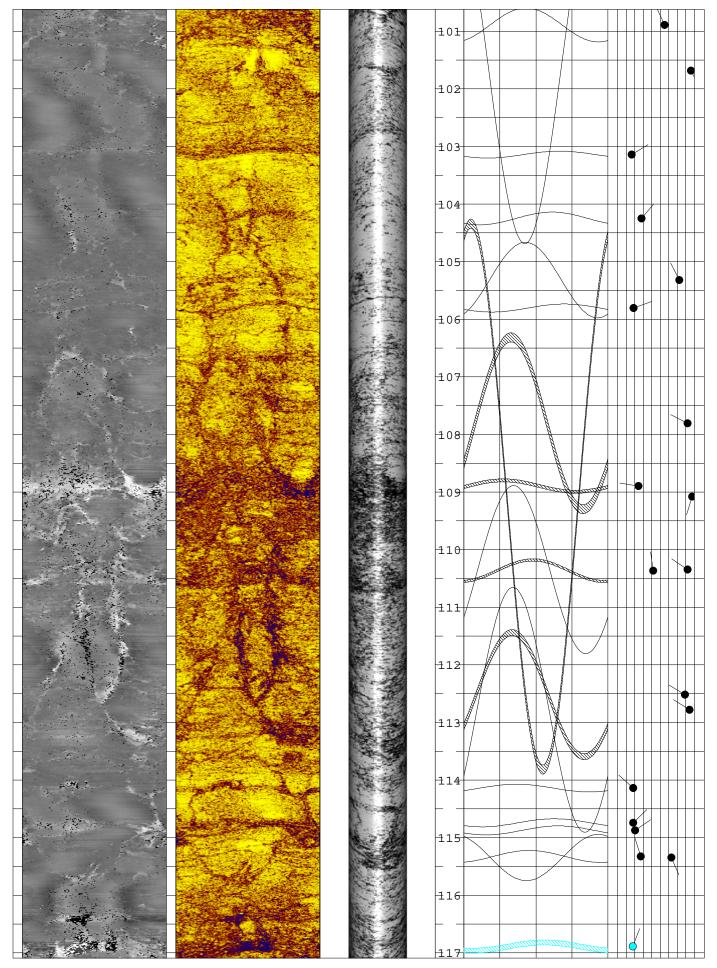
The fluid conductivity in 08-6725 was third highest of the four boreholes logged with a median value of 1,045 μ S/cm.

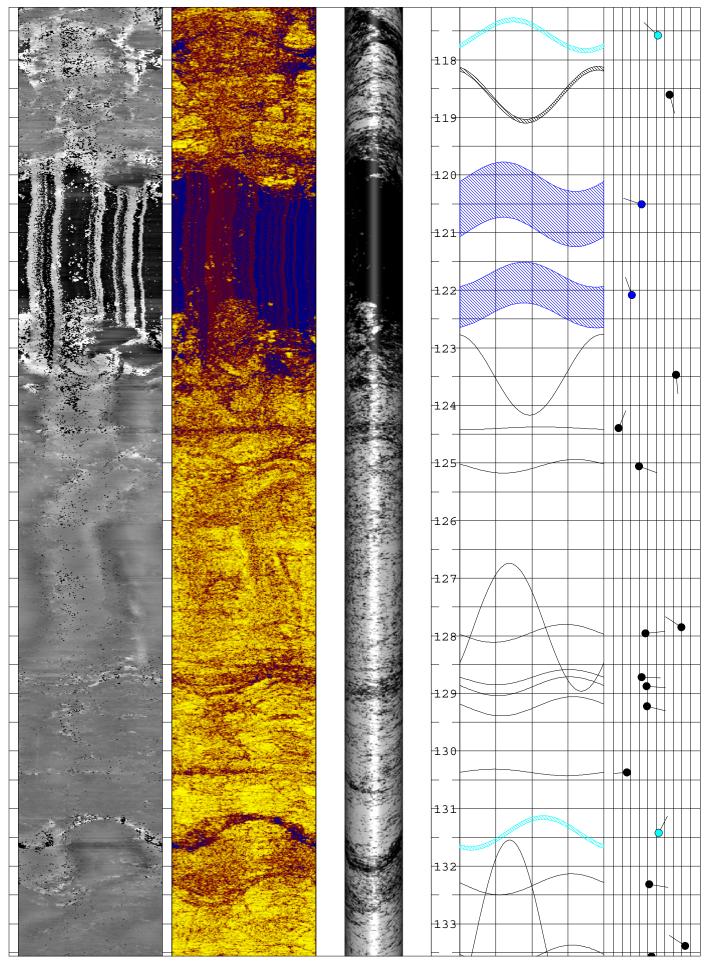

A Division of NGS, Inc.

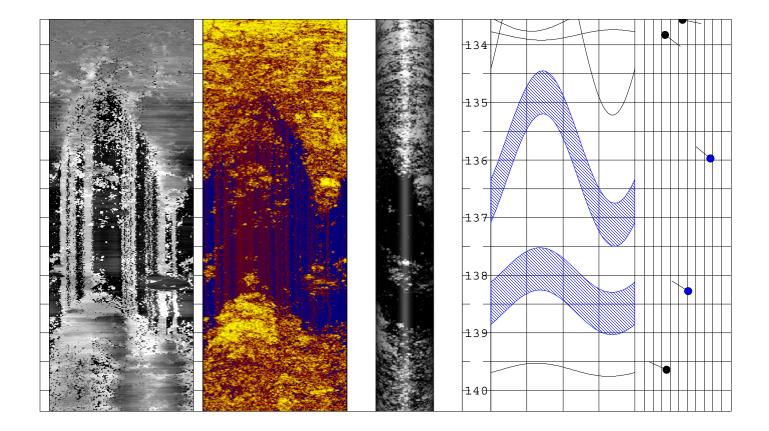

Northeast Geophysical Services

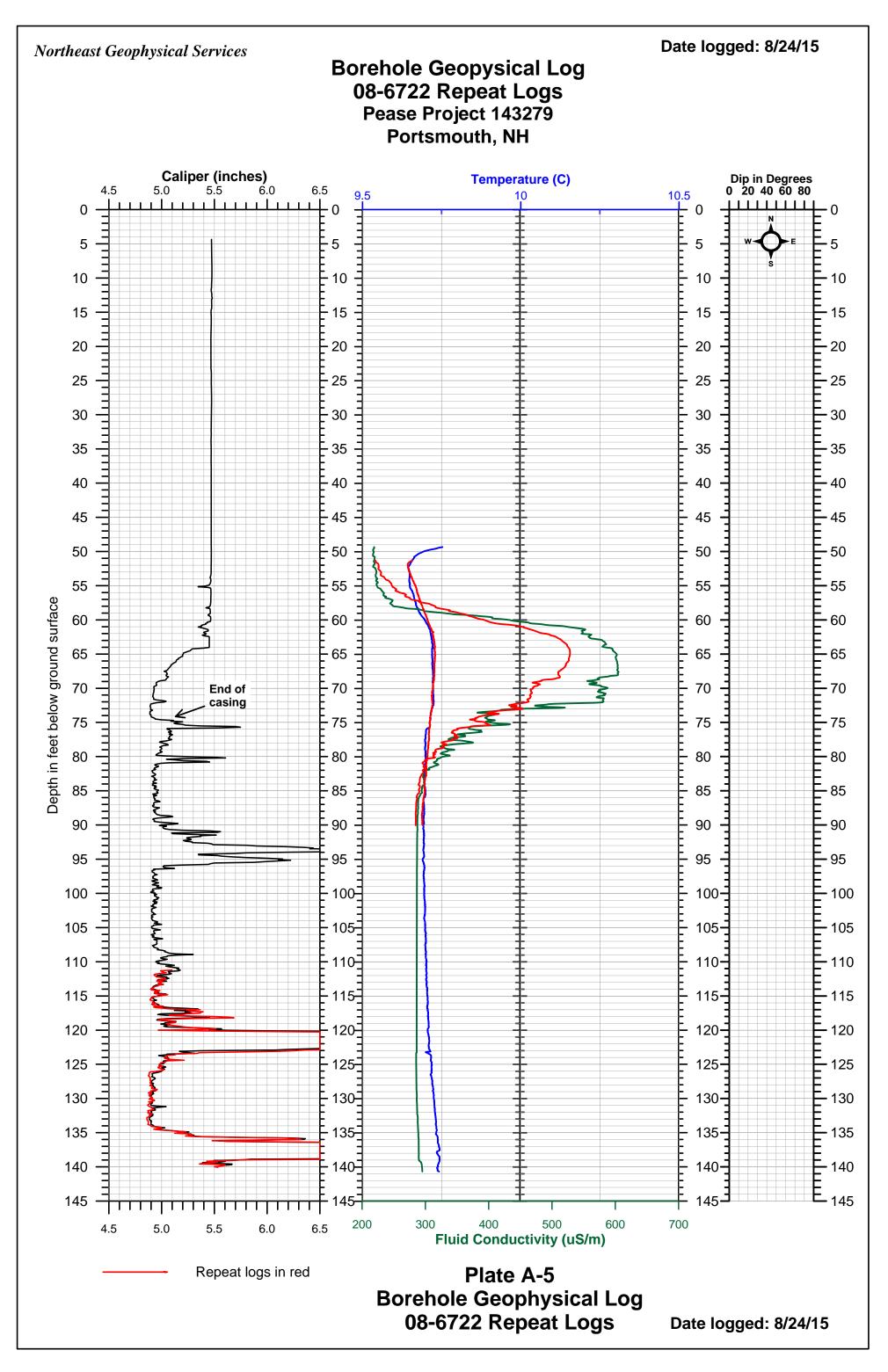
ATTACHMENT A 08-6722 BOREHOLE GEOPHYSICAL LOGS

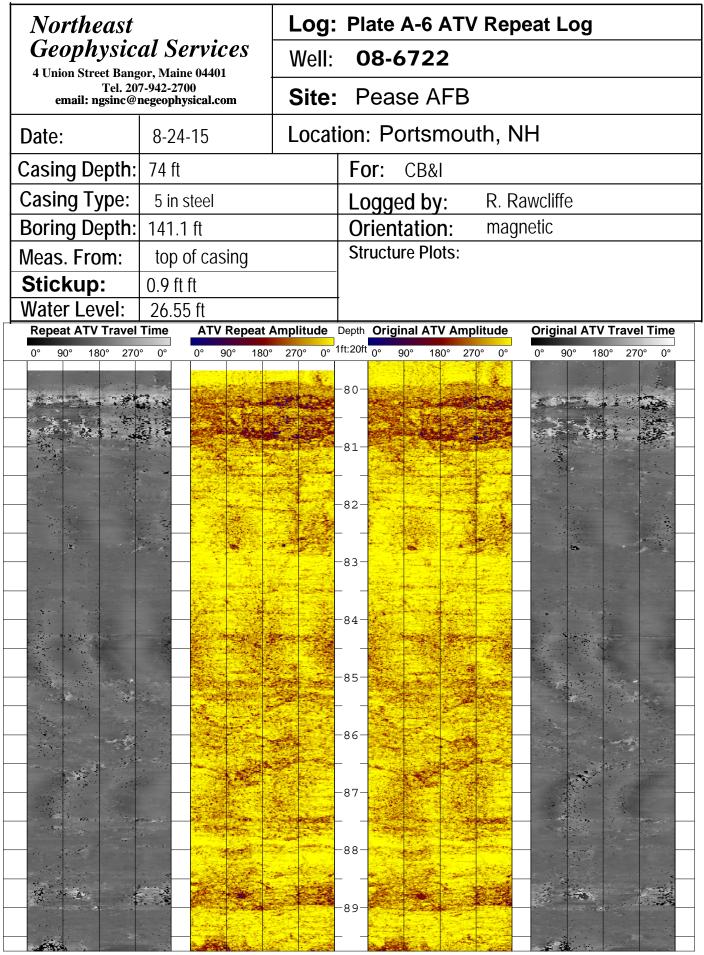


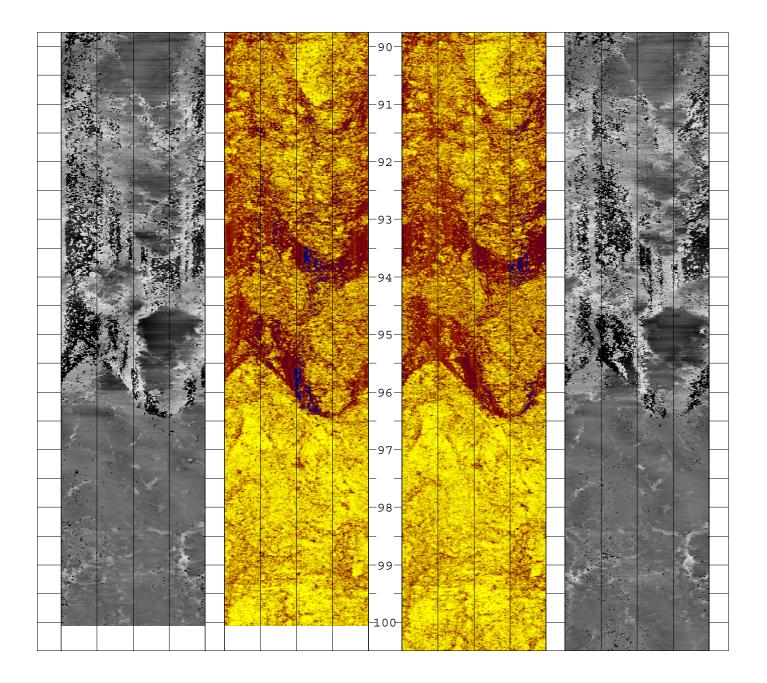

This page intentionally left blank.






Northeast		Log:	Plate	A-4 Tel	eviewer			
Geophysic	Well:	08-	6722					
4 Union Street Bang Tel. 20' email: ngsinc@n	Site:	Pea	se AFB					
Date:	8/24/2015	Locati	on: Po	ortsmou	uth, NH			
Casing Depth:	74 ft		For:	CB&I				
Casing Type:	5 in		Logge	ed by:	R. Rawclif	fe		
Boring Depth:	141.1 ft			tation:	magnetic			
Meas. From:	toc			ire Plots:				,
Stickup:	0.9 ft		light blue	= possibly tran	(faults, foliation, be nsmissive fracture nissive fracture	idding, jo	ints, etc	;)
Water Level:	26.55 ft							
ATV Travel Time 0° 90° 180° 270°	ATV Amplitud 0° 0° 90° 180° 27		3D 0°	Depth 1:20 0°	Structure 90° 180° 27	70° 0°	Tadp 0	pole Plot
				-74				
				-78				



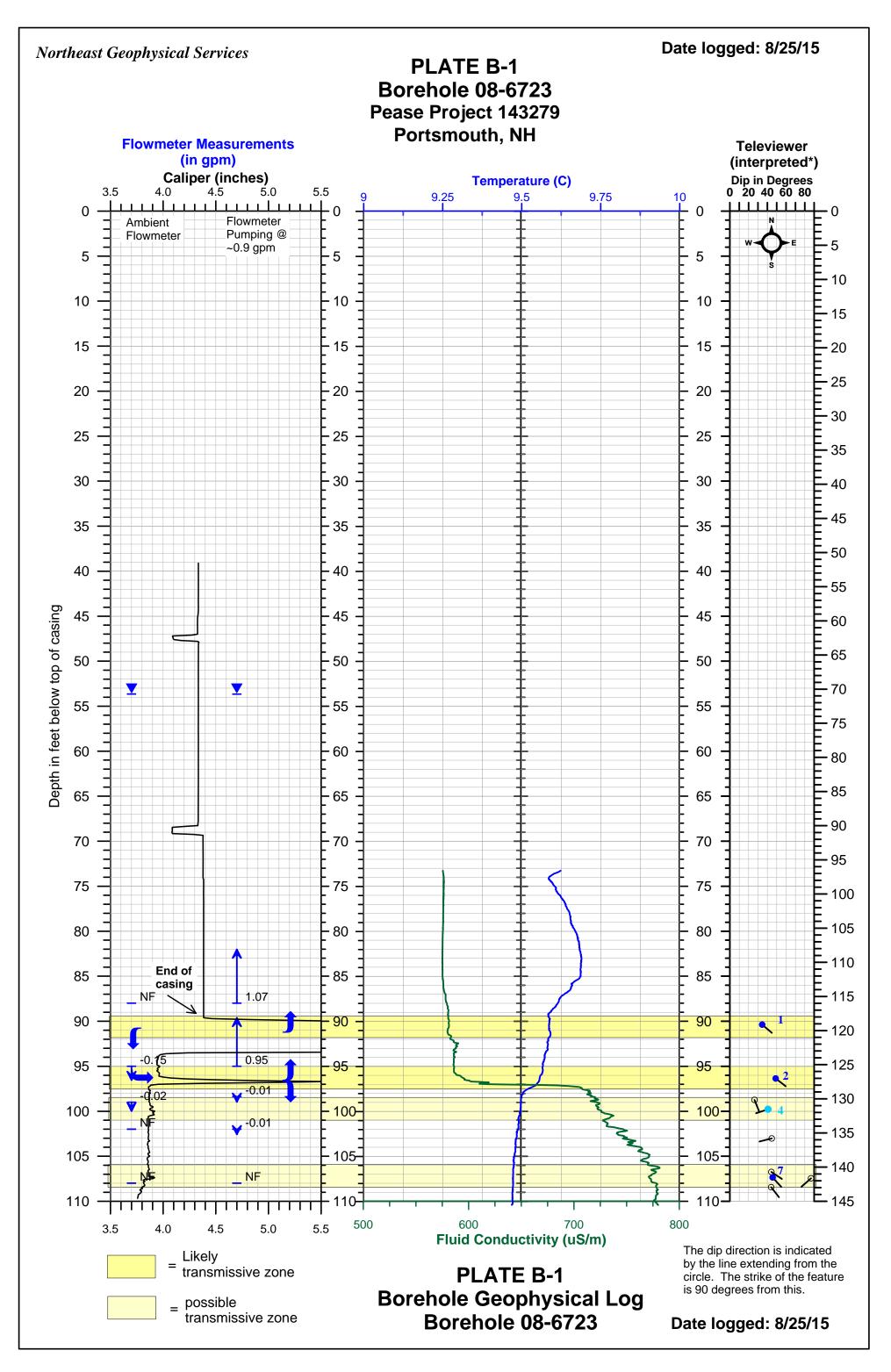


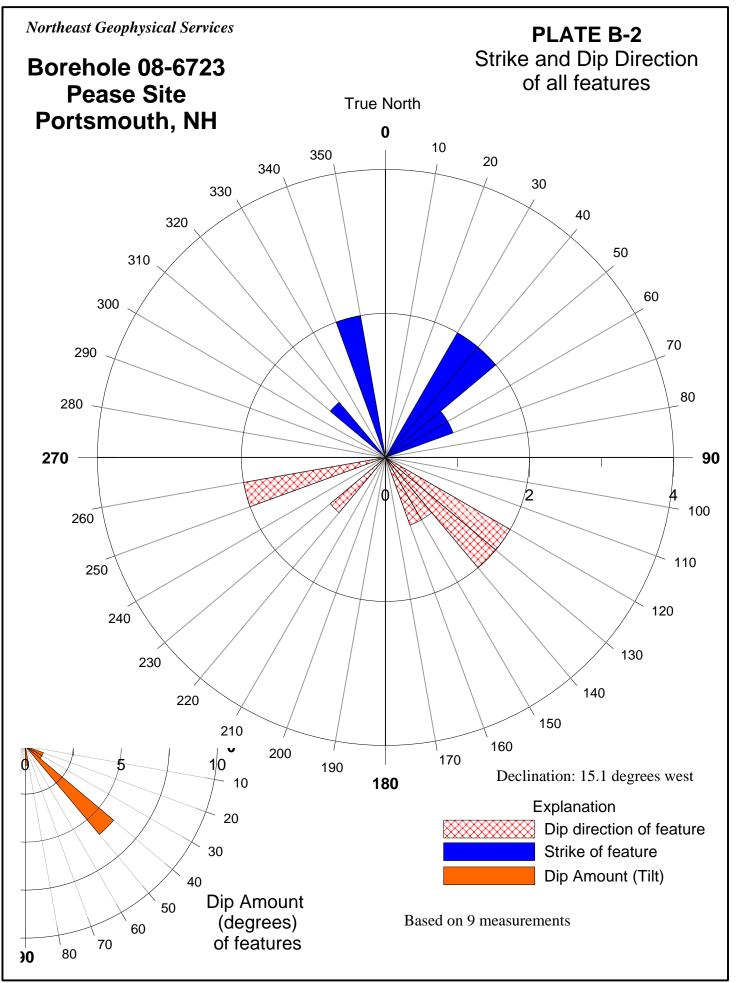
08-6722		Pease AFB, Pc	, New Hamps		Logged: 08/24/2015				
Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6722	1	75.7	9	29	299	13	283	83	108
08-6722	2	80.3	8	329	59	314	44	30	108
08-6722	3	80.8	68	239	329	224	314	<1 mm	100
08-6722	4	80.8	16	310	40	294	24	50	108
08-6722	5	81.5	9	189	279	174	84	<1 mm	100
08-6722	6	82.1	14	236	326	220	310	<1 mm	100
08-6722	7	83.9	13	292	22	277	7	<1 mm	100
08-6722	8	85.6	32	99	9	84	354	<1 mm	100
08-6722	9	86.6	31	127	37	112	22	<1 mm	100
08-6722	10	88.9	55	255	345	240	330	15	100
08-6722	11	89.0	13	134	44	119	29	20	100
08-6722	12	90.4	76	244	334	229	319	20	108
08-6722	13	92.2	61	245	335	230	320	<1 mm	100
08-6722	14	93.3	71	252	342	237	327	44	108
08-6722	15	94.5	79	292	22	277	7	<1 mm	100
08-6722	16	94.8	56	79	349	64	334	<1 mm	100
08-6722	17	95.7	69	255	345	240	330	59	108
08-6722	18	97.6	81	253	343	238	328	<1 mm	100
08-6722	19	98.2	75	248	338	232	322	<1 mm	100
08-6722	20	98.6	56	144	54	129	39	<1 mm	100
08-6722	21	100.9	55	335	65	320	50	<1 mm	100
08-6722	22	101.7	86	152	62	137	47	<1 mm	100
08-6722	23	103.1	16	59	329	44	314	<1 mm	100
08-6722	24	104.3	28	40	310	25	295	<1 mm	100
08-6722	25	105.3	72	334	64	319	49	<1 mm	100
08-6722	26	105.8	19	70	340	55	325	<1 mm	100
08-6722	27	107.8	82	298	28	283	13	6	100
08-6722	28	108.9	24	279	9	264	354	15	100
08-6722	29	109.1	87	197	287	182	272	2	100
08-6722	30	110.4	82	305	35	289	19	<1 mm	100
08-6722	31	110.4	42	352	82	337	67	10	100
08-6722	32	112.5	79	301	31	286	16	6	100
08-6722	33	112.8	84	303	33	288	18	<1 mm	100

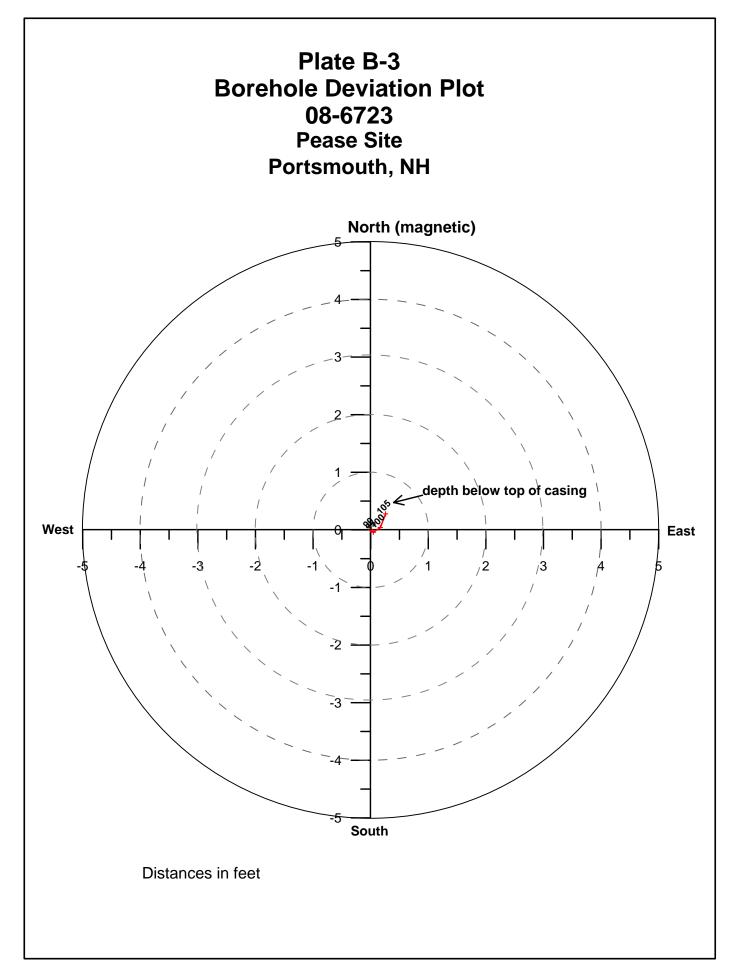
Logged: 08/24/2015

TABLE A-1 Planar features interpreted from acoustical televiewer 08-6722 Pease AFB. Portsmouth. New Hampshire

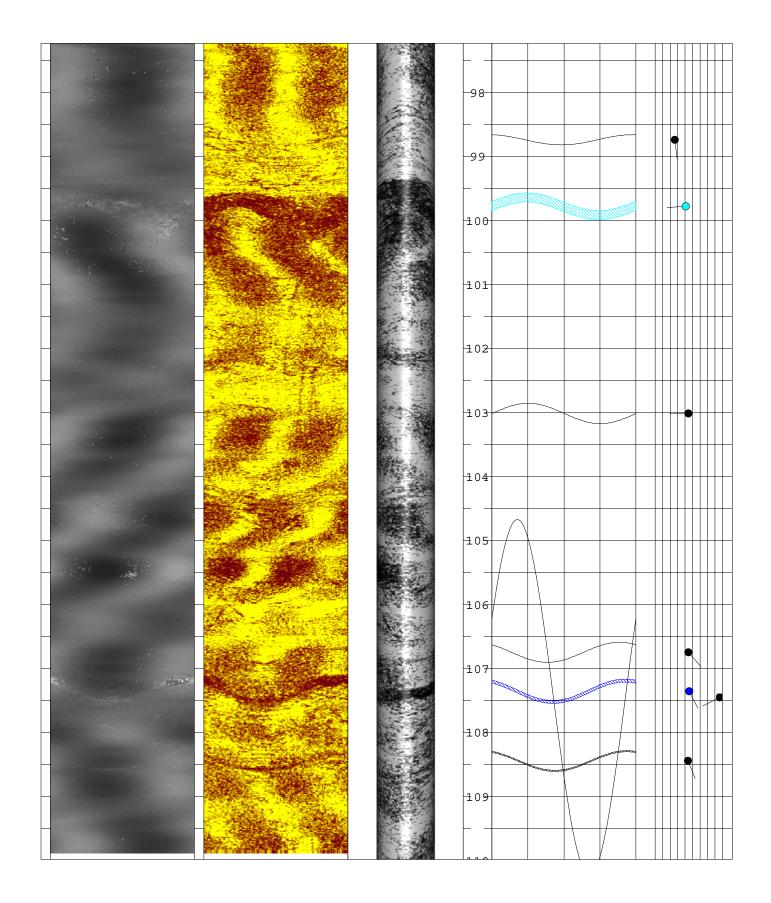
Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category	
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	0,1	
08-6722	34	114.1	18	312	42	297	27	<1 mm	100	
08-6722	35	114.7	18	46	316	31	301	<1 mm	100	
08-6722	36	114.9	21	55	325	40	310	<1 mm	100	
08-6722	37	115.3	27	343	73	328	58	<1 mm	100	
08-6722	38	115.3	63	156	66	141	51	<1 mm	100	
08-6722	39	116.9	18	21	291	6	276	24	100	
08-6722	40	117.6	52	313	43	298	28	14	100	
08-6722	41	118.6	66	165	75	150	60	8	100	
08-6722	42	120.5	33	289	19	273	3	246	107	
08-6722	43	122.1	21	340	70	325	55	201	107	
08-6722	44	123.5	73	174	84	159	69	<1 mm	100	
08-6722	45	124.4	6	22	292	7	277	<1 mm	100	
08-6722	46	125.1	30	109	19	94	4	<1 mm	100	
08-6722	47	127.9	80	304	34	289	19	<1 mm	100	
08-6722	48	128.0	37	84	354	69	339	<1 mm	100	
08-6722	49	128.7	33	91	1	76	346	<1 mm	100	
08-6722	50	128.9	39	94	4	79	349	<1 mm	100	
08-6722	51	129.2	39	104	14	88	358	<1 mm	100	
08-6722	52	130.4	15	266	356	251	341	<1 mm	100	
08-6722	53	131.4	53	28	298	13	283	12	108	
08-6722	54	132.3	42	99	9	84	354	<1 mm	100	
08-6722	55	133.4	84	304	34	289	19	<1 mm	100	
08-6722	56	133.6	44	101	11	86	356	<1 mm	100	
08-6722	57	133.8	24	126	36	111	21	<1 mm	100	
08-6722	58	136.0	77	310	40	295	25	51	107	
08-6722	59	138.3	51	303	33	288	18	141	107	
08-6722	60	139.6	26	295	25	279	9	<1 mm	100	
Category E	Explanation									
100 planar feature likely foliation or bedding surface										

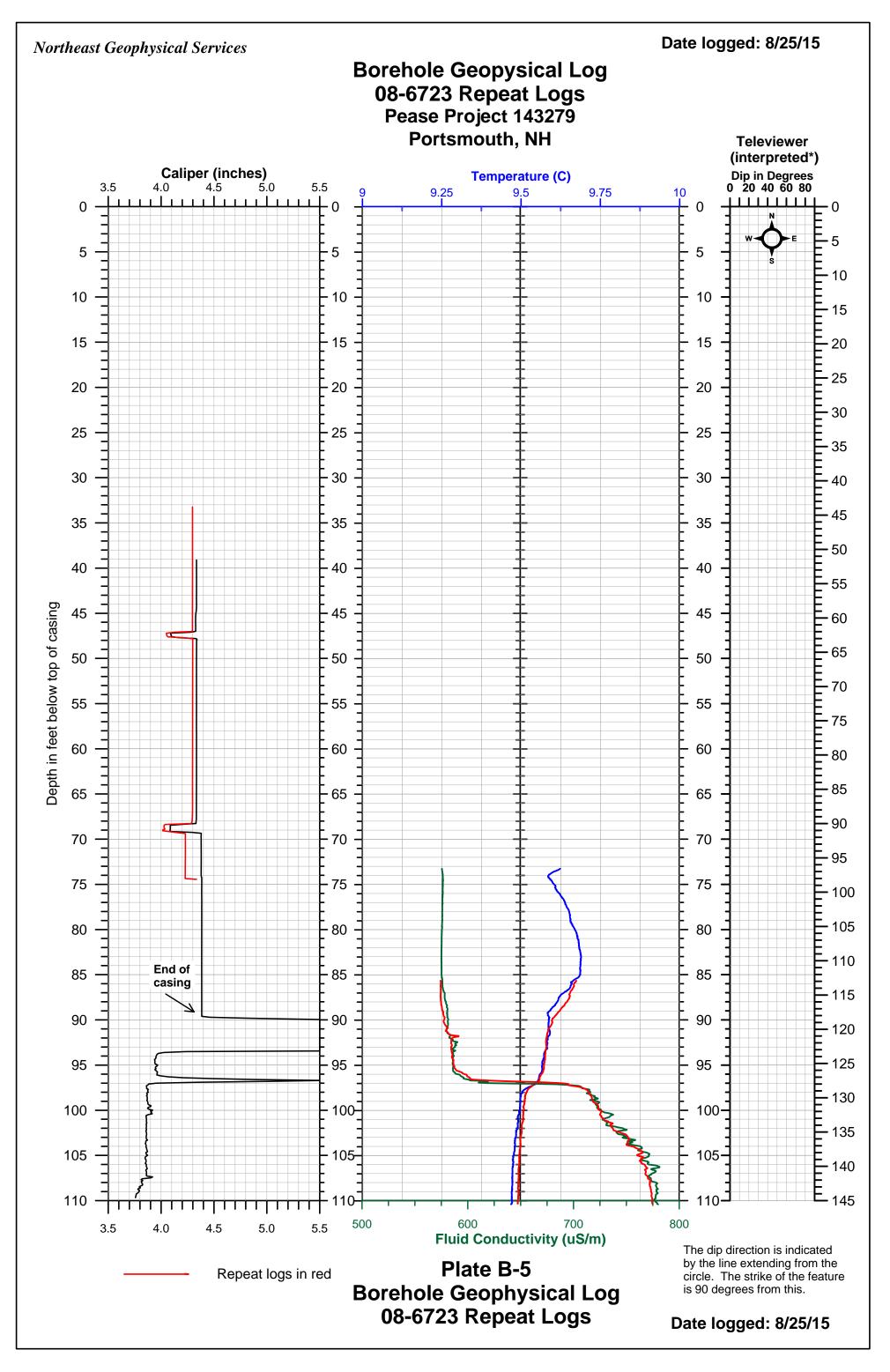

planar feature likely foliation or bedding surface possibly transmissive fracture or crack likely transmissive fracture or crack 100 108


107

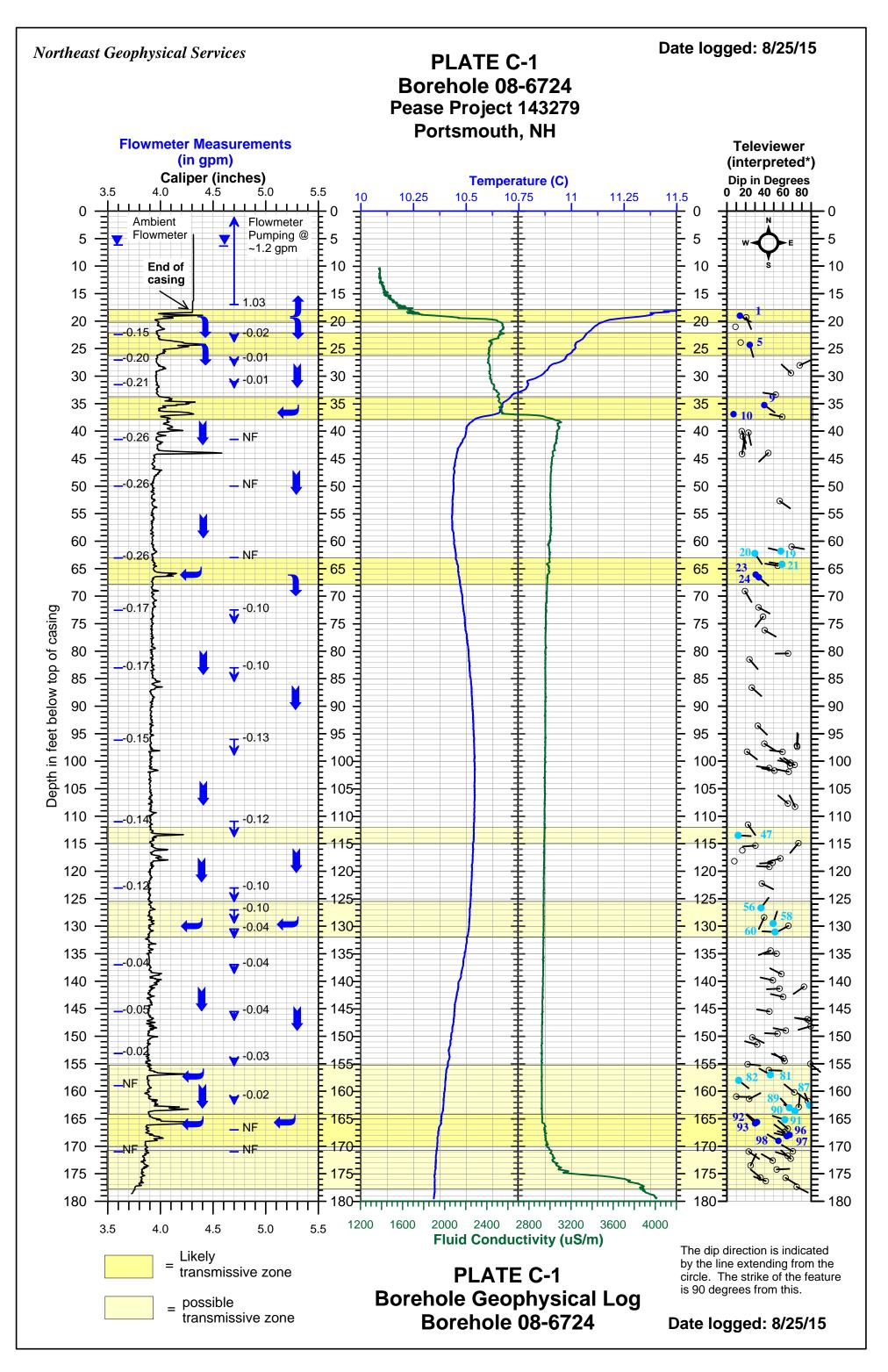

TABLE A-2 - Flowmeter measurements													
	08-6722 -		Logged: 08	8/24/2015									
	Portsmouth, NH Ambient Measurements												
					1								
Borehole	Depth		w Readii	•									
	Feet		ons per r	minute)	Avera	ge or Media	n Flow						
08-6722	26.6	water level											
08-6722	63.3	NF	NF	NF		NF							
08-6722	72.0	NF	NF	NF		NF							
08-6722	78.0	NF	NF	NF		NF							
08-6722	87.0	NF	NF	NF		NF							
08-6722	98.0	NF	NF	NF		NF							
08-6722	106.0	NF	NF	NF		NF							
08-6722	114.0	NF	NF	NF		NF							
08-6722	126.0	NF	NF	NF		NF							
08-6722	133.0	NF	NF	NF		NF							
Measureme	nts while p	oumping	pun	np rate =	~0.6	gpm							
Borehole	Depth	Flo	w Readii	ngs									
	Feet	(in gall	ons per r	minute)	Average or Median Flow								
08-6722	27.3	water level											
08-6722	62.9	0.82	0.88	0.88		0.88							
08-6722	72.0	0.57	0.60	0.60		0.60							
08-6722	78.0	0.68	0.68	1.12	0.68	0.68							
08-6722	87.0	0.68	0.77	1.36	0.72	0.72							
08-6722	97.1	0.68	0.72	0.72		0.72							
08-6722	105.0	0.64	0.72	0.72	0.72	0.72							
08-6722	113.9	0.64	0.64	0.60	0.64	0.64							
08-6722	127.0	0.28	0.27	0.28		0.28							
08-6722	133.0	0.16	0.15	0.15	0.15	0.15							

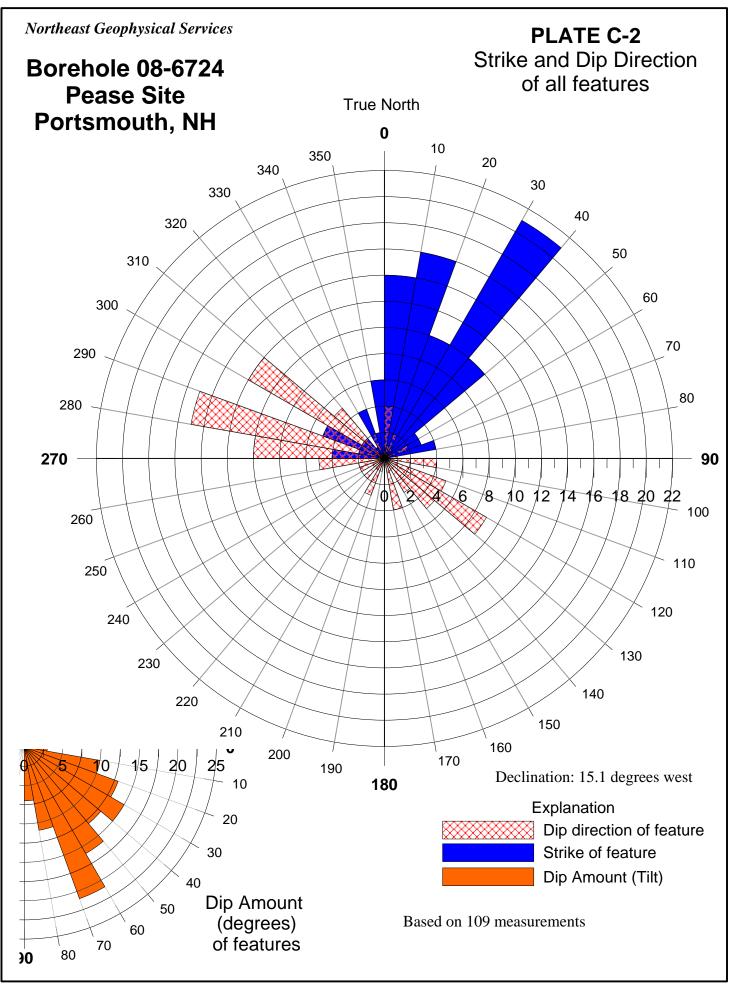
Northeast Geophysical Services

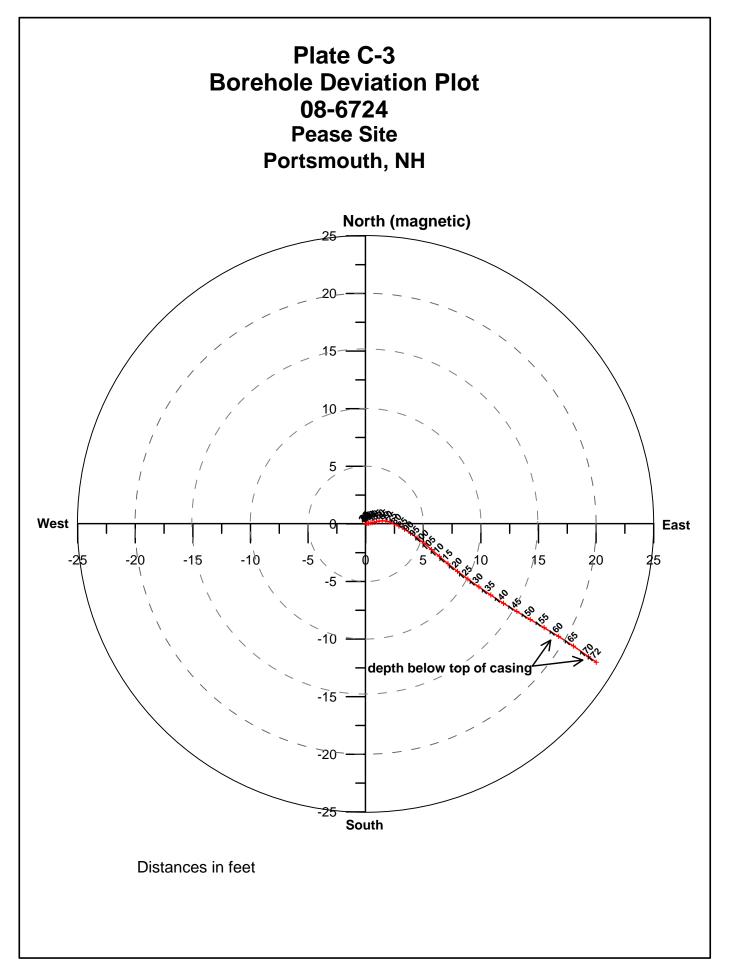

ATTACHMENT B 08-6723 BOREHOLE GEOPHYSICAL LOGS



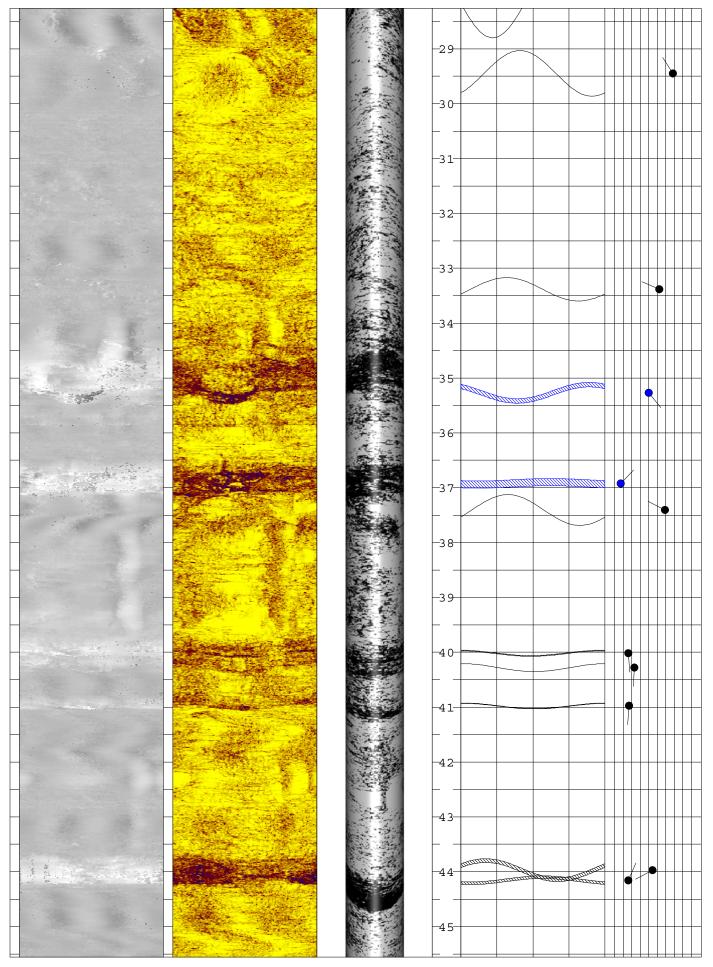
Northeast	Log:	Plate	B-4 Ac	oustic Te	leviev	ver	Lo	g	
Geophysic 4 Union Street Bang	Well:	08-6	723						
Tel. 20 email: ngsinc@	Site:	Peas	se AFB	8					
Date:	8/25/2015	Locat	ion: Pc	ortsmo	uth, NH				
Casing Depth:	89.5 ft		For:	CB&I					
Casing Type:	4 inch		Logge	d by:	R. Rawcli	ffe			
Boring Depth:	110.7 ft		Orient		magnetic				
Meas. From:	toc			re Plots:					
Stickup:	1.5 ft		light blue =	= possibly tra	(faults, foliation, b nsmissive fracture nissive fracture		nts, et	2)	
Water Level:	53.65 ft								<u></u>
ATV Travel Time 0° 90° 180° 270°	ATV Amplitud 0° 0° 90° 180° 27	le 70° 0°	3D 0°	Depth 1:18 0°	Structure	270° 0°	Γad ⊢0	pole	90
			Ŭ						
								+++-	
			All Same	-89					
-			Con la						
				-90-					
				-91					
	_								
				-92				+++-	
								+++-	
				-93					
		A.W.							
				-94					
			A Sh	-95				+++	
							-++		
			Alter State	-96					
1						III DOMINICO D			
			and the		All Dargen				
				-97					

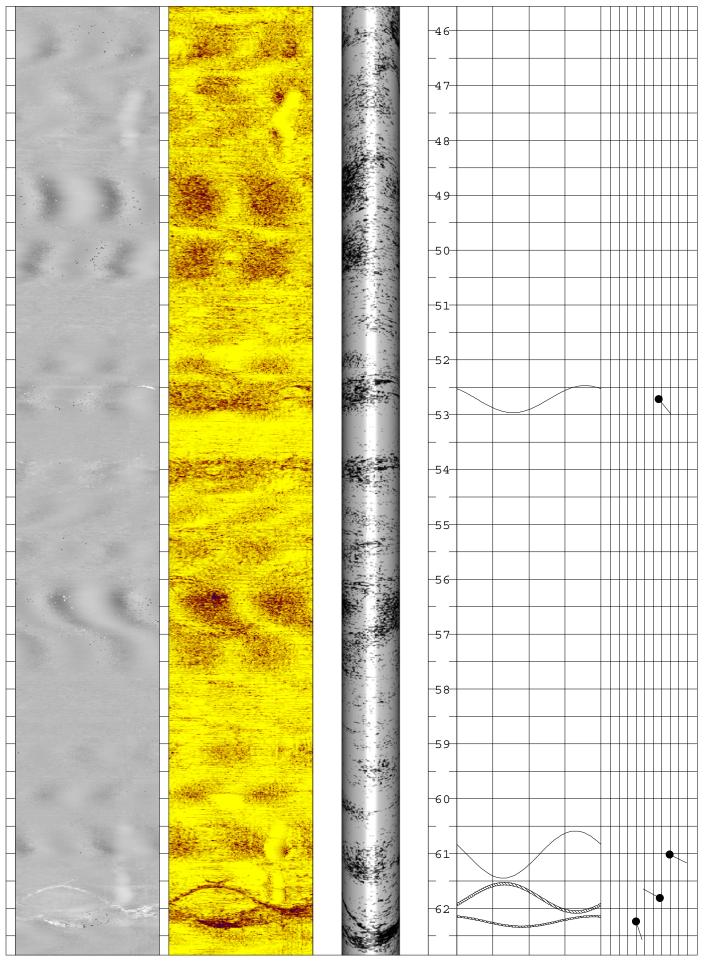

Northeast		Log:	Plate B-6 ATV Repeat Log
Geophysical Services 4 Union Street Bangor, Maine 04401		Well:	08-6723
Tel. 20'	or, Maine 04401 7-942-2700 negeophysical.com	Site:	Pease AFB
Date:	8/25/2015	Locat	ion: Portsmouth, NH
Casing Depth:	89.5 ft		For: CB&I
Casing Type:	4 inch		Logged by: R. Rawcliffe
Boring Depth:	110.7 ft		Orientation: magnetic
Meas. From:	top of casing		Structure Plots:
Stickup:	1.5 ft		
Water Level:	53.65 ft		
Repeat ATV Travel			Depth Original ATV Amplitude Original ATV Travel Time
0° 90° 180° 270	° 0° 0° 90° 180°	270° 0° 1	1ft:20ft 0° 90° 180° 270° 0° 0° 90° 180° 270° 0° -88-
			-89-
111.55	10 mar		-90
			-91-
			-92
			-93
			-94-

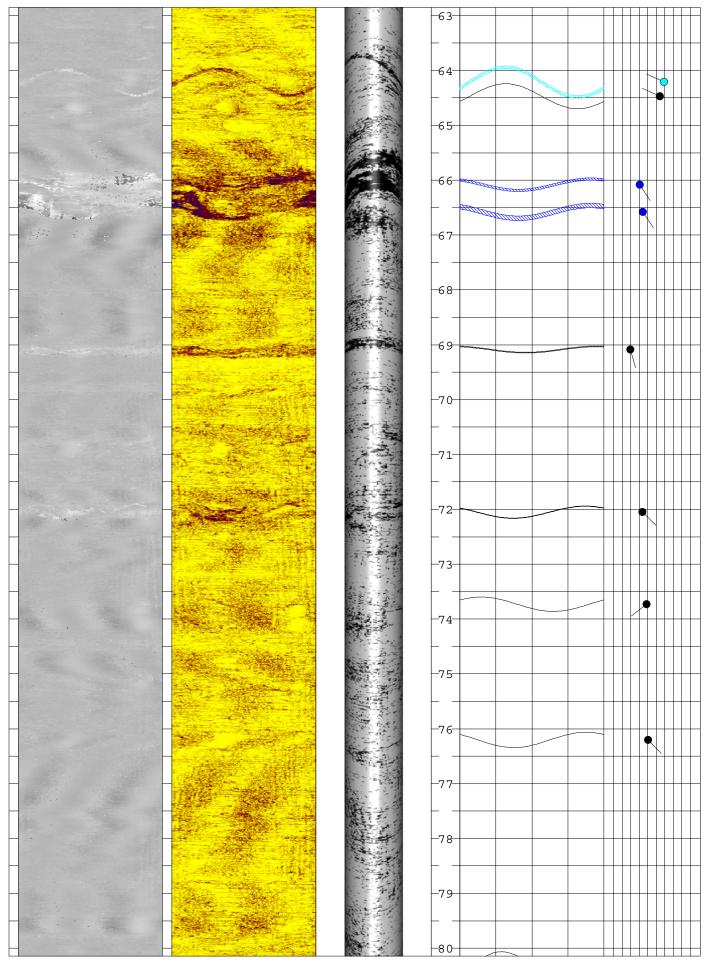

TABLE B-1 08-6723		tures interprete Pease AFB, Po			Logged: 08/25/2015				
Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6723	1	90.4	34	145	55	130	40	142	107
08-6723	2	96.4	49	143	53	128	38	16	107
08-6723	3	98.7	26	173	83	158	68	<1 mm	100
08-6723	4	99.8	41	267	357	252	342	33	108
08-6723	5	103.0	45	271	1	256	346	<1 mm	100
08-6723	6	106.7	44	139	49	124	34	<1 mm	100
08-6723	7	107.4	46	153	63	138	48	10	107
08-6723	8	107.5	87	244	334	229	319	<1 mm	100
08-6723	9	108.4	44	157	67	142	52	4	100
Category E	xplanation:								
	100	planar feature li	kely foliati	on or bedding	g surface				
	108	possibly transm	issive frac	ture or crack					
	107 likely transmissive fracture or crack								

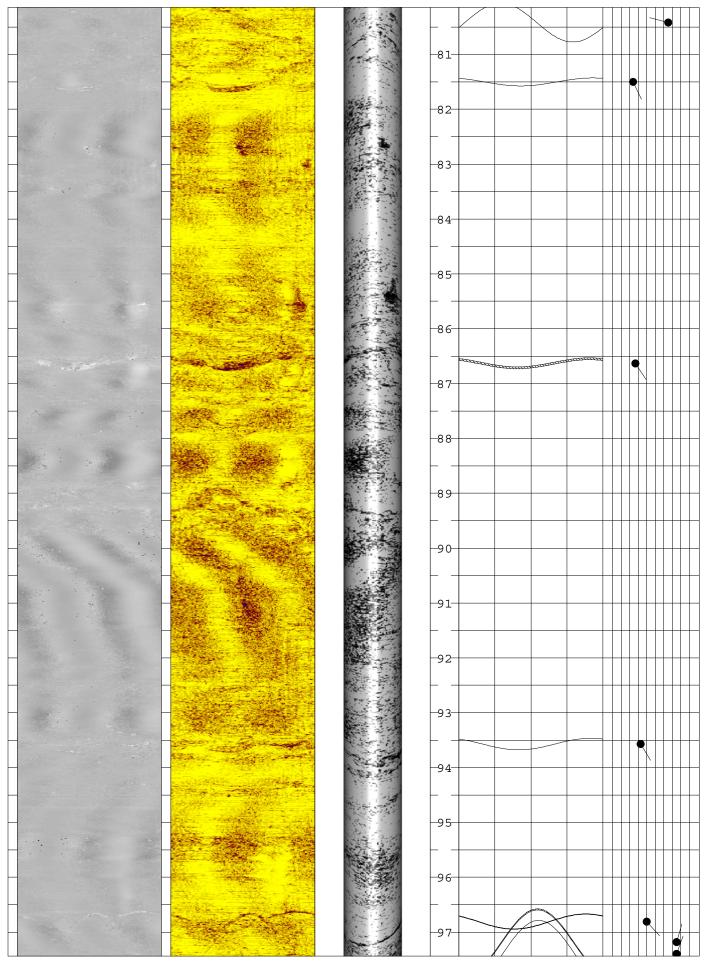

TABLE B-2 - Flowmeter measurements08-6723 - Pease AFBLogged: 08/25/2015													
			00										
Ambient Measurements													
Borehole Depth Flow Readings													
	Feet	(in gall	ons per r	ninute)	Avera	ge or Media	n Flow						
08-6723	53.7	water level											
08-6723	88.0	NF	NF	NF		NF							
08-6723	95.0	-0.16	-0.15	-0.15		-0.15							
08-6723	99.0	-0.02	-0.02	-0.02		-0.02							
08-6723	102.0	NF	NF	NF		NF							
08-6723	108.0	NF	NF	NF		NF							
Measureme	nts while p	oumping	pun	np rate =	~0.9	gpm							
Borehole	Depth	Flo	w Readii	ngs									
	Feet	(in gall	ons per r	ninute)	Avera	ge or Media	n Flow						
08-6723	53.7	water level											
08-6723	88.0	1.12	0.99	1.12	1.03	1.07	1.07						
08-6723	95.0	0.95	0.95	0.95			0.95						
08-6723	98.4	-0.01	-0.01	-0.01			-0.01						
08-6723	102.0	-0.01	-0.01	-0.01			-0.01						
08-6723	108.0	NF	NF	NF			NF						

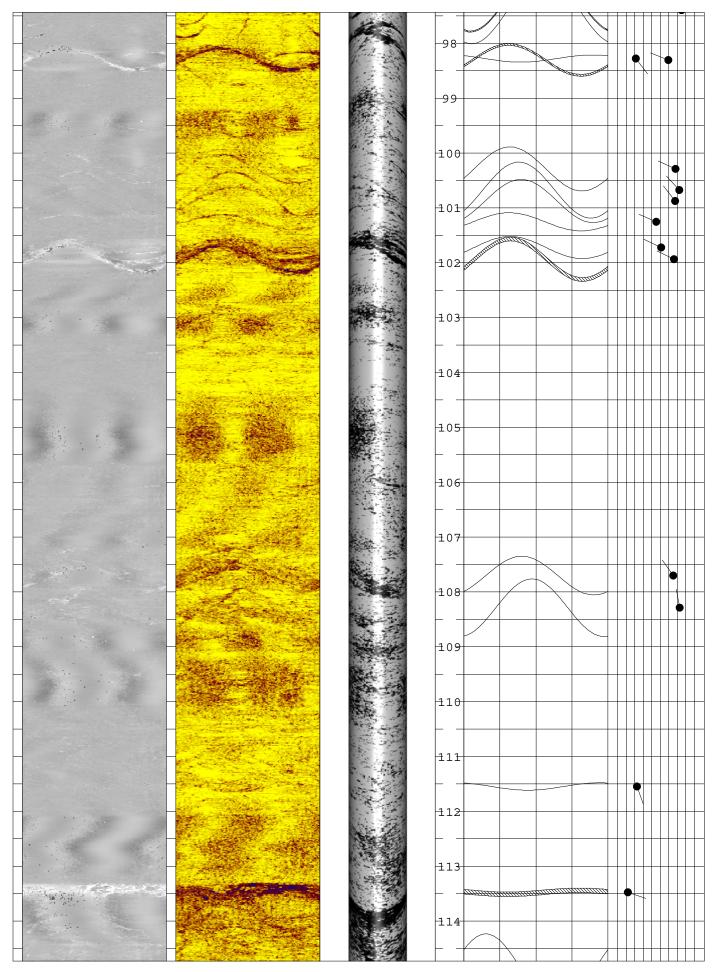
Northeast Geophysical Services

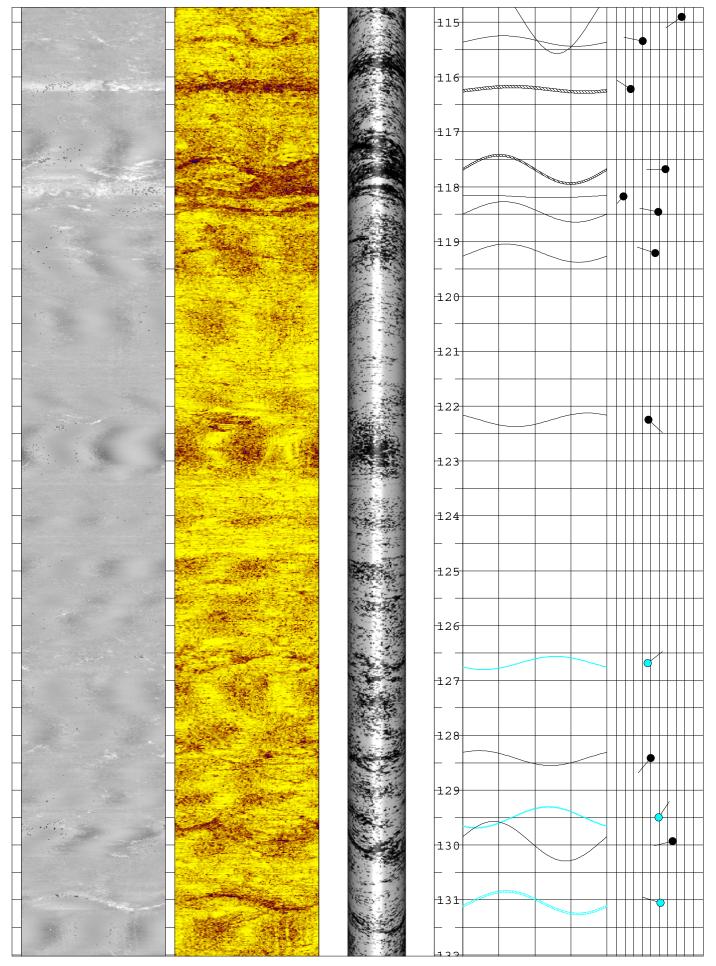

ATTACHMENT C 08-6724 BOREHOLE GEOPHYSICAL LOGS

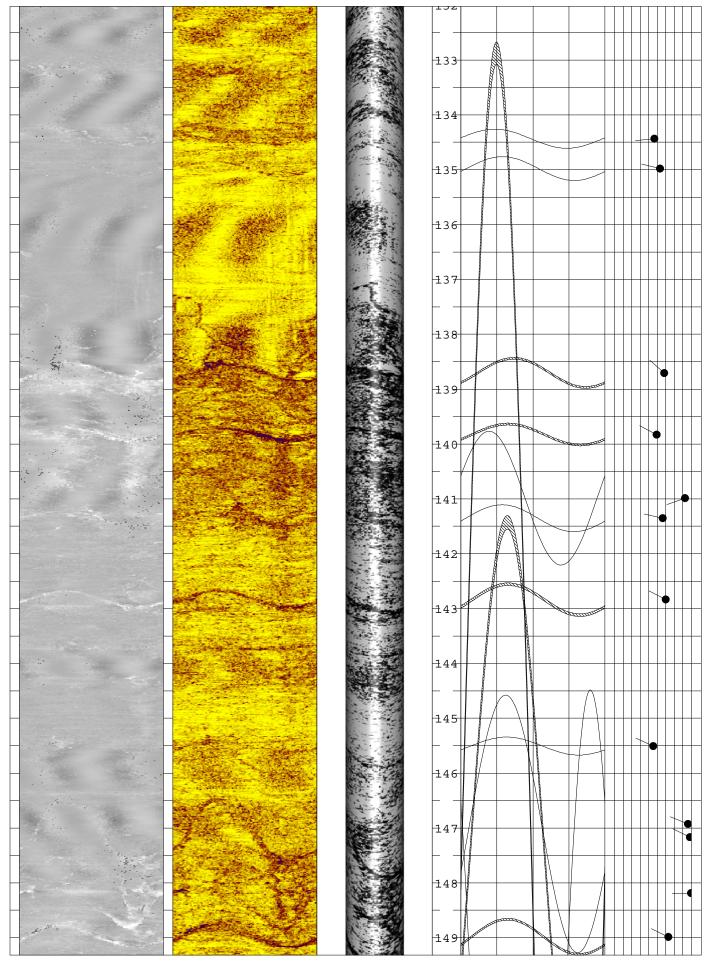


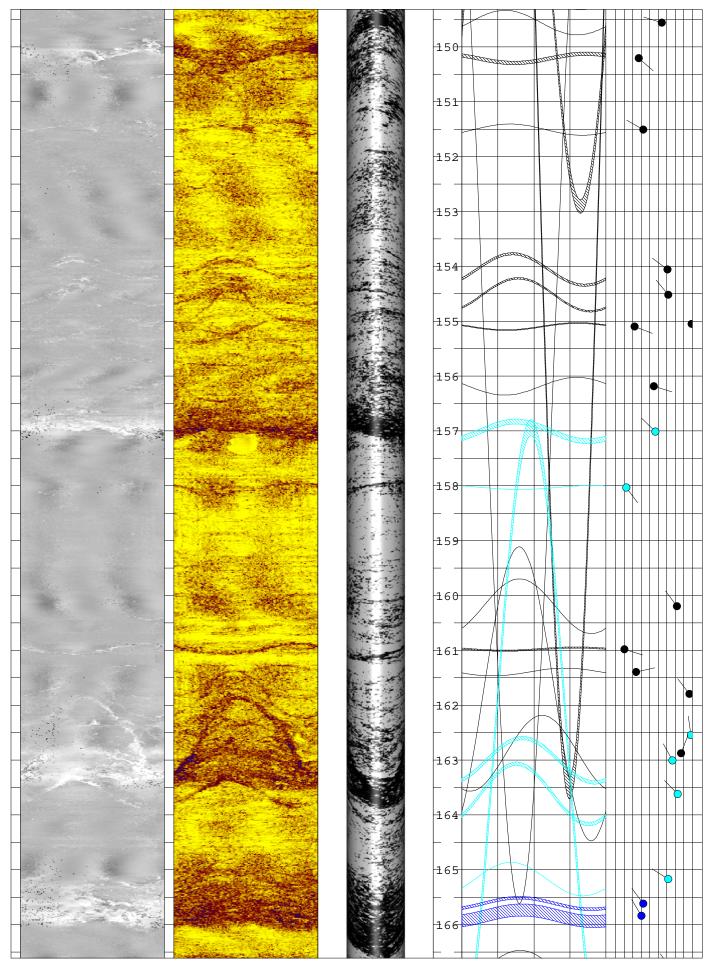


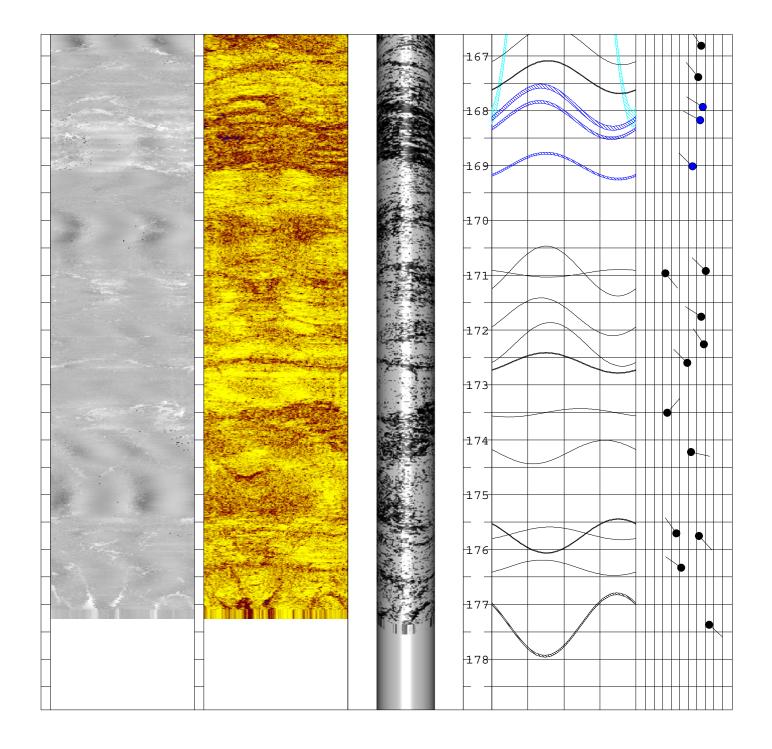


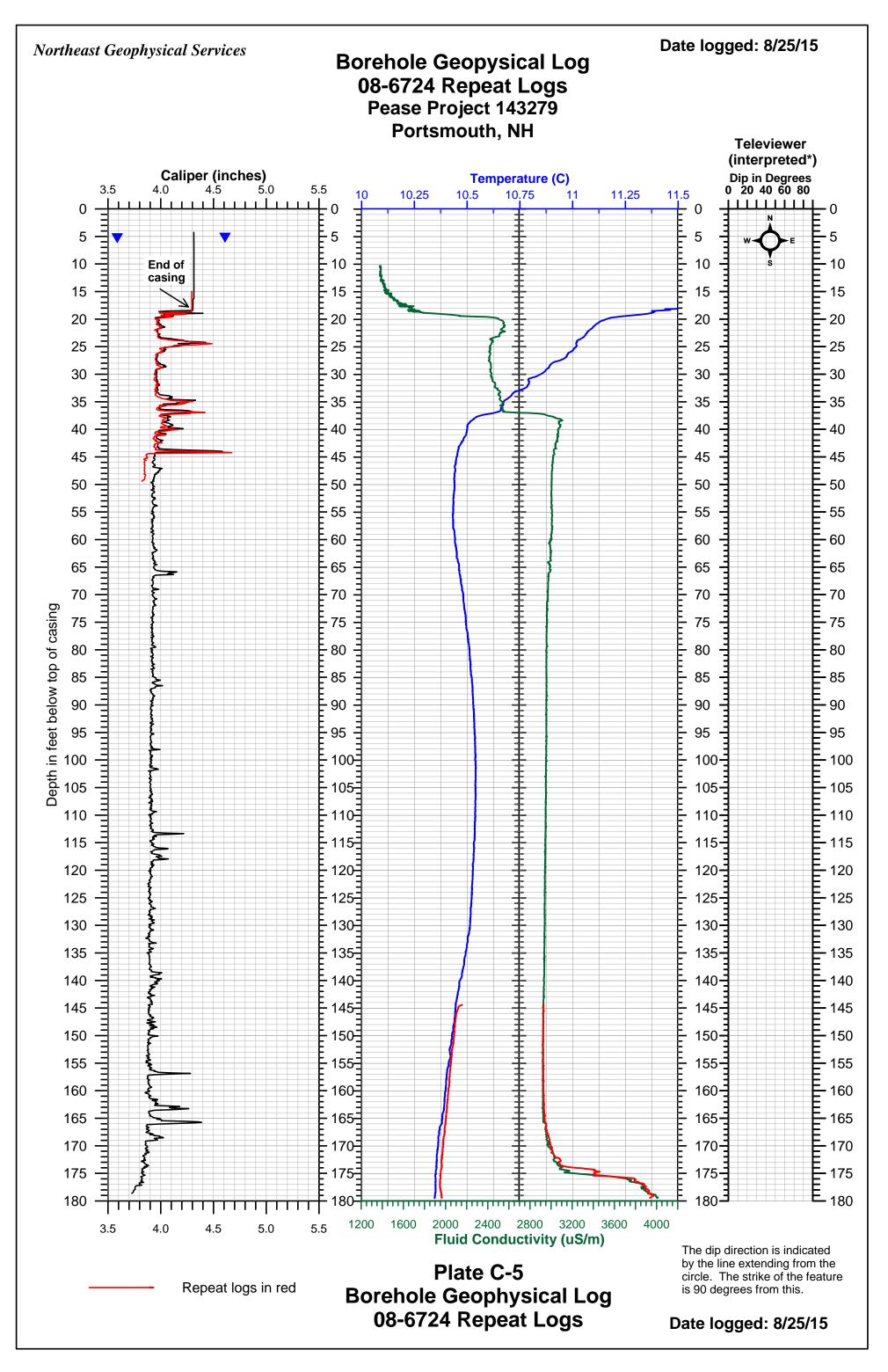

Northeast		Log:	Plate	C-4 Aco	oustic Tel	eviev	wer	LO	g
Geophysic 4 Union Street Bang	Well:	08-6	5724						
4 Union Street Bang Tel. 20 email: ngsinc@1	Site:	Pea	se AFB						
Date:	8/25/2015	Locat	ion: Po	ortsmou	ith, NH				
Casing Depth:	18.5 ft		For:	CB&I					
Casing Type:	4 inch		Logge	ed by:	R. Rawcli	ffe			
Boring Depth:	179.7 ft			tation:	magnetic				
Meas. From:	toc			re Plots:	faulta faliation h	oddina ia	vinta ata	`	
Stickup:	- 0.3 ft		light blue		faults, foliation, b smissive fracture issive fracture	edding, jo	omis, eic)	
Water Level:	6.15 ft ATV Amplitud		3D		Structure		Toda		
0° 90° 180° 270°	0° 0° 90° 180° 27		0°	Depth 1:21 0°		70° 0°	Tadp		90
				-18					
			1. 20 20						
- 19				-19-					
11° 74	378/20		行致						
			1 742	-20					
									+++
				-21			_		+++
									+++
			-	-22					+++
									+++
		ara da		-23					
				-24-					
						-			
				-25					
				-26					
			and the second	20					
			Here - Al	-27					
						$\left \right\rangle$			
			No. A	-28					
		100 M		k					

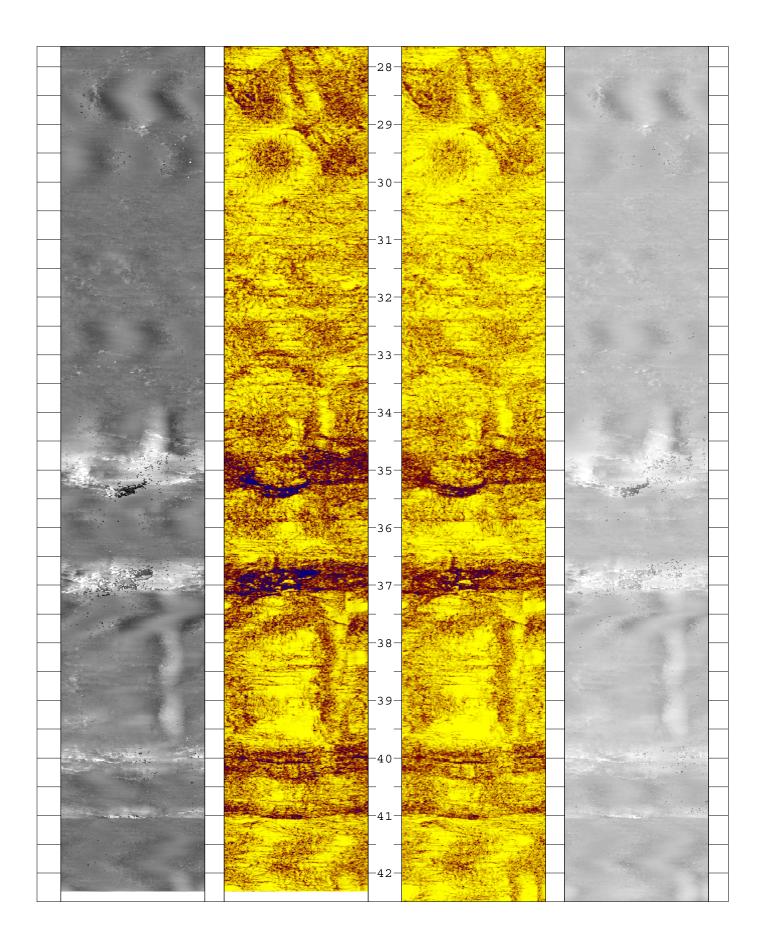












This page intentionally left blank.

Northeast		Log:	Plate C-6 ATV Repeat Log					
<i>Geophysic</i> 4 Union Street Bang	al Services	Well:	08-6724					
Tel. 20	7-942-2700 negeophysical.com	Site: Pease AFB						
Date:	8/25/2015	Locat	ion: Portsmouth, NH					
Casing Depth:	18.5 ft		For: CB&I					
Casing Type:	4 inch		Logged by: R. Rawcliffe					
Boring Depth:	179.7 ft		Orientation: magnetic					
Meas. From:	top of casing		Structure Plots:					
Stickup:	- 0.3 ft		•					
Water Level:	6.15 ft							
Repeat ATV Travel 0° 90° 180° 270			Depth Original ATV Amplitude 1ft:20ft 0° 90° 180° 270° 0° O° 0° 90° 180° 270° 0°					
		8						
			-20-					
			-21-					
			-22-					
	the m							
			-23-					
			-24					
			-25					
		- top a						
the state			-26					
			-27-					
		and the second						

TABLE C-1 08-6724	Planar fea	tures interprete Pease AFB, Po		Logged: 08/25/2015					
Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6724	1	19.0	14	134	44	119	29	37	107
08-6724	2	19.3	21	172	82	157	67	2	100
08-6724	3	21.0	9	215	305	200	290	<1 mm	100
08-6724	4	23.9	15	223	313	208	298	<1 mm	100
08-6724	5	24.3	24	179	89	164	74	42	107
08-6724	6	28.0	78	80	350	64	334	<1 mm	100
08-6724	7	29.5	68	328	58	313	43	<1 mm	100
08-6724	8	33.4	52	294	24	279	9	<1 mm	100
08-6724	9	35.3	40	141	51	125	35	19	107
08-6724	10	36.9	7	43	313	28	298	41	107
08-6724	11	37.4	59	298	28	282	12	<1 mm	100
08-6724	12	40.0	16	175	85	160	70	5	100
08-6724	13	40.3	23	183	273	168	78	<1 mm	100
08-6724	14	41.0	17	184	274	168	78	1	100
08-6724	15	44.0	44	242	332	227	317	16	100
08-6724	16	44.2	16	24	294	9	279	14	100
08-6724	17	52.7	56	140	50	125	35	<1 mm	100
08-6724	18	61.0	69	116	26	100	10	<1 mm	100
08-6724	19	61.8	58	298	28	283	13	7	108
08-6724	20	62.2	30	162	72	146	56	8	108
08-6724	21	64.2	59	294	24	279	9	7	108
08-6724	22	64.5	54	295	25	280	10	<1 mm	100
08-6724	23	66.1	31	147	57	132	42	11	107
08-6724	24	66.6	34	146	56	131	41	20	107
08-6724	25	69.1	19	164	74	149	59	5	100
08-6724	26	72.1	34	133	43	118	28	1	100
08-6724	27	73.7	39	233	323	218	308	<1 mm	100
08-6724	28	76.2	40	135	45	120	30	<1 mm	100
08-6724	29	80.4	65	285	15	270	360	<1 mm	100
08-6724	30	81.5	24	155	65	139	49	<1 mm	100

Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6724	31	86.6	27	147	57	131	41	10	100
08-6724	32	93.6	33	149	59	134	44	<1 mm	100
08-6724	33	96.8	40	137	47	122	32	1	100
08-6724	34	97.2	75	17	287	2	272	2	100
08-6724	35	97.4	75	19	289	4	274	<1 mm	100
08-6724	36	98.3	21	142	52	127	37	<1 mm	100
08-6724	37	98.3	59	292	22	277	7	6	100
08-6724	38	100.3	68	295	25	280	10	<1 mm	100
08-6724	39	100.7	72	317	47	302	32	<1 mm	100
08-6724	40	100.9	68	323	53	308	38	<1 mm	100
08-6724	41	101.3	45	293	23	278	8	<1 mm	100
08-6724	42	101.7	51	296	26	280	10	<1 mm	100
08-6724	43	101.9	66	297	27	281	11	8	100
08-6724	44	107.7	65	325	55	310	40	<1 mm	100
08-6724	45	108.3	73	350	80	335	65	<1 mm	100
08-6724	46	111.5	23	160	70	144	54	<1 mm	100
08-6724	47	113.5	12	109	19	93	3	25	108
08-6724	48	114.9	76	235	325	220	310	<1 mm	100
08-6724	49	115.4	30	281	11	266	356	<1 mm	100
08-6724	50	116.2	16	303	33	288	18	15	100
08-6724	51	117.7	57	270	360	255	345	6	100
08-6724	52	118.2	8	223	313	208	298	<1 mm	100
08-6724	53	118.5	49	282	12	267	357	<1 mm	100
08-6724	54	119.2	45	289	19	274	4	<1 mm	100
08-6724	55	122.2	37	132	42	117	27	<1 mm	100
08-6724	56	126.7	36	52	322	37	307	3	108
08-6724	57	128.4	40	220	310	205	295	<1 mm	100
08-6724	58	129.5	49	33	303	18	288	2	108
08-6724	59	129.9	66	257	347	242	332	<1 mm	100
08-6724	60	131.1	51	288	18	273	3	7	108
08-6724	61	134.4	47	265	355	250	340	<1 mm	100
08-6724	62	135.0	53	284	14	269	359	<1 mm	100
08-6724	63	138.7	58	312	42	297	27	5	100

Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6724	64	139.8	49	298	28	283	13	7	100
08-6724	65	141.0	82	250	340	235	325	<1 mm	100
08-6724	66	141.4	56	283	13	267	357	<1 mm	100
08-6724	67	142.8	60	298	28	283	13	8	100
08-6724	68	145.5	45	294	24	279	9	<1 mm	100
08-6724	69	146.9	86	292	22	277	7	<1 mm	100
08-6724	70	147.2	88	296	26	281	11	2	100
08-6724	71	148.2	89	269	359	254	344	1	100
08-6724	72	149.0	63	297	27	282	12	5	100
08-6724	73	149.6	54	288	18	273	3	<1 mm	100
08-6724	74	150.2	27	131	41	115	25	16	100
08-6724	75	151.5	32	300	30	285	15	<1 mm	100
08-6724	76	154.1	61	307	37	292	22	7	100
08-6724	77	154.5	62	321	51	306	36	4	100
08-6724	78	155.1	89	144	54	129	39	<1 mm	100
08-6724	79	155.1	22	110	20	95	5	3	100
08-6724	80	156.2	45	107	17	92	2	<1 mm	100
08-6724	81	157.0	46	315	45	300	30	20	108
08-6724	82	158.0	13	143	53	128	38	<1 mm	108
08-6724	83	160.2	72	324	54	309	39	<1 mm	100
08-6724	84	161.0	10	107	17	92	2	6	100
08-6724	85	161.4	24	78	348	62	332	<1 mm	100
08-6724	86	161.8	86	323	53	308	38	<1 mm	100
08-6724	87	162.5	88	353	83	338	68	3	108
08-6724	88	162.9	77	21	291	6	276	<1 mm	100
08-6724	89	163.0	67	332	62	317	47	8	108
08-6724	90	163.6	73	317	47	301	31	5	108
08-6724	91	165.2	62	303	33	288	18	<1 mm	108
08-6724	92	165.6	32	323	53	308	38	12	107
08-6724	93	165.8	30	330	60	315	45	59	107
08-6724	94	166.8	65	326	56	310	40	<1 mm	100
08-6724	95	167.4	62	321	51	306	36	3	100
08-6724	96	167.9	67	303	33	288	18	8	107

Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)	
08-6724	97	168.2	64	299	29	284	14	6	107
08-6724	98	169.0	55	315	45	300	30	6	107
08-6724	99	170.9	70	315	45	300	30	<1 mm	100
08-6724	100	171.0	23	140	50	125	35	<1 mm	100
08-6724	101	171.8	65	303	33	288	18	<1 mm	100
08-6724	102	172.3	68	326	56	311	41	<1 mm	100
08-6724	103	172.6	49	315	45	300	30	3	100
08-6724	104	173.5	25	41	311	26	296	<1 mm	100
08-6724	105	174.2	53	102	12	87	357	<1 mm	100
08-6724	106	175.7	36	325	55	310	40	<1 mm	100
08-6724	107	175.8	63	136	46	121	31	2	100
08-6724	108	176.3	41	305	35	290	20	<1 mm	100
08-6724	109	177.4	75	132	42	117	27	2	100
Category E	xplanation	<u>.</u>							
	100	planar feature li	kely foliati	on or bedding	g surface				
	108	possibly transm	issive frac	ture or crack	•				

108 possibly transmissive fracture or crack

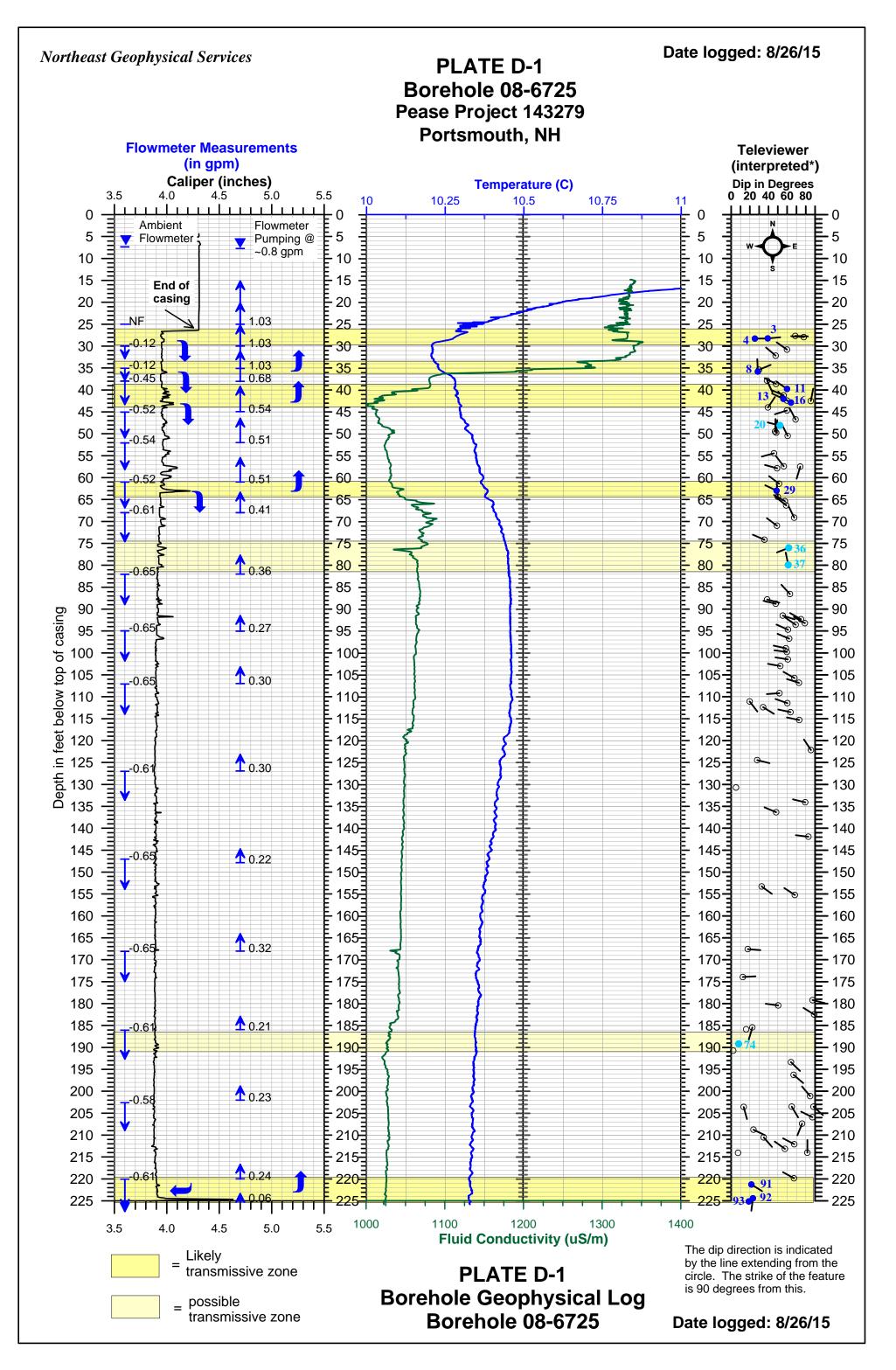
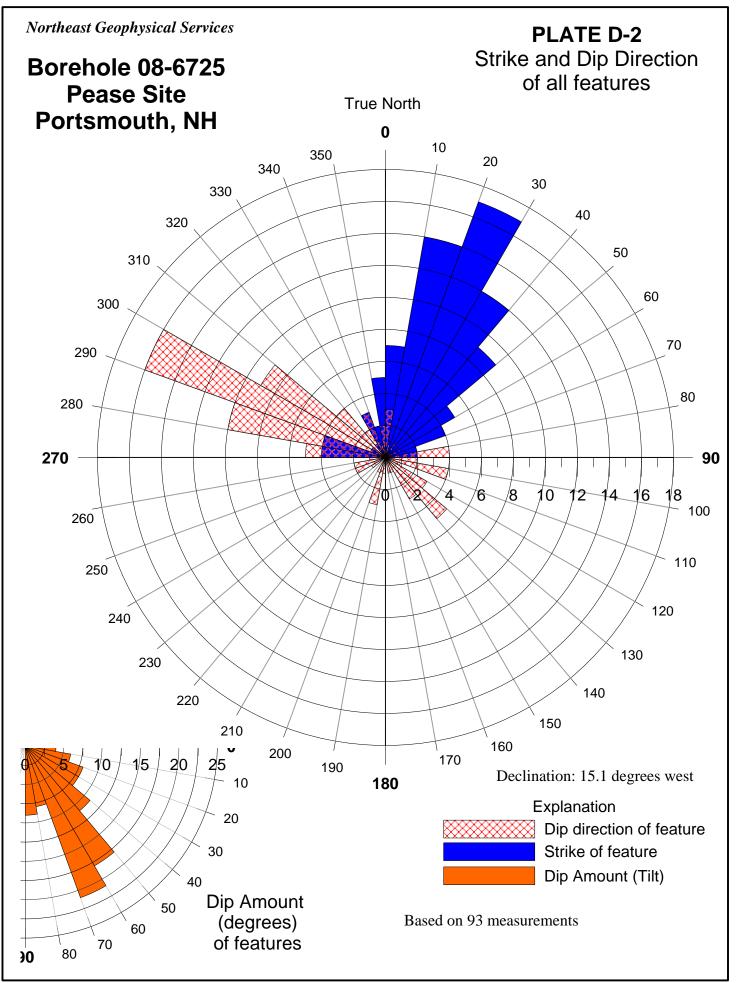
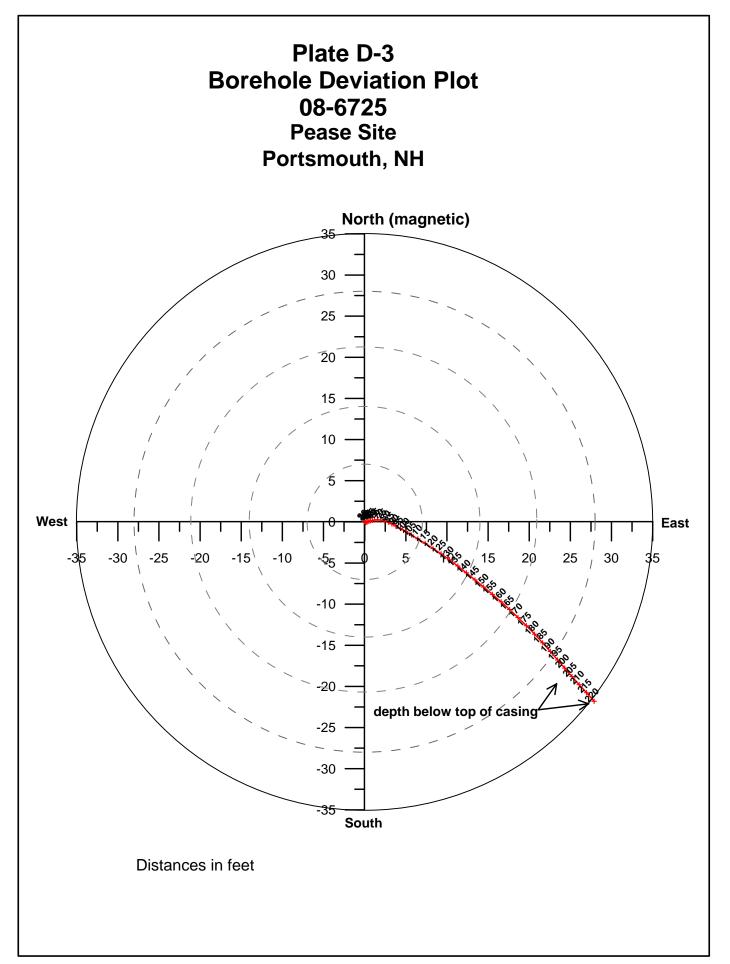
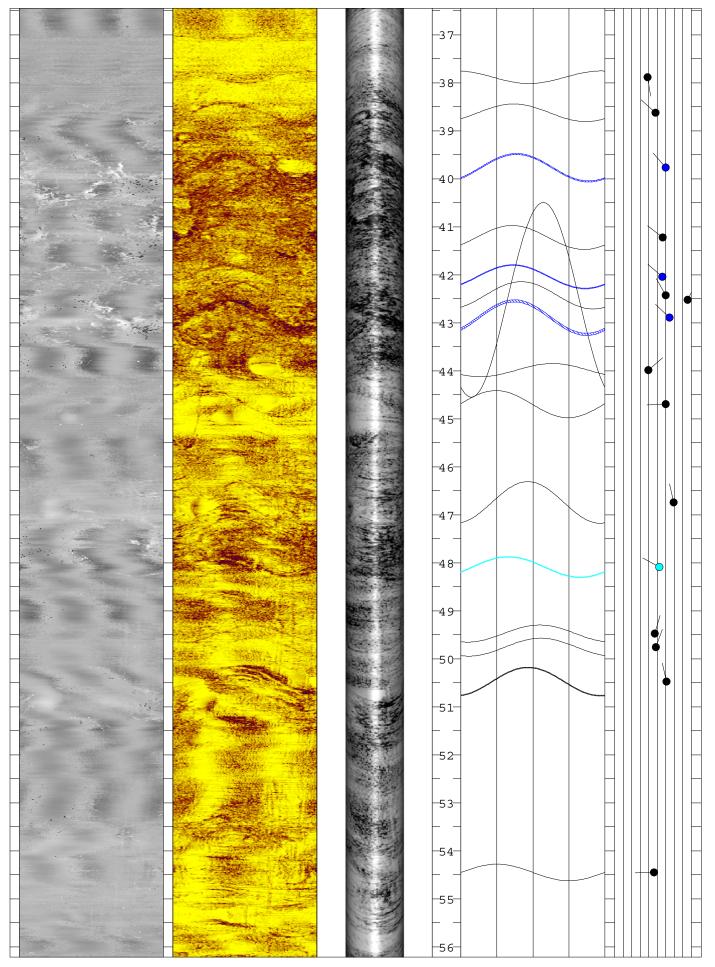

107 likely transmissive fracture or crack

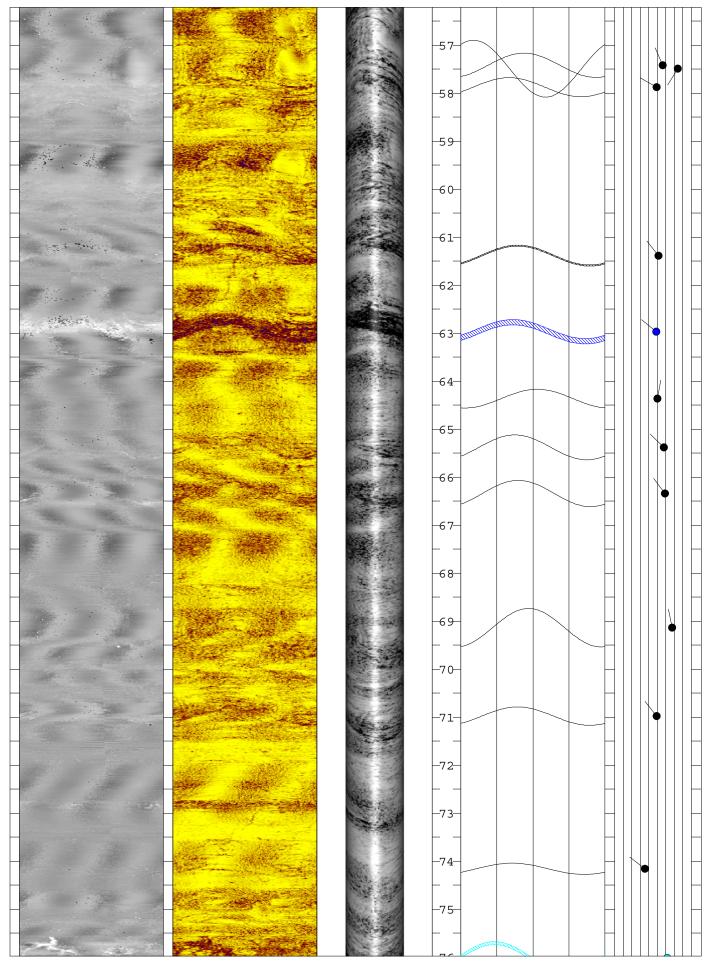
TABLE C-2 - Flowmeter measurements									
	08-6724 -	Logged	l: 08/25/2	2015					
		Portsmouth	n, NH						
Ambient Me	asurement	ts			_				
Borehole	Depth	Flo	w Readir	ngs					
	Feet	(in gall	ons per r	ninute)	Average	or Medi	an Flow		
08-6724	6.16	water level							
08-6724	22.45	-0.13	-0.21	-0.14	-0.15	-0.15	-0.15		
08-6724	27.05	-0.16	-0.18	-0.19	-0.20		-0.20		
08-6724	31.55	-0.17	-0.20	-0.21	-0.21		-0.21		
08-6724	41.51	-0.17	-0.24	-0.26	-0.26	-0.26	-0.26		
08-6724	49.99	-0.22	-0.24	-0.26	-0.26	-0.26	-0.26		
08-6724	63.05	-0.20	-0.24	-0.26	-0.26		-0.26		
08-6724	72.56	-0.16	-0.16	-0.16	-0.16	-0.17	-0.16		
08-6724	83.05	-0.16	-0.16	-0.17	-0.17		-0.17		
08-6724	96.19	-0.15	-0.14	-0.15			-0.15		
08-6724	110.99	-0.15	-0.14	-0.14			-0.14		
08-6724	123.06	-0.12	-0.12	-0.12			-0.12		
08-6724	137.02	-0.04	-0.04	-0.04	-0.04		-0.04		
08-6724	145.52	-0.03	-0.05	-0.05			-0.05		
08-6724	153.12	-0.02	-0.02	-0.02			-0.02		
08-6724	159.00	NF					NF		
08-6724	171.00	NF					NF		
Measureme				np rate =	~1.2	gpm			
Borehole	Depth		w Readir	•	ļ				
00.0704	Feet	· •	ons per r	ninute)	Average	e or Medi	an Flow		
08-6724	6.4	water level	1.10	1.10	4.00		1.00		
08-6724	17.0	1.01	1.12	1.12	1.03		1.08		
08-6724	22.5	-0.02	-0.02	-0.02			-0.02		
08-6724	27	-0.01	-0.10	-0.10			-0.10		
08-6724	31	-0.01	-0.10	-0.10			-0.10		
08-6724	41.5		NF	NF			NF		
08-6724	50 63	NF NF	NF NF	NF NF			NF NF		
08-6724 08-6724							-0.10		
	72.5 83.0	-0.11 -0.11	-0.10 -0.10	-0.10 -0.10			-0.10		
08-6724 08-6724		-0.11		-0.10			-0.10		
08-6724	96.0 110.9	-0.13	-0.13				-0.13		
08-6724	123.0	-0.12	-0.12 -0.10	-0.12 -0.10			-0.12		
08-6724	123.0	-0.10	-0.10	-0.10			-0.10		
08-6724	127.0	-0.10	-0.09	-0.10			-0.10		
08-6724	130.5	-0.03	-0.04	-0.04			-0.04		
08-6724	145.5	-0.04	-0.04	-0.04			-0.04		
08-6724	145.5	-0.04	-0.04	-0.04			-0.04		
08-6724	161.1	-0.03	-0.02	-0.03			-0.03		
08-6724	167.0	-0.02 NF	-0.02 NF	-0.02 NF			-0.02 NF		
08-6724	167.0	NF NF	NF	NF			NF		
				· · · · · · · ·					

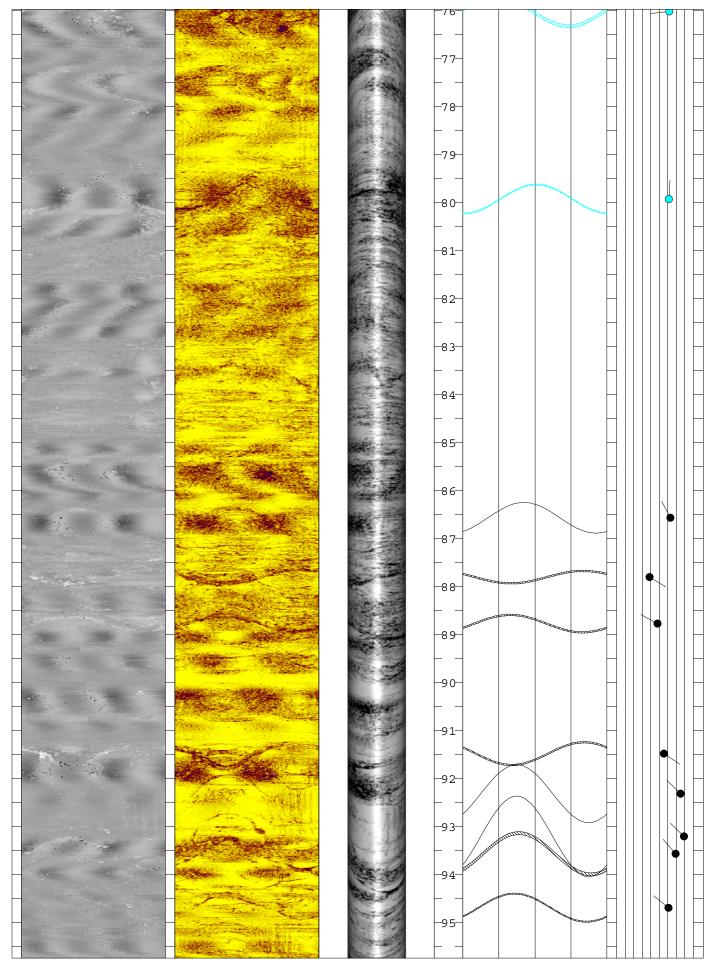

This page intentionally left blank.

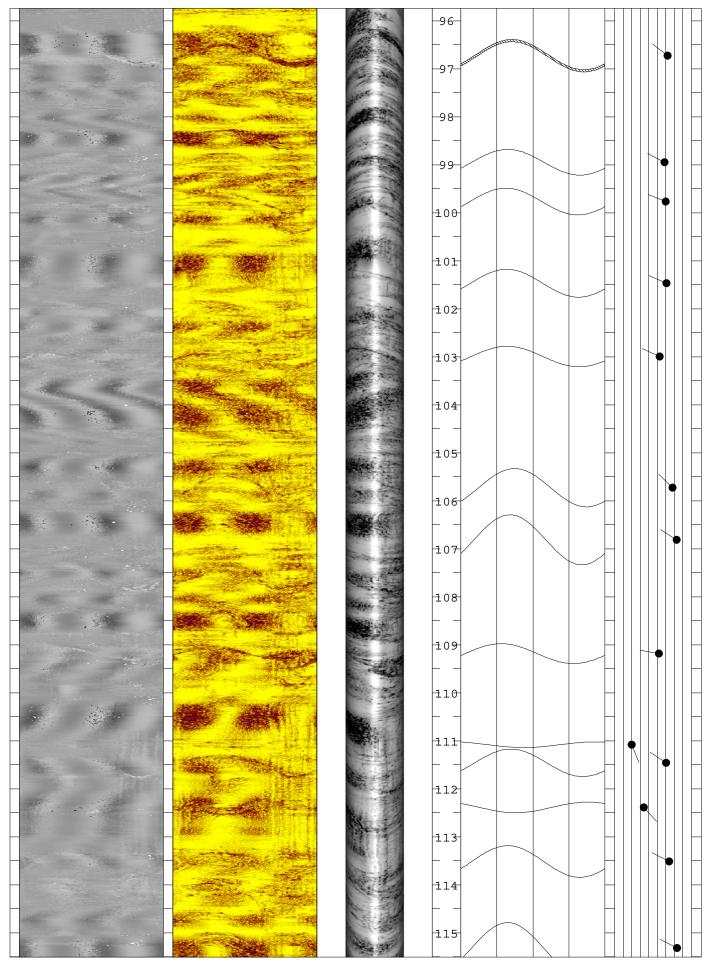

Northeast Geophysical Services

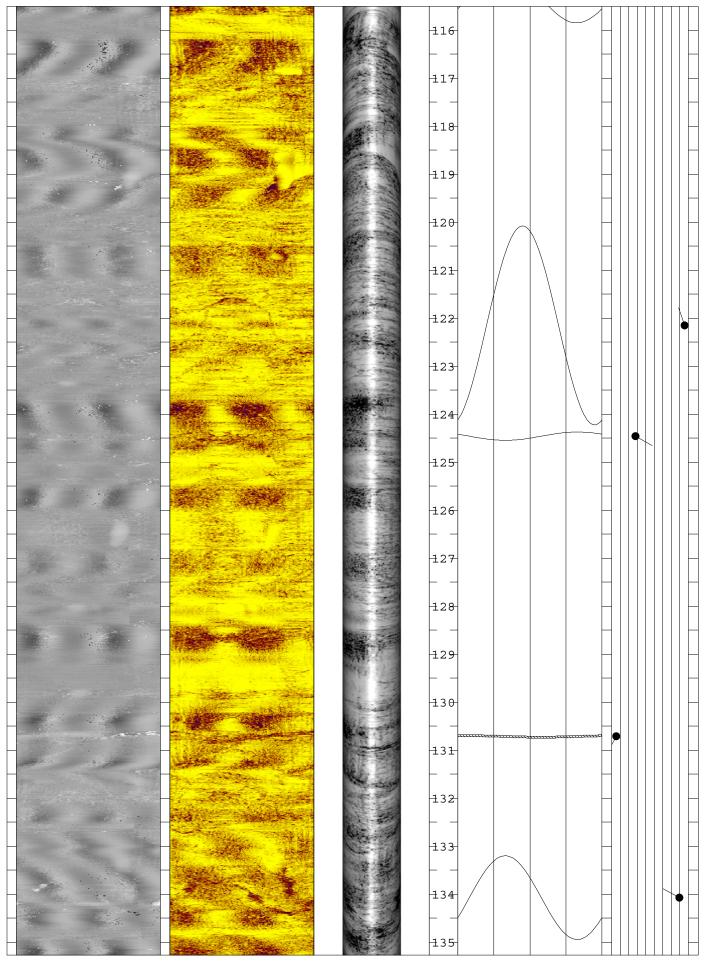
ATTACHMENT D 08-6725 BOREHOLE GEOPHYSICAL LOGS

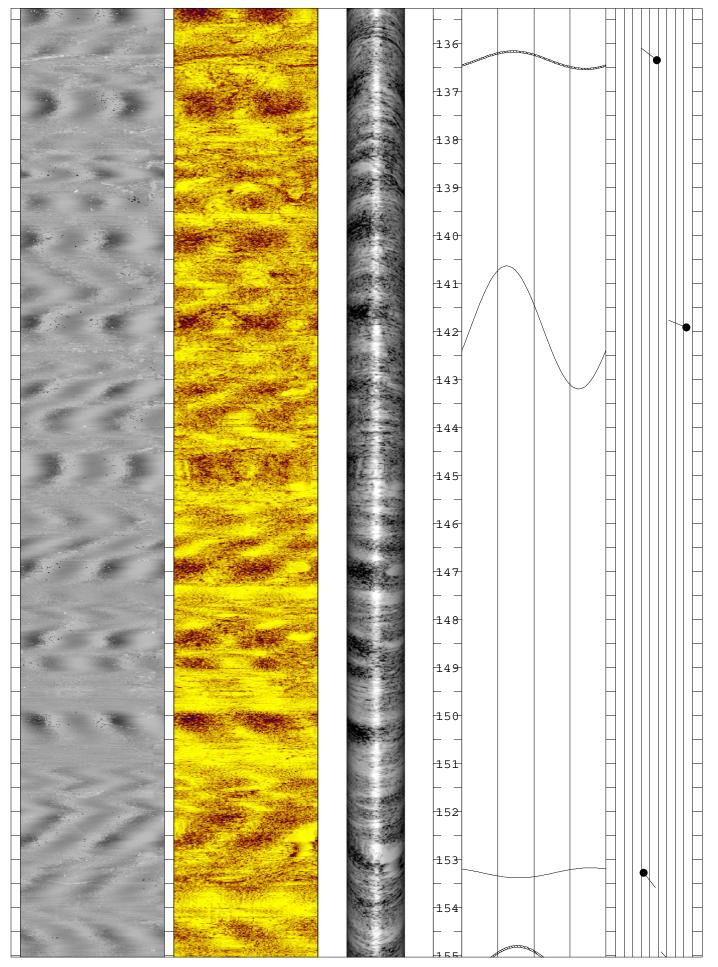


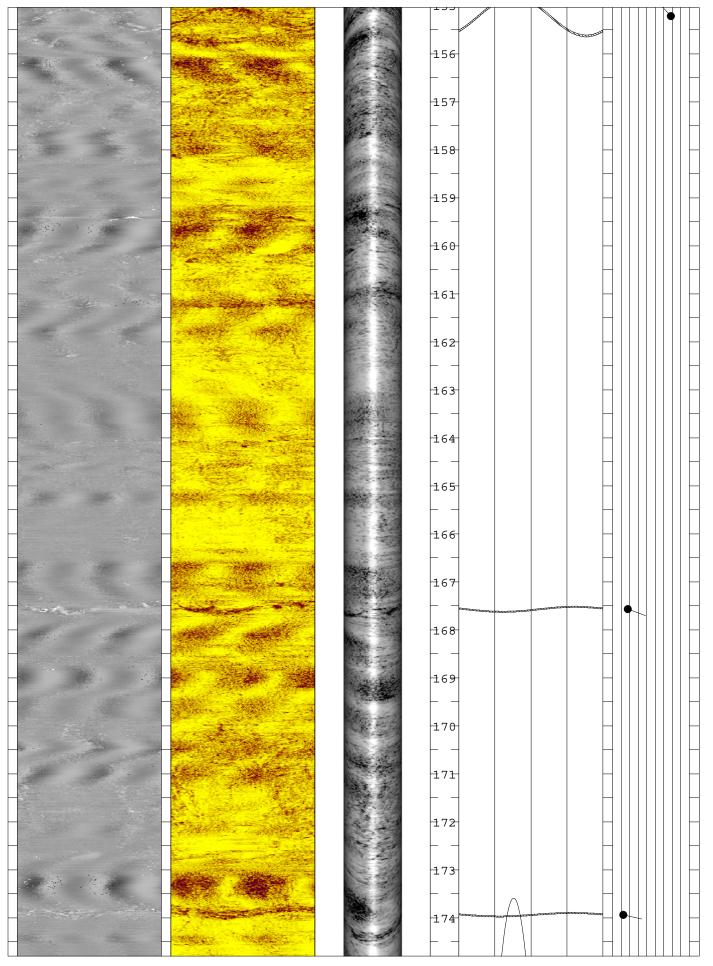

This page intentionally left blank.

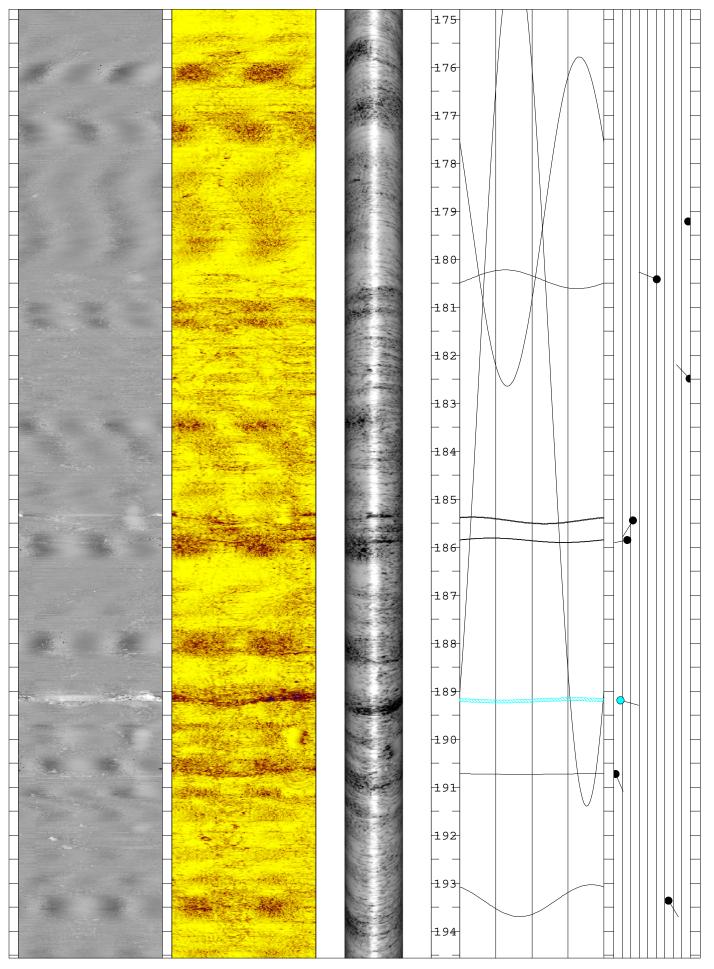


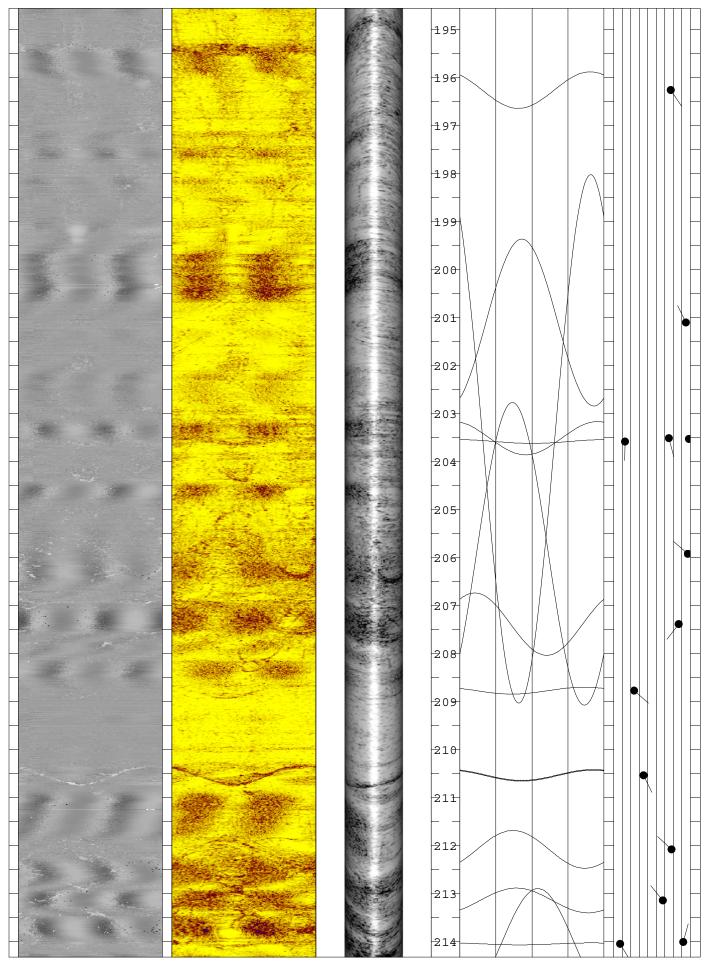


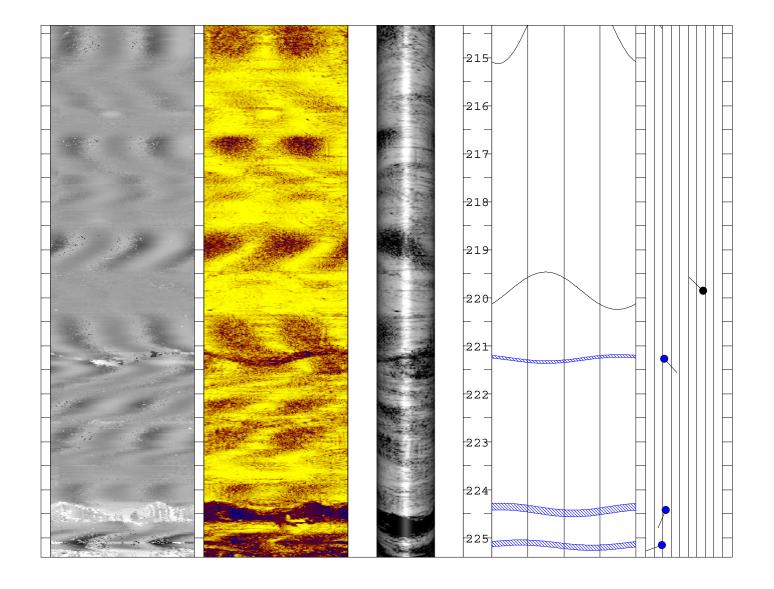

Northeast		Log:	Plate	D-4 Aco	ustic Televie	ewer
Geophysical Services 4 Union Street Bangor, Maine 04401		Well:	08-6	725		
Tel. 20' email: ngsinc@i	Site:	Peas	e AFB			
Date:	8/26/2015	Locati	ion: Po	ortsmou	th, NH	
Casing Depth:	26.5 ft		For:	CB&I		
Casing Type:	4 inch		Logge	d by:	R. Rawcliffe	
Boring Depth:	226.2 ft		Orient	ation:	magnetic	
Meas. From:	toc			re Plots:	oute faliction hadding	icinte etc)
Stickup:	- 0.4 ft		light blue =		aults, foliation, bedding, missive fracture ssive fracture	joints, etc)
Water Level:	7.43 ft					
ATV Travel Time	ATV Amplitud 0° 0° 90° 180° 27		3D 0°	Depth 1:24 0°	Structure 90° 180° 270° 0	Tadpole Plot → → → → → → → → → → → → → → → → → → →
				-25 -26 -27 -27 -28 -29 -30 -31 -31 -32 -33 -34 -34 -35 -36		

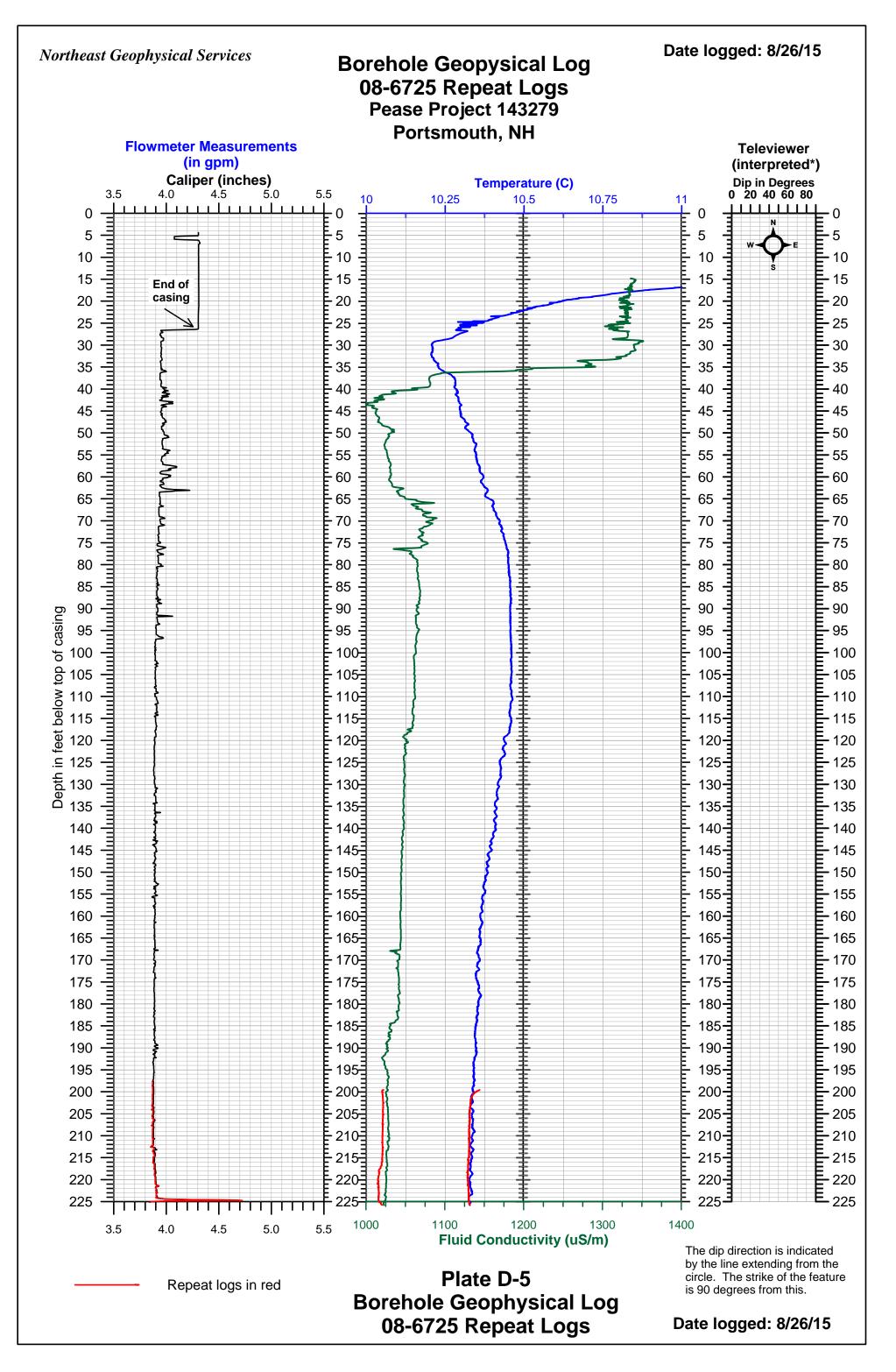


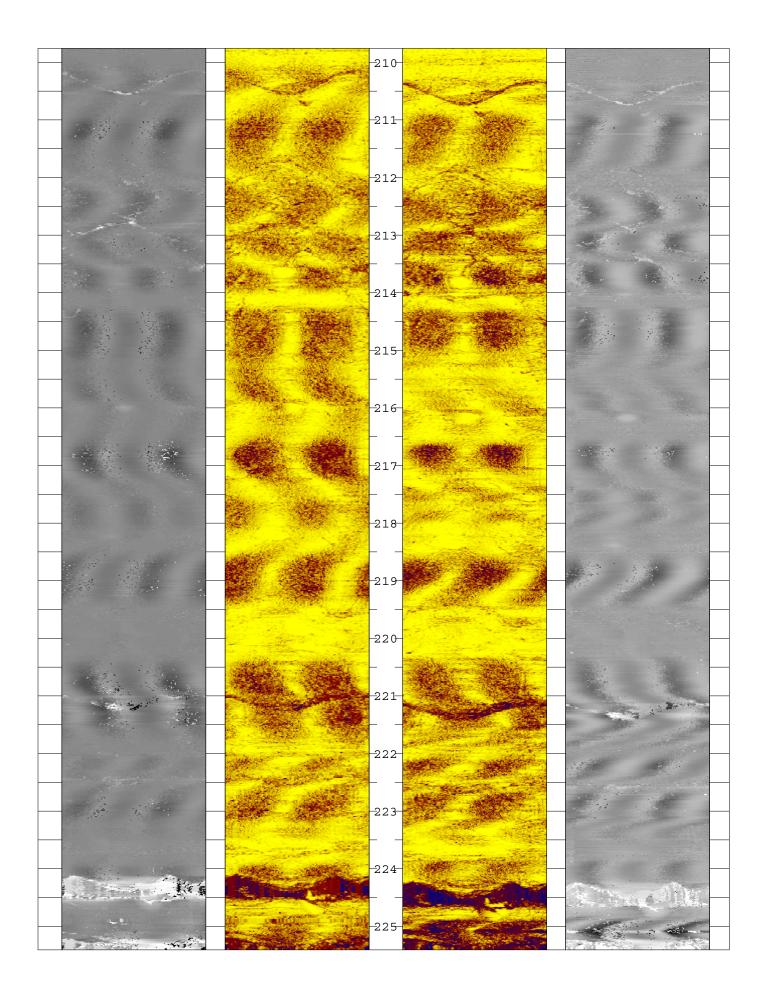












This page intentionally left blank.

This page intentionally left blank.

Northeast	al Comiona	Log:	Pla	te D-6 ATV Re	epeat Log							
4 Union Street Bang	al Services	Well:	08	8-6725								
Tel. 20	7-942-2700 negeophysical.com	Site:	Pease AFB									
Date:	8/26/2015	Location: Portsmouth, NH										
Casing Depth:	26.5 ft		For	: CB&I								
Casing Type:	4 inch		Log	gged by: R.	Rawcliffe							
Boring Depth:	226.2 ft				agnetic							
Meas. From:	top of casing		Stru	cture Plots:								
Stickup:	- 0.4 ft											
Water Level:	7.43 ft											
Repeat ATV Travel 0° 90° 180° 270			Depth (1ft:20ft 0	Original ATV Amplitude ° 90° 180° 270° 0'								
		210 0										
			-200-									
			-201-									
				Altra Altra								
	-		-202-	and and	-							
			-203-		_							
	-		-204-									
		Rei i i		Sector Sector								
			-205-		<u> </u>							
		an s			_							
			206									
			-207-									
			-208-		the second second							
			200	Salter Sarter	4 4							
		in the second se	209	ant la tale								
					-							

08-6725		Pease AFB, Pc		Logged: 08/26/2015						
Borehole	Feature #	Feature depth	Dip	Dip Azimuth		Dip Azimuth	Strike	Aperture	Category	
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)		
08-6725	1	27.7	69	107	17	92	2	<1 mm	100	
08-6725	2	28.0	78	290	20	274	4	<1 mm	100	
08-6725	3	28.2	39	100	10	85	355	6	107	
08-6725	4	28.3	25	104	14	89	359	18	107	
08-6725	5	30.8	60	320	50	305	35	<1 mm	100	
08-6725	6	32.2	48	325	55	310	40	<1 mm	100	
08-6725	7	35.4	30	83	353	68	338	<1 mm	100	
08-6725	8	35.8	29	12	282	357	87	9	107	
08-6725	9	37.9	39	171	81	155	65	<1 mm	100	
08-6725	10	38.6	48	312	42	297	27	<1 mm	100	
08-6725	11	39.8	60	319	49	304	34	3	107	
08-6725	12	41.2	56	308	38	293	23	<1 mm	100	
08-6725	13	42.0	56	311	41	295	25	3	107	
08-6725	14	42.4	60	331	61	315	45	<1 mm	100	
08-6725	15	42.5	85	26	296	11	281	<1 mm	100	
08-6725	16	42.9	64	314	44	299	29	6	107	
08-6725	17	44.0	39	49	319	34	304	<1 mm	100	
08-6725	18	44.7	60	268	358	253	343	<1 mm	100	
08-6725	19	46.7	69	347	77	332	62	<1 mm	100	
08-6725	20	48.1	52	299	29	284	14	3	108	
08-6725	21	49.5	47	17	287	2	272	<1 mm	100	
08-6725	22	49.8	48	20	290	5	275	<1 mm	100	
08-6725	23	50.5	61	348	78	333	63	2	100	
08-6725	24	54.5	46	270	360	255	345	<1 mm	100	
08-6725	25	57.4	56	338	68	323	53	<1 mm	100	
08-6725	26	57.5	74	212	302	197	287	<1 mm	100	
08-6725	27	57.9	49	300	30	285	15	<1 mm	100	
08-6725	28	61.4	51	322	52	307	37	4	100	
08-6725	29	63.0	49	311	41	295	25	21	107	
08-6725	30	64.4	50	11	281	355	85	<1 mm	100	
08-6725	31	65.4	58	315	45	300	30	<1 mm	100	
08-6725	32	66.3	59	324	54	308	38	<1 mm	100	

TABLE D-1 Planar features interpreted from acoustical televiewer

Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category
	Number	Feet	Degrees	magnetic			True	width (mm)	
08-6725	33	69.1	68	349	79	334	64	<1 mm	100
08-6725	34	71.0	49	322	52	307	37	<1 mm	100
08-6725	35	74.2	36	309	39	293	23	<1 mm	100
08-6725	36	76.0	62	264	354	249	339	9	108
08-6725	37	79.9	61	4	274	348	78	3	108
08-6725	38	86.6	63	333	63	318	48	<1 mm	100
08-6725	39	87.8	39	120	30	105	15	9	100
08-6725	40	88.8	48	299	29	284	14	6	100
08-6725	41	91.5	55	123	33	108	18	5	100
08-6725	42	92.3	75	315	45	300	30	<1 mm	100
08-6725	43	93.2	79	314	44	299	29	<1 mm	100
08-6725	44	93.6	69	320	50	305	35	6	100
08-6725	45	94.7	61	309	39	294	24	3	100
08-6725	46	96.7	62	308	38	292	22	6	100
08-6725	47	98.9	59	297	27	282	12	<1 mm	100
08-6725	48	99.8	60	292	22	277	7	<1 mm	100
08-6725	49	101.5	61	294	24	279	9	<1 mm	100
08-6725	50	103.0	53	295	25	280	10	<1 mm	100
08-6725	51	105.7	68	314	44	299	29	<1 mm	100
08-6725	52	106.8	73	303	33	287	17	<1 mm	100
08-6725	53	109.2	52	281	11	266	356	<1 mm	100
08-6725	54	111.1	20	158	68	142	52	<1 mm	100
08-6725	55	111.5	60	305	35	290	20	<1 mm	100
08-6725	56	112.4	34	137	47	122	32	<1 mm	100
08-6725	57	113.5	64	297	27	282	12	<1 mm	100
08-6725	58	115.3	73	297	27	282	12	<1 mm	100
08-6725	59	122.2	86	342	72	327	57	<1 mm	100
08-6725	60	124.5	28	119	29	104	14	<1 mm	100
08-6725	61	130.7	5	208	298	193	283	12	100
08-6725	62	134.1	79	299	29	283	13	<1 mm	100
08-6725	63	136.4	48	308	38	293	23	5	100
08-6725	64	141.9	83	292	22	277	7	<1 mm	100
08-6725	65	153.3	33	141	51	126	36	<1 mm	100
08-6725	66	155.2	68	318	48	303	33	5	100
08-6725	67	167.6	18	110	20	94	4	7	100

Borehole	Feature #	Feature depth	Dip	Dip Azimuth	Strike	Dip Azimuth	Strike	Aperture	Category		
	Number	Feet	Degrees	magnetic	magnetic	True	True	width (mm)			
08-6725	68	173.9	13	102	12	87	357	6	100		
08-6725	69	179.2	87	119	29	104	14	<1 mm	100		
08-6725	70	180.4	50	293	23	278	8	<1 mm	100		
08-6725	71	182.5	89	317	47	302	32	<1 mm	100		
08-6725	72	185.4	23	212	302	197	287	4	100		
08-6725	73	185.9	16	259	349	244	334	3	100		
08-6725	74	189.2	8	105	15	90	360	19	108		
08-6725	75	190.7	2	156	66	141	51	<1 mm	100		
08-6725	76	193.4	64	149	59	134	44	<1 mm	100		
08-6725	77	196.3	67	146	56	131	41	<1 mm	100		
08-6725	78	201.1	85	335	65	320	50	<1 mm	100		
08-6725	79	203.5	65	164	74	149	59	<1 mm	100		
08-6725	80	203.5	88	147	57	132	42	<1 mm	100		
08-6725	81	203.6	13	180	270	165	75	<1 mm	100		
08-6725	82	205.9	87	311	41	296	26	<1 mm	100		
08-6725	83	207.4	76	217	307	202	292	<1 mm	100		
08-6725	84	208.8	24	131	41	116	26	<1 mm	100		
08-6725	85	210.5	35	154	64	139	49	5	100		
08-6725	86	212.1	68	313	43	298	28	<1 mm	100		
08-6725	87	213.1	58	321	51	306	36	<1 mm	100		
08-6725	88	214.0	82	15	285	0	270	<1 mm	100		
08-6725	89	214.1	7	149	59	134	44	<1 mm	100		
08-6725	90	219.9	67	314	44	299	29	<1 mm	100		
08-6725	91	221.3	22	137	47	122	32	16	107		
08-6725	92	224.4	23	203	293	188	278	40	107		
08-6725	93	225.2	19	251	341	236	326	33	107		
Category E	Explanation										
	100										

planar feature likely foliation or bedding surface possibly transmissive fracture or crack 100

108

107 likely transmissive fracture or crack

TABLE D-2	- Flowmete	er measurem	ents				
	08-6725 -		Logged	l: 08/26/2	2015		
		Portsmouth	, NH				
Ambient Me	asurement	ts					
Borehole	Depth	Flo	w Readir	ngs			
	Feet	(in gall	ons per n	ninute)	Average	or Medi	an Flow
08-6725	7.4	water table					
08-6725	25	NF					
08-6725	30.0	-0.12	-0.12	-0.12			-0.12
08-6725	35.0	-0.22	-0.11	-0.12	-0.12		-0.12
08-6725	38.0	-0.49	-0.45	-0.45			-0.45
08-6725	45.1	-0.35	-0.54	-0.52	-0.52		-0.52
08-6725	52.1	-0.58	-0.54	-0.52	-0.52		-0.53
08-6725	61.0	-0.58	-0.54	-0.52	-0.52		-0.53
08-6725	68.0	-0.52	-0.61	-0.61	-0.61	-0.65	-0.61
08-6725	82.1	-0.79	-0.58	-0.61	-0.65		-0.63
08-6725	95.0	-0.69	-0.58	-0.65	-0.61		-0.63
08-6725	107.1	-0.65	-0.61	-0.65			-0.65
08-6725	127.0	-0.85	-0.61	-0.61	-0.61		-0.61
08-6725	147.0	-0.65	-0.65	-0.61	-0.65		-0.65
08-6725	168.1	-0.65	-0.65	-0.54	-0.61		-0.63
08-6725	186.1	-1.00	-0.58	-0.58	-0.61	-0.61	-0.61
08-6725	202.6	-1.00	-0.58	-0.58	-0.58		-0.58
08-6725	220.1	-0.85	-0.61	-0.61	-0.58		-0.61
08-6725	225.1	-0.06	-0.06	-0.06	-0.06		-0.06
Measureme	nts while p	oumping	pur	np rate =	~0.8	gpm	
Borehole	Depth	Flo	w Readir	ngs			
	Feet	(in gall	ons per n	ninute)	Average	or Medi	an Flow
08-6725	7.7	water level					
08-6725	25.0	1.12	1.03	0.97	1.12	1.03	1.03
08-6725	30.0	1.07	1.03	0.95			1.03
08-6725	35.1	1.03	0.88	0.95	1.03		0.99
08-6725	38.0	0.60	0.68	0.68	0.68		0.68
08-6725	45.0	0.77	0.54	0.54	0.54		0.54
08-6725	52.0	0.77	0.51	0.51			0.51
08-6725	61.0	0.49	0.51	0.82	0.49	0.51	0.51
08-6725	68.0	0.51	0.41	0.41	0.39		0.41
08-6725	82.0	0.34	0.30	0.35	0.36		0.34
08-6725	95.0	0.24	0.28	0.27	0.27		0.27
08-6725	107.0	0.27	0.29	0.30			0.29
08-6725	127.0	0.29	0.26	0.30			0.29
08-6725	147.8	0.17	0.21	0.21	0.22	0.22	0.21
08-6725	168.0	0.57	0.30	0.31	0.32		0.32
08-6725	185.9	0.19	0.21	0.21			0.21
08-6725	202.0	0.22	0.26	0.23			0.23
08-6725	220.0	0.29	0.24	0.24	0.24		0.24
08-6725	225.1	0.06	0.06	0.06			0.06

Appendix F 08-6046 Boring Log

Well	Completion	Summary
------	-------------------	---------

n, ¹

Roy F. WESTON, Inc.

Well Completion	Summ	ary	ı	Roy F. WESTON, Inc.
CLIENT: COMBINI SITE NAME: FDTA				L DRILLING FIRM: D.L. MAHER INSPECTOR: T. MCCANN
WELL ID: 08-604 START DATE: 02/ COMPLETION DATE	18/92	21/	92	WATER LEVELS 4.91 FT (TOC) ON 02/21/92
	<i>DEPTH</i> 1.50			
T T	0.00	GS		Drilling Fluid: Well Type: SINGLE CASED, OPEN HOLE
				WELL DESIGN CONSTRUCTION Casing #1 Diameter: 6.00 inch Interval: 0.00 to 85.00 Type : LOW CARBON
				Stick Up Inner Casing: 1.50 ft. Casing Grout: c Interval: 0.00 to 85.00
	85.00	OC	23.86	<i>Open Hole Diameter:</i> 6.00 inches <i>Interval:</i> 85.00 to 280.00
				Top of Bedrock: 65 ft.
				Backfill Type: Interval: 0.00 to 0.00
				WELL DEVELOPMENT
	0.00	SC	108.86	Date: 02/21/92 Method: OVERPUMPING Yield: Purged Volume:
				COMMENTS TC = Top of Casing SP = Top Sand Pack GS = Ground Surface SC = Top Screen BN = Top Seal BS = Bottom Screen
	282.00	TD	-173.14	
	×			Additional Comments: WELL PRODUCES AT LEAST 4 GPM.

NOTE: Well Diagram Not to Scale

Elevations are feet above Mean Sea Level

.

Roy F. WESTON, Inc.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	08.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
107 -	- 1			Well-graded sand with gravel, SW	YELLOW BROWN	LSE	DRY		нии	0.0	BOULDER AT 4-5 FT, LARGE GRAINED GRANITE SALT AND PEPPER COLOR, LITLE QUARTZ, SILTSTONE.
106 -	- 2										
105 -	- 3										
104 -	- 4										
103 -	- 5			Poorly graded sand, SP	YELLOW BROWN	SFT	MST		нио	0.0	FINE SAND, SOME CLASTS AND QUARTZ FRAGMENTS
102 -	- 6										
101 -	- 7										
100 -	- 8										
99 -	- 9										
98 -	- 10			Poorly graded sand, SP		SFT	MST		ниц	0.0	SAND WITH TRACE FRAGMENTS QUARTZ AND PHYLITE, NO BOULDER OR COBBLES BE- TWEEN 10-15FT.
97 -	- 11										TWEEN 10-15FT.
96 -	- 12										
95 -	- 13										
94 -	- 14										
93 -	- 15			Poorly graded sand, SP		LSE	DRY		KNU	0.0	QUARTZ, TRACE SILTSTONE, VERY LITTLE GRAVEL, TRACE MAFICS POSSIBLE, COBBLES AT 18.5 FT.
92 -	- 16										AT 18.5 FT.
91 -	- 17										
90 -	- 18										
89 -	- 19										
88 -	- 20			Poorly graded sand, SP	LT YELLOW BROWN	LSE	WET		HNU	0.0	LITTLE QUARTZITE FRAG- MENTS.
01/3	50/98	l GE	OLIS (Copyright (c) 1990, 1995 Roy	F. WESTON, Inc. F-2	(lo	ggra	b.p	rg)		Page: 1 of 15

;

2

Roy F. WESTON, Inc.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	;	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	ł	108.860 surveyed	DATE COMPLETED	:	02/21 /92
1					

,

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
87 -				Poorly graded sand, SP	LT YELLOW BROWN	LSE	WET		HNU 0.0	LITTLE QUARTZITE FRAG- MENTS.
86 -	- 22									
85 -	- 23									
84 -	- 24									
83 -	- 25			Poorly-graded gravel, GP	LT YELLOW BROWN	LSE	SAT		HNU 0.0	SOME QUARTZITE GRAVEL AND LITTLE QUARTZ.
82 -	- 26									
81 -	- 27									
80 -	- 28									
79.	- 29									
78 -	- 30			Poorly graded sand with gravel, SP		LSE	SAT			SAME AS ABOVE - GRAVEL MORE ROUNDED.
77 -	- 31			graver, or						HOLE ROOMPED.
76 -	- 32									
75 -	- 33									
74 -	- 34									
73 -	- 35			Poorly graded sand, SP	LT YELLOW BROWN	LSE	SAT			SAME: SOME QUARTZITE AND QUARTZ TRACE MICA FLAKES COBBLES AT 38 FT.
72 -	- 36									COBBLES AT 38 Ft.
71 -	- 37									
70 -	- 38									
69 -	- 39									
68 -	- 40			Well-graded sand with gravel, SW	LT YELLOW BROWN	LSA	SAT			DARK GRAY QUARTZITE SOME QUARTZ: LITTLE GRANITE, SOME ROUNDED GRANITE - STILL IN COBBLES.

Roy F. WESTON, Inc.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	;	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	LNS I KUMEN I READ I NG	COMMENTS
67 -	• 41			Well-graded sand with gravel, SW	LT YELLOW BROWN	LSA	SAT				DARK GRAY QUARTZITE SOME QUARTZ; LITTLE GRANITE, SOME ROUNDED GRANITE - STILL IN COBBLES.
66 -	42										
65 -	. 43										
64 -	. 44										
63 -	45			Well-graded gravel with sand, GW	LT YELLOW BROWN	NA	SAT		HNU O.	.0	FINE SAND, FINE AND MEDIUM GRAVEL STILL IN COBBLES.
62 -											
61											
60 - 59 -											
58											
57 -				Well-graded gravel with sand, GW	VY PALE BROWN	LSE	SAT		KNU O.	0	GRAVEL/FRAGMENTS ARE MOSTLY QUARTZ AND QUART- ZITE; LITTLE GRANITE, TR MICA FLAKES.
56 -	52										
55 -	53										
54 -	54										
53 -	55			Well-graded sand with gravel, SW	PALE BROWN	NA	SAT		HNU O.	0	SAME - STILL IN COBBLES
52 -	56										
51 -	57									:	
50 -	58										
49 -										:	
48 -	60	<u></u>		Well-graded sand, SW	PALE BROWN	LSE	SAT				SAME, COBBLES, HIT WEATHERED ROCK AT APPROXIMATELY 65FT.
01/3	0/98	GEC	DLIS C	opyright (c) 1990, 1995 Roy	F. WESTON, Inc. F-4	(log	igrap	h.pr	.g)		Page: 3 of 15

:

.'

.`

;

SITE NAME :FDTA 2 / SITE 8LOGGER:T. MCCANNBORING ID :08-6046DRILLING COMPANY :D.L. MAHERNORTHING :219377.0000 surveyedDRILLING RIG :CP-650EASTING :1206280.0000 surveyedDATE STARTED :02/18/92ELEVATION :108.860 surveyedDATE COMPLETED :02/21/92	PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
NORTHING:219377.0000 surveyedDRILLING RIG:CP-650EASTING:1206280.0000 surveyedDATE STARTED:02/18/92	SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
EASTING : 1206280.0000 surveyed DATE STARTED : 02/18/92	BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
· · · · · · · · · · · · · · · · · · ·	NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
ELEVATION : 108.860 surveyed DATE COMPLETED : 02/21/92	EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
	ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
47 -				Well-graded sand, SW	PALE BROWN	LSE	SAT				SAME, COBBLES, HIT WEATHERED ROCK AI APPROXIMATELY 65FT.
46 -	- 62										
45 -	- 63										
44 .	- 64										
43 -	- 65			Well-graded sand with gravel, SW	VY PALE BROWN	NA	SAT				WEATHERED ROCK, PHYLLITE FRAGMENTS IN CUTTINGS.
42 -	- 66										
41 -				Poorly graded sand, SP	VY PALE BROWN	STF	SAT	-	нии	0.0	PHYLLITE FLAKES, MOSTLY QTZ SAND, TRACE PYRITE TRACE MICA, COMPETENT BEDROCK AT 69FY.
40 -											
39 - 38 -				Phyllite	GRAY BLACK	MOD			HNU	0.0	PHYLLITE FLAKES, 20% IS WEATHERED AND IRON STAIN- ED
37 -											
36 -						070			111.01.7		
35				Phyllite		STR			HNU	0.0	DRILLING DIFFICULT
34 -	- 74										
33 -	. 75			Phyllite	DK GRAY	MOD					10%_OF_PHYLLITE_IS
32 -	- 76										WĔÃTHERED/IRÓN ⁻ stàined.
31	- 77										
30 -	- 78										
29	- 79										
28 -	- 80			Phyllite	DK GRAY	MOD		-	หมบ	0.0	GRAVEL IN SAMPLE IS SMALL DUE TO THE MUD VISCOSITY DECREASING.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
-81 -	- 81			Phyllite	DK GRAY	MOD			HNU	0.0		GRAVEL IN SAMPLE IS SMALL DUE TO THE MUD VISCOSITY DECREASING.
-82 -	- 82											
-83 -	- 83											
-84 -	- 84											
-85 -	- 85			Phyllite	DK GRAY	STR			ниц	0.0		BEGIN DRILLING AT END OF CASED BEDROCK (85 FT) + 15
- 86 -	- 86			Phyllite	DK GRAY	STR			нии	0.0		BEGIN DRILLING AT END OF CASED BEOROCK (8557) FHYLLITE BEDROCK BIT IS STILL JUMPING, FLAKEY. PHYLLITE TO PHYLLITE GUARTZITE RUSTY SEAM AT 89FT, TRACE QUARTZ.
-87 -	- 87											89FT, TRACE QUARTZ.
- 88 -	- 88											
-89	- 89											
-90 -	- 90			Phyllite	DK GRAY	STR						PHYLLITIC QUARTZITE, ABUNDANT CALCITE FILLED MICRO FRACTURES.
-91 -	- 91											MICRO FRACIURES.
-92 -	- 92											
-93 -	- 93											
-94 -	. 94											
-95 -	- 95			Quartzite		MOD			HNU	0.0		PHYLLITIC QUARTZITE, MICRO FRACTURE; CALCITE FILLED.
-96 -	- 96											FILLED.
-97	- 97											
-98	- 98											
-99 -	- 99											
-100 -	- 100			Quartzite	DK GRAY	MOD			нии	0.0		PHYLLITIC QUARTZITE, SCARCE FRACTURING.
01/3	0/98	GEC	DLIS C	opyright (c) 1990, 1995 Roy	F. WESTON, Inc.	1 (log	jgrap	h.p	'g)			Page: 5 of 15

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	;	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
101 -	101			Quartzite	DK GRAY	MOD			XNU 0.0	PHYLLITIC QUARTZITE, SCARCE FRACTURING.
102 -										
102 -										
104 -										
05 -				Quartzite	DK GRAY	MOD				PHYLLITE QUARTZITE - SINGLE 1/16" CALCITE FILLED FRACTURE.
06 +										
107 -	107									
08 -	108									
109 -	109								Ň	
110 -	110			Quartzite	DK GRAY	MOD				1/16" FRACTURE WITH CALCITE FILL.
11 +	111									
12 -	112									
113 -	113									
14 -	114									
115 +	115			Phyllite	DK GRAY	MOD				LOW FRACTURING (1.E. LESS CALCITE FILL). NO YIELD YET.
16 +	116									YIELD YET.
117 +	117									
118	118									
19 -	119									
120 -	120			Phyllite	DK GRAY	MOD			KNU 0.0	PHYLLITE MASSIVE SOME SEAMS, CALCITE FILLED.

Roy F. WESTON, Inc.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	÷	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-121 -	- 121			Phyllite	DK GRAY	MOD			HNU	0.0	PHYLLITE MASSIVE SOME SEAMS, CALCITE FILLED.
-122 -	- 122										
-123 -											
-124 -											
- 125 -				Phyllite	DK GRAY	MOD			HNU	0.0	PHYLLITE (MASSIVE), TRACE SEAMS (CALCITE), BEDROCK SLIGHTLY DARKER WITH INCREASING DEPTH.
-127 -	- 127										
-128 -	- 128										
-129 -	- 129										
-130 -				Phyllite	DK GRAY	MOD					PHYLLITE MARKED INCREASE IN CALCITE FILL.
-131 - -132 -											
- 133 -											
-134 -	- 134										
-135 -	- 135			Phyllite	DK GRAY	WEK					MARKED DECREASE IN CAL- CITE AGAIN TO TRACE AMOUNTS - LOW FRACTURE AREA POSSIBLE.
-136 -						-		•			AREA POSSIBLE.
- 137 - - 138 -											
-139 -											
-140 -	140			Phyllite	DK GRAY	STR			нии	0.0	DARKER COLOR STILL WITH DEPTH, LOW CALCITE (TR). DRILLING IS SLOWER, BED- ROCK IS HARDER. MASS.PHY.

÷

÷

.

•

SITE NAME :FDTA 2 / SITE 8LOGGER:T. MCCANNBORING ID :08-6046DRILLING COMPANY:D.L. MAHERNORTHING :219377.0000 surveyedDRILLING RIG:CP-650EASTING :1206280.0000 surveyedDATE STARTED:02/18/92ELEVATION :108.860 surveyedDATE COMPLETED:02/21/92	PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
NORTHING:219377.0000 surveyedDRILLING RIG:CP-650EASTING:1206280.0000 surveyedDATE STARTED:02/18/92	SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
EASTING : 1206280.0000 surveyed DATE STARTED : 02/18/92	BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
	NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
ELEVATION : 108.860 surveyed DATE COMPLETED : 02/21/92	EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
	ELEVATION	;	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT RFADING	COMMENTS
-141 -	- 141			Phyllite	DK GRAY	STR			HNU 0.0	DARKER COLOR STILL WITH DEPTH. LOW CALCITE (TR). DRILLING IS SLOWER, BED- ROCK IS HARDER. MASS.PHY.
-142 -	- 142									
-143 -	- 143									
-144 -	- 144									
-145 -				Phyllite	DK GRAY	STR			HNU 0.0	PHYLLITE - LOW CALCITE (FRACTURES).
·146 - ·147 -										
-148 -					:					
149 -	- 149									
·150 -	- 150			Phyllite	DK GRAY				HNU 0.0	LOW FRACTURING, PHYLLITE
-151 -	- 151									
152 -	- 152									
153 -										
·154 -										
·155 - ·156 -				Phyllite	DK GRAY	STR			KNU 0.0	TRACE CALCITE FILL POSSIBLY, LARGER FRACTURE
-157 -										
158 -										
-159 -	- 159									
160 -	- 160			Phyllite	DK GRAY	STR				ROCK IS MORE COMPETENT. NO FRACTURES EVIDENT, PHYLLITE.

•.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-161 -	- 161			Phyllite	DK GRAY	STR					ROCK IS MORE COMPETENT. NO FRACTURES EVIDENT, PHYLLITE.
- 162 -	- 162										
-163 - -164 -											
- 165 -				Phyllite	DK GRAY	STR					PHYLLITE - LITTLE OR NO EVIDENCE OF FRACTURES.
- 166 -	- 166										
-167 - -168 -			:								
- 169 -											
-170 -	- 170			Phyllite	DK GRAY						SAME AS ABOVE.
-171 -											
-172 - -173 -											
-174 -											
- 175 -	- 175			Phyllite	DK GRAY	STR			-		NO LONGER MASSIVE PHYLLITE
-176											
-177 - -178 -											
- 179 -											
-180 -	- 180			Phyllite	GRAY BLACK	STR			нии (0.0	TRACE CALCITE, LOW POROSITY.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	0 8-60 46	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
181 -	- 181			Phyllite	GRAY BLACK	STR			HNU 0.0	TRACE CALCITE, LOW POROSITY.
182 -	- 182									
	- 183									
	- 184 - 185									
	- 186			Phyllite	GRAY BLACK	STR				TRACE CALCITE - PHYLLITE
	- 187									
188 -	188									
-189 -	- 189									
	- 190			Phyllite	GRAY BLACK	STR			HNU 0.0	PHYLLITE, NO EVIDENCE OF FRACTURING.
	+ 191									
	- 193									
- 194	- 194									
- 195	195			Phyllite	GRAY BLACK	STR			HNU 0.0	PHYLLITE - NO EVIDENCE OF FRACTURING
	- 196									
	+ 197 + 198									
	- 198									
	- 200			Phyllite	GRAY BLACK	STR			ный 0.0	SAME

1					
PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
				Phyllite	GRAY BLACK	STR			HNU C	0.0	SAME
- 201 -											
-202 -											
-203 -											
-204 -	- 204										
-205 -	- 205			Phyllite	GRAY BLACK	STR			HNU C	.0	SAME
- 206 -	- 206					-					
-207 -	- 207										
-208 -	- 208										
-209 -	- 209										
-210 -	- 210			Phyllite	GRAY BLACK	STR					PHYLLITE GETTING PRO- GRESSIVELY DARKER STILL, TRACE PYRITE.
-211 -	- 211										TRACE PYRITE.
-212 -	- 212										
-213 -	- 213										
-214 -	- 214										
-215 -	- 215			Phyllite	BLACK	STR			HNU C	0.0	PHYLLITE - SLIGHT TRACE OF CALCITE.
-216 -	- 216										OF CALCITE.
-217 -											
-218 -						-					
-219 -											
-220 -	- 220	and the second sec		Phyllite	BLACK	STR					SAME
01/3	 30/98	L GE	OLIS C	 Copyright (c) 1990, 1995 Roy	F. WESTON, Inc. F-12	 (lo:	ggra	b.p	rg)		Page: 11 of 15

PROJECT : COMBINED DATA OF ALL SITE NAME : FDTA 2 / SITE 8 BORING ID : 08-6046 NORTHING : 219377.0000 surveyed EASTING : 1206280.0000 surveyed ELEVATION : 108.860 surveyed				LOGGER DRILLI DRILLI DATE S	TOTAL DEPTH : LOGGER : T. MCCA DRILLING COMPANY : D.L. MA DRILLING RIG : CP-650 DATE STARTED : 02/18/9 DATE COMPLETED : 02/21/9			. MCCANN .L. MAHER 2-650 2/18/92	HER 2		
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS	
				Phyllite	BLACK	STR				SAME	
-221 -	221										
-222 -	- 222						-				
-223 -	- 223										
-224 -	- 224										
-225 -	- 225			Phyllite	BLACK	STR				SAME	
-226 ·	- 226										
-227 -	227										
-228 -	228										
-229 -	229										
-230 ·	- 230			Phyllite	BLACK	STR			HNU 0.0	PHYLLITE WITH TRACE CALCITE	
-231 -	- 231										
-232 -	232										
-233 -	- 233		•								
-234	234										
-235	235			Phyllite	BLACK	STR				PHYLLITE - TRACE QUARTZ	
-236	236										
-237	237										
-238	238										
-239	- 239										
-240	240		3	Phyllite	BLACK	STR			HNU 0.0	PHYLLITE	

E WESTON L

<u>,</u> '

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
-241 -	- 241			Phyllîte	BLACK	STR			HNU 0.0	PHYLLITE
-242 -	- 242									
-243 -	- 243					2				
-244 -	- 244									
-245 -				Phyllite	BLACK	STR			HNU 0.0	SAME
-246 -										•
-247 - -248 -										
-240 -										
-250 -				Phyllite	BLACK	STR			HNU 0.0	SAME
-251 -	- 251			Fligterie	BLACK					
-252 -	- 252									
-253 -	- 253									
-254 -	- 254									
-255 -	255			Phyllite	BLACK	STR			KNU 0.0	SOME CALCITE STAINING - POSSIBLE LARGE OPEN FRACTURE AT 259 FT
-256 -	256									
-257 -										
-258 -										
-259 -								-		-
-260 -	+ 260			Not Classified - Incomple te Data		STR			HNU 0.0	TRACE QUARTZ (AND CAL- CITE?)

, ¹

Roy F. WESTON, Inc.

PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	:	T. MCCANN
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650
EASTING	:	1206280.0000 surveyed	DATE STARTED	:	02/18/92
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92

.

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
261 -	- 261			Not Classified - Incomple te Data		STR			HNU 0.0	TRACE QUARTZ (AND CAL- CITE?)
262 -	- 262									
263 -	- 263									
264 -	- 264							•		
265 -	- 265			Phyllite	BLACK	STR				TRACE CALCITE
266 -	- 266									
267 -	- 267									
268 -	- 268									
269 -	- 269									
270 -	- 270			Phyllite	BLACK	STR				
271 -	- 271									
272 -	- 272									
273 -	- 273					2				
274 -	- 274									
275 -	- 275			Phyllite	BLACK	STR				PHYLLITE
276 -	- 276									
277 -	- 277									
	- 278									
	- 279									
280 -	- 280									

Boreh	ole	e L og			Roy F. WESTON,				
PROJECT	:	COMBINED DATA OF ALL	TOTAL DEPTH	:	282.00				
SITE NAME	:	FDTA 2 / SITE 8	LOGGER	;	T. MCCANN				
BORING ID	:	08-6046	DRILLING COMPANY	:	D.L. MAHER				
NORTHING	:	219377.0000 surveyed	DRILLING RIG	:	CP-650				
EASTING	:	1206280,0000 surveyed	DATE STARTED	:	02/18/92				
ELEVATION	:	108.860 surveyed	DATE COMPLETED	:	02/21/92				

ي. و

, *

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Phyllite	BLACK	STR				PHYLLITE
-281 -										
-282 -	- 282									
-283 -	- 283									
-284 -	- 284									
-285 -	- 285									
-286 -	- 286									
-287 -	- 287							-		
- 288 -	- 288									
- 289 -	- 289									
-290 -	- 290									
-291 -	- 291								-	
-292 -	- 292									
-293 -	- 293									
-294 -	- 294									
-295 -	- 295									
-296 -	- 296									
-297 -	- 297									
-298 -	- 298									
- 299 -	299									
-300 -	300									
01/3	30/98	GE	OLIS C	Copyright (c) 1990, 1995 Roy	F. WESTON Inc.	(log	grap	bh.pr	.ā)	Page: 15 of 15

Appendix G Data Quality Summary Report

Appendix G Data Quality Summary Report Perfluorinated Compound Investigation Site 8, AT008, Fire Department Training Area 2 (NHDES Site No. 100330508) Former Pease Air Force Base Portsmouth, New Hampshire

Prepared for Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 JBSA Lackland, Texas 78236-9853

Prepared by CB&I Federal Services LLC 150 Royall Street Canton, Massachusetts 02021

> Contract No. FA8903-09-D-8580, Task Order No. 0010 Project No. 143279 Revision 0

Table of Contents

List of Tablesii List of Attachmentsii							
Acronyms and Abbreviationsiii							
1.0	Intro	duction1	-1				
	1.1	Data Quality Summary Report Organization1					
2.0	Field	I Sampling and QC Activities					
	2.1	Field Audits					
	2.2	Field Duplicates	-1				
	2.3	AFCEC Split Samples	-2				
	2.4	Equipment Blanks2-					
3.0		ytical Program and QC Activities 3-					
	3.1	Laboratory QA/QC Procedures					
		3.1.1 Method Blanks					
		3.1.2 Surrogate Spikes					
		3.1.3 Internal Standards					
		3.1.4 Matrix Spikes and Laboratory Control Spikes					
	~ ~	3.1.5 Calibrations					
	3.2	Reporting Limits					
4.0	3.3	Holding Times					
4.0	Data	Evaluation and Usability					
	4.1	Accuracy					
	4.3	Representativeness					
	4.4	Completeness					
	4.5	Comparability					
	4.6	Sensitivity					
	4.7	Statement of Data Usability					
5.0	Refe	5-					

List of Tables

Table 1	Summary of Samples Collected and Sample Tracking Information
Table 2	Summary of Impacted Results due to MS/MSD Recoveries Exceeding QC
	Criteria

List of Attachments

acoast Analytical Services Screening Data
immary of Analytical Results
immary of Analytical Results greater than the Detection Limit
ata Validation Qualifier Reason Code Definitions

Acronyms and Abbreviations

AFB	Air Force Base
AFCEC	Air Force Civil Engineer Center
ALS	ALS Environmental
CB&I	CB&I Federal Services LLC
CCV	continuing calibration verification
DL	detection limit
DOD	U.S. Department of Defense
DQO	data quality objective
DQSR	Data Quality Summary Report
EPA	U.S. Environmental Protection Agency
ICAL	initial calibration
ICAL ICV	initial calibration verification
IC V ID	identification
IWQPP	Installation-Wide Quality Program Plan
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MS	matrix spike
MSD	matrix spike duplicate
PFC	perfluorinated compounds
PHA	Provisional Health Advisory
QA	quality assurance
QC	quality control
QSM	Quality Systems Manual
RPD	relative percent difference
Shaw	Shaw Environmental & Infrastructure, Inc.
SOP	standard operating procedure
U.S.	United States

This page intentionally left blank.

APPENDIX G DATA QUALITY SUMMARY REPORT

1.0 INTRODUCTION

This appendix presents the Analytical Data Quality Summary Report (DQSR) for the 2015 perfluorinated compound (PFC) investigation for Site 8, AT008, Fire Department Training Area 2, at the former Pease Air Force Base (AFB) located in Portsmouth, New Hampshire. Site 8 was a former fire training area located at the former Pease AFB that was used from 1961 to 1988. Fire training exercises were performed in a burn pit located in the southeastern section of the site. This DQSR will discuss results of the quality assurance (QA)/quality control (QC) measures implemented during the sampling events at locations associated with Site 8. The successful execution of project-specific objectives and procedures provides strong support for the acceptance of the data as adequate for the purpose of evaluating site conditions of petroleum hydrocarbon plumes associated with the Site 8.

The data review process presented in this DQSR compares sample results to pre-established criteria referenced in the Final Installation-Wide Quality Program Plan (IWQPP) (Shaw Environmental & Infrastructure, Inc. [Shaw], 2012) to confirm that the data are of acceptable technical quality. ALS Environmental (ALS), located in Kelso, Washington, provided CB&I Federal Services LLC (CB&I) with Level 4 data packages including "Contract Laboratory Program–like" summary forms for all sample delivery groups. CB&I conducted a data assessment on all results reported by ALS in support of this investigation. One hundred percent of the analytical data have been reviewed, and validation qualifiers have been assigned based on the United States (U.S.) Department of Defense (DOD) *DoD Quality Systems Manual for Environmental Laboratories*, Version 5.0 (Quality Systems Manual [QSM]) (DOD, 2013). Data were evaluated against specific criteria to verify the achievement of all precision, accuracy, representativeness, comparability, and sensitivity goals established to meet the project data quality objectives (DQOs).

To verify that these DQOs were met, field measurements, sampling and handling procedures, laboratory analysis and reporting, and all nonconformances and discrepancies in the data were examined to determine compliance with the appropriate and applicable procedures. The results of this review are presented in the following sections, with all outliers or nonconformances discussed where they occurred.

1.1 Data Quality Summary Report Organization

This DQSR is organized as follows:

- Section 1.0—This section presents the introduction and report organization.
- Section 2.0—This section discusses the overall field investigation and QC procedures used by CB&I during the sampling effort.
- Section 3.0—This section outlines the analytical program and the associated QC activities as specified in the Final IWQPP (Shaw, 2012).
- Section 4.0—This section summarizes the data findings and their overall impact on the usability of the analytical data.
- Section 5.0—This section presents the references cited in this DQSR.

2.0 FIELD SAMPLING AND QC ACTIVITIES

CB&I is responsible for conducting the 2015 Site 8 PFC Investigation at the former Pease AFB, Portsmouth, New Hampshire, under the Air Force Civil Engineer Center (AFCEC) Contract No. FA8903-09-D-8580, Task Order No. 0010. Field activities at Site 8 included the collection of groundwater samples at five locations in accordance with the Final IWQPP (Shaw, 2012). ALS performed the following analyses:

• PFCs by ALS internal standard operating procedure (SOP) *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*

The PFC analyte list includes perfluorobutane sulfonate, perfluorodecanoic acid, perfluorododecanoic acid, perfluoroheptanoic acid, perfluorohexane sulfonate, perfluorobexanoic acid, perfluorononanoic acid, perfluorooctane sulfonate, perfluorooctanoic acid, perfluoropentanoic acid, and perfluoroundecanoic acid. Additional groundwater samples were collected at locations 08-6724 and 08-6725 were submitted to Seacoast Analytical Services located in Lee, New Hampshire. Samples were screened for chloride, nitrate, and sulfate by U.S. Environmental Protection Agency (EPA) Method 300 and total coliforms by EPA Method SM9221B. All screening results are presented in Attachment 1. It should be noted screening data were not validated.

Table 1 summarizes the station name (or location), the field sample identification (ID), sample purpose, sample matrix, date of collection, laboratory sample ID, and the specific analytical program for each sample collected during the 2015 Site 8 PFC Investigation. Sample shipments from the field were performed under custody and were documented using standard analysis request/chain-of-custody forms. These forms provide project-specific analytical specifications and QC instructions to the laboratory. No amendments were made to the original analysis request/chain-of-custody forms associated with the Site 8 PFC Investigation.

2.1 Field Audits

A technical system audit of field activities was performed by CB&I during the spring 2015 long-term monitoring sampling activities. No major findings were identified by CB&I during the field inspection.

2.2 Field Duplicates

Field duplicate samples are collected and submitted "blind" to the laboratory for analysis along with their corresponding parent sample. The data generated from the analysis of field

duplicate samples are used to evaluate the precision of the sample collection and analysis procedures. Field duplicate samples are collected at a frequency of approximately 1 for every 10 samples collected (10 percent) per matrix.

A high relative percent difference (RPD) value between a parent sample's result and its corresponding field duplicate's result may be attributed to the difference in sample matrix or the distribution of the constituent within the sample rather than the lack of precision of the collection process. Also, when estimated results are reported, there is a potential for increased variability between the parent and duplicate sample results. At low concentrations, the relative difference in results is magnified by the RPD calculation even though the results are comparable in absolute terms. There is also an increased uncertainty in the results as the lower detection limit (DL) is approached because of decreasing analytical accuracy. The RPD is calculated by using the following formula:

$$\text{RPD} = \frac{(V_1 - V_2)}{(V_1 + V_2)} \times 100$$

Where:

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Revision 0

RPD = relative percent difference V1 = value 1 V2 = value 2

Field duplicate samples are collected in immediate succession after the initial parent samples employing identical recovery techniques. In cases where duplicates were performed and both results are less than the limit of quantitation (LOQ) and in cases where one result is greater than the LOQ and the second result is less than the LOQ, the RPD is not calculated. Precision evaluation criteria for field duplicate comparison were established at an RPD less than 30 percent for groundwater samples. No sample results were qualified due to their calculated RPD exceeding the evaluation criteria.

2.3 AFCEC Split Samples

No AFCEC field split samples were collected during the 2015 Site 8 PFC Investigation.

2.4 Equipment Blanks

Equipment blanks are used to assess the effectiveness of the decontamination procedures used by the sampling team on reusable sampling equipment. Target analytes detected in associated equipment blanks increase the uncertainty regarding the presence of the same constituents in field samples. For an analyte identified in both an equipment blank and a field sample, it must be present at a concentration of 5 times higher in the field sample to be

considered a "hit." Common laboratory contaminants such as acetone, methylene chloride, and toluene are not assumed present until sample concentrations exceed 10 times the associated equipment blank value. This is referred to as the " $5\times/10\times$ " rule. One equipment blank sample was collected during the 2015 Site 8 PFC Investigation. No sample results were impacted by contamination detected in the associated equipment blank.

This page intentionally left blank.

APPENDIX G DATA QUALITY SUMMARY REPORT

3.0 ANALYTICAL PROGRAM AND QC ACTIVITIES

The project QA/QC program described in the Final IWQPP (Shaw, 2012) was followed for the collection and laboratory analysis of samples associated with this sampling event. Each of the analytical methods used requires that method-specific QA/QC protocols be followed during sample analysis. These protocols are a critical part of the methods employed and were followed by the laboratory during sample analysis. Specific measures included detailed record-keeping procedures; instrument calibrations; and analysis of method blanks, blank spikes, and matrix spikes (MS). **Attachments 2** and **3** to this DQSR contain both a summary of analytical results and a summary of analytical results greater than the DL, respectively. These data summaries also include the assigned data validation qualifiers and data validation qualifier reason codes. A summary of data validation reason code definitions is provided in **Attachment 4**.

Laboratory data qualifiers are defined as follows:

- J indicates the reported analyte is an estimated value.
- U indicates the compound was analyzed for, but was not detected at the minimum DL.
- No qualifier denotes the result is a value greater than or equal to the LOQ.

CB&I's data validation qualifiers are defined as follows:

- J denotes the analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.
- R denotes the reported sample results are rejected due to the following: (1) severe deficiencies in the supporting QC data, (2) anomalies noted in the sampling and/or analysis process which could affect the validity of the reported data, (3) the presence or absence of the constituent cannot be verified based on the data provided, and (4) to indicate not to use a particular result in the event of a reanalysis.
- U denotes not detected. The compound/analyte was analyzed for, but was not detected above the associated DL or above the reported concentration due to blank contamination.
- UJ denotes the compound/analyte was analyzed for, but was not detected above the established reporting limit. However, review and evaluation of supporting QC

3.0 ANALYTICAL PROGRAM AND QC ACTIVITIES

data and/or the sampling and analysis process have indicated that the reporting limit may be inaccurate or imprecise. The nondetect result should be estimated.

- nv denotes analyte not validated.
- No qualifier denotes the target analyte was detected in the associated sample; no qualification of the data required.

3.1 Laboratory QA/QC Procedures

The following sections discuss a few of the QA/QC protocols required and performed by the laboratory during the 2015 Site 8 PFC Investigation:

3.1.1 Method Blanks

Method blanks were analyzed with each analytical "batch" processed on a per matrix (i.e., soil and water) basis. These blanks were carried stepwise through the same analytical procedure as the field samples including the addition of solvents, surrogate and standard spikes, and reagents as required in the analysis process. The purpose of the blank is to identify any possible contaminants that may be introduced to the sample as a result of the analytical process. During validation, the data validation qualifiers evaluated all blank data associated with each sample. Data were evaluated based on the QSM (DOD, 2013).

Target compounds detected in associated blanks increase the uncertainty regarding the presence of the same constituents in field samples. For a compound identified in both a blank and field sample, it must be present at a concentration of 5 times higher in the field sample to be considered a "hit." Common laboratory contaminants such as acetone, methylene chloride, and toluene are not assumed present until sample concentrations exceed 10 times the associated blank value. This is referred to as the " $5\times/10\times$ " rule. Field sample concentrations were evaluated during data validation to determine if the sample results could have been biased by the presence of any contamination measured in associated method blanks. No sample results were impacted due to contamination detected in associated method blanks.

3.1.2 Surrogate Spikes

Spiked surrogate compounds were used in the analytical program to monitor the efficiency of the sample preparation and accuracy of the analysis of PFCs by ALS SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)* on a sample-by-sample basis. The compounds used as surrogates and the target acceptance limits for their recovery were those specified in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*. All surrogate recoveries met QC criteria.

3.1.3 Internal Standards

Internal standards are known amounts of standards added to an aliquot of sample or sample extract and carried through the entire analytical procedure. Internal standards are added to all field samples, laboratory controls, and blanks in accordance with the referenced method requirements. They are used as a basis for quantitation of target analytes. Internal standard retention times and recoveries are compared against acceptance limits presented in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*. Acceptable internal standard performance criteria ensure that method sensitivity and instrument response are stable during every analytical run. No sample results were impacted by spiked internal standard recoveries reported outside QC criteria.

3.1.4 Matrix Spikes and Laboratory Control Spikes

Two types of spikes were generally performed for all analyses: (1) the spike applied to the sample matrix identified as an MS and (2) the spike applied to a "blank" matrix known as an laboratory control sample (LCS). The spiked compounds are target analytes that are quantified during performance of the method. Spikes are introduced during sample preparation on an aliquot of the sample or a blank matrix. Results of these spiked aliquots are then compared to the native concentrations of the same analytes, and a recovery is calculated. Recovery of the spiked compound is used as an assessment of analytical accuracy on the sample matrix analyzed. These results are useful in distinguishing sample matrix interference from analysis interference through a comparison of MS and blank spike recovery data. Often, the MSs are performed in duplicate (as a matrix spike duplicate [MSD] or laboratory control sample duplicate [LCSD]) on prepared sample aliquots. In this manner, an assessment of precision can be quantified as the RPD of the original and duplicate spike. The target acceptance limits are presented in the Final IWQPP (Shaw, 2012).

The MSs are assigned at a frequency of approximately 5 percent or 1 for every 20 field samples collected. If a sample is designated for analysis as an MS/MSD, additional sample volume is provided to the laboratory. This sampling meets the collection criteria as specified in the Final IWQPP (Shaw, 2012). One MS/MSD pair was collected in the field and analyzed for the following analytical suite:

Field Sample ID	Sample Station	Sample Date	Analytical Suite
S8-0487	08-6722	10/05/2015	PFCs by ALS's SOP Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)

ID denotes identification.

PFC denotes perfluorinated compound.

The MS/MSD target acceptance criteria are established in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*. **Table 2** summarizes sample results impacted by MS/MSD recoveries reported outside the QC criteria.

The LCS results are used to evaluate laboratory method performance in the same manner as the MS/MSD results, except the LCS is not performed on an actual field sample matrix. An LCS is prepared for each analytical batch for each parameter and matrix analyzed. The LCS target acceptance criteria are established in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*. No sample results were impacted by LCS/LCSD recoveries and/or RPDs reported outside the QC criteria.

3.1.5 Calibrations

Initial calibration (ICAL) information is verified to demonstrate that the reported results are comparable to known concentrations of target compounds. A series of standard reference solutions containing all target constituents are analyzed using the type of instrumentation specified by the method. The standards are used to determine the sensitivity of the analysis and the effective analytical (i.e., linear) range for which data can be accurately reported. High ICAL percent relative standard deviation indicates that a nonlinear response was obtained during the ICAL. A low ICAL mean relative response factor indicates that the compound exhibits poor response to the selected method (or detector). The ICAL, initial calibration verification (ICV), and continuing calibration verification (CCV) target acceptance criteria are established in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)*. No sample results were impacted by ICALs, ICVs, and/or CCVs exceeding the QC criteria.

3-4

3.2 Reporting Limits

The analytical program executed required the use of SW-846 methods, which specify the procedure for calculating the LOQ. Each laboratory is required to demonstrate method performance through DL studies for every method employed. These studies are required to be laboratory specific so that individual laboratory variables such as equipment brands, reagent suppliers, and chemist technique are factored into the performance study. The DLs are established using controlled matrices (i.e., deionized water). The LOQ calculation adjusts the limit by a predetermined mathematical factor for the analysis of actual environmental sample matrices (i.e., soil, groundwater, etc.). The actual values reported have been corrected for all necessary dilutions, dryness, and interference factors, as applicable, based on the resulting analytical data for a sample. The DL, limit of detection (LOD), and LOQ are generally defined as follows:

- The DL is the smallest analyte concentration that can be demonstrated to be different from 0 or a blank concentration at the 99-percent level of confidence.
- The LOD is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at a 99-percent level of confidence.
- The LOQ is the smallest concentration of a substance that produces a quantitative result within specified limits of precision and bias. The LOQ is typically larger than the LOD, but may be equal to the LOD, depending upon the acceptance limits for precision and bias. The LOQ is set at the lowest standard used in the ICAL or higher for each target analyte.

The DL is the lower limit at which the laboratory can differentiate a measurement from background. The DL is determined in accordance with the procedures in 40 Code of Federal Regulations Part 136. A DL is the lower limit at which a measurement becomes meaningful. The LOQ is generally a multiple of 2 to 5 times the DL. Actual sample LOQs can be reviewed on a sample-by-sample basis by reviewing the summary of analytical results presented in **Attachment 2**.

3.3 Holding Times

All laboratory results submitted for this sampling event have been reviewed with respect to laboratory adherence to extraction and analysis holding times. Maximum sample extraction and analysis holding times are presented in the Final IWQPP (Shaw, 2012). All sample shipments were received by ALS in good condition and within the required temperature criteria (4±2 degrees Celsius). All extraction and analysis holding times met QC criteria.

3-5

This page intentionally left blank.

3-6

4.0 DATA EVALUATION AND USABILITY

The data review process identified multiple QC exceedances that were noted during this sampling event. These exceedances have been discussed in this DQSR. The following definitions are used for defining precision, accuracy, representativeness, completeness, comparability, and sensitivity as they have been applied to this evaluation:

4.1 Precision

Precision is a measurement of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions. For this project, precision data were obtained through the analysis and evaluation of field duplicate samples as the RPD. The RPD is calculated as follows:

$$\text{RPD} = \frac{(V_1 - V_2)}{(V_1 + V_2)} \times 100$$

Where:

RPD = relative percent difference V1 = value 1 V2 = value 2

Parent sample and field duplicate comparisons show that the field team is consistent in their sample collection practices. Field duplicate results are summarized in Section 2.2. Precision was also evaluated through the comparison of MS and MSD or LCS and LCSD results. The spiked sample (MS, MSD, LCS, and LCSD) RPDs are evaluated during data validation, and data are qualified accordingly. The RPDs within the acceptance criteria indicate that the laboratory is performing adequately and that the results are reproducible for the analytes of interest at this site. Acceptance criteria are defined in ALS's SOP *Perfluorinated Compounds by High Performance Liquid Chromatography/Tandem Mass Spectroscopy (HPLC/MS/MS)* for each analyte of concern. These data and all necessary qualifications are discussed in Section 3.1.4. In respect to precision, the data are usable for their intended purpose.

4.2 Accuracy

Accuracy is a measurement of bias in a system and is expressed as a percent recovery. Accuracy is typically determined through the analysis and evaluation of blanks, spiked surrogates, LCSs, and MS/MSD samples. Percent recovery is calculated as follows:

APPENDIX G DATA QUALITY SUMMARY REPORT

% Recovery =
$$100 \times \frac{\text{measured value}}{\text{true value}}$$

The MS/MSDs, LCS, method blanks, surrogate, internal standards, ICAL, and CCV results and all data qualifications are summarized in Section 3.1 and **Table 2**. In respect to accuracy, all data are deemed usable for their intended purpose.

4.3 Representativeness

Representativeness is a qualitative parameter that expresses the degree to which sample data actually represent the matrix and site conditions. General requirements and procedures referenced in the Final IWQPP (Shaw, 2012) and corporate SOPs for sample collection and handling are designed to maximize sample representativeness. Representativeness also can be monitored by reviewing field documentation and by performing field inspections. All samples were collected using the SOPs and were fully documented through the use of standard field forms. Samples are representative of the matrix and site sampled.

4.4 Completeness

Completeness is a measure of the amount of valid data obtained during a sampling event as compared to the amount of data planned for collection and determined to be usable for the intended purpose. An overall completeness goal of 90 percent is set for this sampling event. Completeness is calculated as follows:

$$\%C = (U/T) \times 100$$

Where:

%C = percent completeness

U = number of measurements judged usable

T = total number of measurements

During the 2015 Site 8 PFC Investigation, 12 groundwater samples were collected and reported resulting in a total of 154 records. No results were rejected during the data quality evaluation. Using the above calculation, 100-percent (154/154 = 100%) analytical completeness was achieved for this sampling event. A summary of results with the assigned data validation qualifiers and the data validation qualifier reason codes is presented in **Attachment 2**.

4.5 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Comparability ensures that results for the sampling event can be compared with data from past and future sampling programs. Comparability for this sampling event was achieved through the use of established and recognized techniques and through the laboratory's use of standard EPA methodology. All samples collected for this task were subjected to the same sampling, handling, preparation, analysis, reporting, and validation criteria for the purpose of achieving comparability goals within the data set.

4.6 Sensitivity

Sensitivity is defined as the ability of the laboratory's established LOQs/DLs to meet projectspecific DQOs. The DL is defined as the smallest analyte concentration that can be demonstrated to be different from 0 or a blank concentration at the 99-percent level of confidence. The LOQ is a threshold value based upon the sensitivity capability of method and instrument. The LOQs are normally set at a minimum of 2 times the DL. The DLs/LOQs are adjusted based on the sample matrix, moisture (solids only), and any necessary sample dilutions. The laboratory cannot reliably quantitate values reported above the DL but below the LOQ. Therefore, these reported values must be flagged as estimated quantities ("J" flagged).

To evaluate method sensitivity, the laboratory's aqueous LOQs/DLs were compared against EPA Provisional Health Advisory (PHA) values established for PFCs. ALS's PFC LOQs met or were below EPA's PHA values.

4.7 Statement of Data Usability

One hundred percent of the analytical data have been reviewed, and validation qualifiers have been assigned based on the QSM (DOD, 2013). The overall quality of the data collected for the 2015 Site 8 PFC Investigation has been discussed in this DQSR. Results of the analyses suggest that the data are indicative of the media analyzed and do reflect expected site conditions and are fully usable for their intended purpose.

This page intentionally left blank.

5.0 REFERENCES

Shaw Environmental & Infrastructure, Inc. (Shaw), 2012. *Installation-Wide Quality Program Plan, Former Pease Air Force Base, Portsmouth, New Hampshire*, Final, September.

U.S. Department of Defense (DOD), 2013. *DoD Quality Systems Manual for Environmental Laboratories*, Version 5.0, U.S. Department of Defense Environmental Data Quality Workgroup, July.

This page intentionally left blank.

5-2

Tables

Table 1Summary of Samples Collected and Sample Tracking InformationSite 8, Fire Department Training Area 2 PFC InvestigationFormer Pease Air Force BasePortsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Suite
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0487-MS	08-6722	10/05/2015	MS	WG	128	140.5	KQ1511535-01	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0487-MSD	08-6722	10/05/2015	SD	WG	128	140.5	KQ1511535-02	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0499	08-6724	10/19/2015	Ν	WG	24	24	S10195P	Chloride, Nitrate, and Sulfate by EPA Method 300 and Total Coliforms by EPA Method SM9221B
S8-0500	08-6724	10/19/2015	Ν	WG	169	169	S10195Q	Chloride, Nitrate, and Sulfate by EPA Method 300 and Total Coliforms by EPA Method SM9221B
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)
S8-0501	08-6725	10/19/2015	Ν	WG	32.5	32.5	S10195R	Chloride, Nitrate, and Sulfate by EPA Method 300 and Total Coliforms by EPA Method SM9221B
S8-0502	08-6725	10/19/2015	Ν	WG	223	223	S10195S	Chloride, Nitrate, and Sulfate by EPA Method 300 and Total Coliforms by EPA Method SM9221B
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ			K1511425-003	PFCs ¹ by ALS Internal SOP (HPLC/MS technique)

¹ PFC analyte list includes perfluorobutane sulfonate, perfluorodecanoic acid, perfluorodecanoic acid, perfluorobeptanoic acid, perfluorobexane sulfonate, perfluorobexanoic acid, perfluoronanoic acid, perfluoroctane sulfonate (PFOS), perfluoroctanoic acid (PFOA), perfluoropentanoic acid, and perfluoronanoic acid.

--- denotes not applicable.ID denotes identification.ALS denotes ALS Environmental.MS denotes matrix spike sample.EB denotes equipment blank sample.N denotes regular field sample.EPA denotes U.S. Environmental Protection Agency.PFC denotes perfluorinated compound.FD denotes field duplicate sample.OC denotes quality control.fb gs denotes feel below ground surface.SD denotes matrix spike duplicate sample.HPLC/MS denotes high performance liquid chromatography/mass spectrometry.SOP denotes standard operating procedure.

WG denotes groundwater matrix. WQ denotes water quality matrix. This page intentionally left blank.

Table 2Summary of Impacted Results due to MS/MSD Recoveries Exceeding QC CriteriaSite 8, Fire Department Training Area 2 PFC InvestigationFormer Pease Air Force BasePortsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code		Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.3	0.005	0.005	0.0015	µg/L		J	08A		1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.24	0.01	0.004	0.0015	µg/L		J	08A		1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	2.8	0.2	0.08	0.028	µg/L		J	08A		20
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0032	0.005	0.005	0.0026	µg/L	J	J	15	08A	1

µg/L denotes micrograms per liter.

CAS denotes Chemical Abstracts Service.

DL denotes detection limit.

ft bgs denotes feet below ground surface.

ID denotes identification.

LC/MS denotes liquid chromatography/mass spectrometry.

LOD denotes limit of detection.

LOQ denotes limit of quantitation.

LQ denotes laboratory data qualifier.

N denotes regular field sample.

QC denotes quality control.

R1 denotes validation qualifer reason code number 1.

R2 denotes validation qualifer reason code number 2.

VQ denotes validation qualifier.

WG denotes groundwater matrix.

Laboratory Data Qualifier Definitions:

No qualifier denotes analyte was detected in the associated sample. J denotes the reported analyte is an estimated value.

Validation Qualifier Definitions:

J denotes the analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.

Validation Qualifier Reason Code Definitions:

08A denotes MS/MSD/Duplicate results outside QC criteria. 15 denotes result reported below the LOQ and above the DL. This page intentionally left blank.

Attachment 1 Seacoast Analytical Services Screening Data

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195P

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6724

Sample Id S8-0499

			Sample lu S	0-0499	
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard
EPA 300.0	Fluoride (mg/L)	4.0	< 0.6	-	-
EPA 300.0	Chloride (mg/L)	250	606 *	-	Х
EPA 300.0	Nitrite-N (mg/L)	1.0	< 1.0	-	-
EPA 300.0	Nitrate-N (mg/L)	10.0	< 2.0	-	-
EPA 150.1	pH (range)	(6.5 - 8.5)	6.4	-	Х
SM 2340B	Hardness (mg/L)	No limit	246	-	-
SM 3111B	Sodium (mg/L)	250	280 *	-	Х
SM 3111B	lron (mg/L)	0.300	0.834	-	Х
SM 3111B	Manganese (mg/L)	0.050	< 0.025	-	-
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 9:15am EPA 300.0 analysis: 10/20/15 10:31am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 14 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195Q

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6724

Sample Id S8-0500

			Sample Iu S	0-0000	
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard
EPA 300.0	Fluoride (mg/L)	4.0	< 0.6	-	-
EPA 300.0	Chloride (mg/L)	250	734 *	-	Х
EPA 300.0	Nitrite-N (mg/L)	1.0	< 1.0	-	-
EPA 300.0	Nitrate-N (mg/L)	10.0	< 2.0	-	-
EPA 150.1	pH (range)	(6.5 - 8.5)	6.6	-	-
SM 2340B	Hardness (mg/L)	No limit	339	-	-
SM 3111B	Sodium (mg/L)	250	327 *	-	Х
SM 3111B	lron (mg/L)	0.300	0.767	-	Х
SM 3111B	Manganese (mg/L)	0.050	< 0.025	-	-
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 10:20am EPA 300.0 analysis: 10/20/15 10:53am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 11 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195R

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6725

Sample Id S8-0501

				0-0001	
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard
EPA 300.0	Fluoride (mg/L)	4.0	< 0.3	-	-
EPA 300.0	Chloride (mg/L)	250	200	-	-
EPA 300.0	Nitrite-N (mg/L)	1.0	< 0.5	-	-
EPA 300.0	Nitrate-N (mg/L)	10.0	< 1.0	-	-
EPA 150.1	pH (range)	(6.5 - 8.5)	7.5	-	-
SM 2340B	Hardness (mg/L)	No limit	297 *	-	-
SM 3111B	Sodium (mg/L)	250	97	-	-
SM 3111B	lron (mg/L)	0.300	0.456	-	Х
SM 3111B	Manganese (mg/L)	0.050	0.040	-	-
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-
SM 3113B	Arsenic (mg/L)	0.010	0.006	-	-
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 11:25am EPA 300.0 analysis: 10/20/15 11:12am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 13 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

Attachment 1-3

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195S

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6725

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sample Id S	8-0502	
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard
EPA 300.0	Fluoride (mg/L)	4.0	< 0.3	-	-
EPA 300.0	Chloride (mg/L)	250	167	-	-
EPA 300.0	Nitrite-N (mg/L)	1.0	< 0.5	-	-
EPA 300.0	Nitrate-N (mg/L)	10.0	< 1.0	-	-
EPA 150.1	pH (range)	(6.5 - 8.5)	7.5	-	-
SM 2340B	Hardness (mg/L)	No limit	272 *	-	-
SM 3111B	Sodium (mg/L)	250	102	-	-
SM 3111B	lron (mg/L)	0.300	1.776	-	Х
SM 3111B	Manganese (mg/L)	0.050	0.039	-	-
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 12:20pm EPA 300.0 analysis: 10/20/15 11:48am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 13 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

Attachment 1-4

Attachment 2 Summary of Analytical Results

Attachment 2 Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0016	0.0045	0.002	0.00075	µg/L	J	J	15		1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.0045	0.002	0.0015	µg/L	U	U			1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0016	0.0045	0.002	0.00049	µg/L	J	J	15		1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.014	0.0045	0.002	0.00068	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.0075	0.0045	0.002	0.00062	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	U			1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.025	0.0045	0.002	0.0018	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.0061	0.005	0.005	0.0015	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0033	0.0045	0.002	0.00094	µg/L	J	J	15		1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0018	0.0044	0.002	0.00075	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.0044	0.002	0.0015	µg/L	U	U			1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0018	0.0044	0.002	0.00049	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.016	0.0044	0.002	0.00068	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.0086	0.0044	0.002	0.00062	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	U			1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.028	0.0044	0.002	0.0018	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.0069	0.005	0.005	0.0015	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0036	0.0044	0.002	0.00094	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.15	0.005	0.002	0.00075	µg/L					1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.005	0.002	0.0015	µg/L	U	U			1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.076	0.005	0.002	0.00049	µg/L					1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.75	0.25	0.1	0.034	µg/L					50
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.43	0.25	0.1	0.031	µg/L				\neg	50
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	375-95-1	Perfluorononanoic acid	0.0015	0.005	0.005	0.0014	µg/L	J	J	15	\neg	1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.89	0.25	0.1	0.09	µg/L				\neg	50
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.3	0.005	0.005	0.0015	µg/L		J	08A	$\neg \uparrow$	1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.18	0.005	0.002	0.00094	µg/L				\neg	1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U		$\neg \uparrow$	1
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.24	0.005	0.002	0.00075	µg/L		 		\neg	1
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.005	0.002	0.0015	µg/L	U	U		\neg	1
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U		-+	1

Attachment 2 (continued) Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.12	0.005	0.002	0.00049	µg/L					1
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	1.2	0.25	0.1	0.034	µg/L					50
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.66	0.25	0.1	0.031	µg/L					50
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0027	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	1.6	0.25	0.1	0.09	µg/L					50
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.47	0.25	0.25	0.075	µg/L					50
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.29	0.005	0.002	0.00094	µg/L					1
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.26	0.005	0.002	0.00075	µg/L					1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.005	0.002	0.0015	µg/L	U	U			1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.16	0.005	0.002	0.00049	µg/L					1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	1.6	0.25	0.1	0.034	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.82	0.25	0.1	0.031	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	375-95-1	Perfluorononanoic acid	0.0042	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	2.3	0.25	0.1	0.09	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.66	0.25	0.25	0.075	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.45	0.25	0.1	0.047	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.22	0.005	0.002	0.00075	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.005	0.002	0.0015	µg/L	U	U			1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	375-85-9	Perfluoroheptanoic acid	0.22	0.005	0.002	0.00049	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	108427-53-8	Perfluorohexane sulfonate	2.2	0.25	0.1	0.034	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	307-24-4	Perfluorohexanoic acid	1	0.25	0.1	0.031	µg/L					50
S8-0490	08-6722	10/06/2015	N	WG	74	86	K1511321-004	LC/MS	375-95-1	Perfluorononanoic acid	0.0064	0.005	0.005	0.0014	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	2.8	0.25	0.1	0.09	µg/L					50
S8-0490	08-6722	10/06/2015	N	WG	74	86	K1511321-004	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.96	0.25	0.25	0.075	µg/L					50
S8-0490	08-6722	10/06/2015	N	WG	74	86	K1511321-004	LC/MS	2706-90-3	Perfluoropentanoic acid	0.73	0.25	0.1	0.047	µg/L				-	50
S8-0490	08-6722	10/06/2015	N	WG	74	86	K1511321-004	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U	\vdash	+	1
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.24	0.000	0.003	0.0020	µg/L		-	08A	+	1
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	335-76-2	Perfluorodecanoic acid	0.24	0.01	0.004	0.003	µg/L	U	Ū	1	+	1
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	307-55-1	Perfluorododecanoic acid	0.0096	0.01	0.004	0.0096	µg/L	U	U		+	1
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.31	0.01	0.004	0.00098	µg/L				+	1
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	2.8	0.01	0.004	0.00098	µg/L		1	08A	+	20
S8-0491	08-6723	10/14/2015	N	WG	93	93	K1511678-001	LC/MS	307-24-4	Perfluorohexanoic acid	1.2	0.2	0.08	0.028	µg/L µg/L		5	30A	+	20

Attachment 2 (continued) Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	375-95-1	Perfluorononanoic acid	0.0083	0.01	0.01	0.0028	µg/L	J	J	15		1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	3.7	0.2	0.08	0.072	µg/L					20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	1.5	0.2	0.2	0.06	µg/L					20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.87	0.01	0.004	0.0019	µg/L					1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0052	0.01	0.01	0.0052	µg/L	U	U			1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0017	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	335-76-2	Perfluorodecanoic acid	0.0044	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0076	0.005	0.002	0.00049	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.0074	0.005	0.002	0.00068	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.042	0.005	0.002	0.00062	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	375-95-1	Perfluorononanoic acid	0.003	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.016	0.005	0.002	0.0018	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.029	0.005	0.005	0.0015	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.06	0.005	0.002	0.00094	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0032	0.005	0.005	0.0026	µg/L	J	J	15	08A	1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0026	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	335-76-2	Perfluorodecanoic acid	0.0031	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0089	0.005	0.002	0.00049	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.013	0.005	0.002	0.00068	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.053	0.005	0.002	0.00062	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0031	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.018	0.005	0.002	0.0018	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.034	0.005	0.005	0.0015	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.066	0.005	0.002	0.00094	µg/L					1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0032	0.005	0.002	0.00075	µg/L	J	J	15	$\neg \uparrow$	1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	335-76-2	Perfluorodecanoic acid	0.0017	0.005	0.002	0.0015	µg/L	J	J	15	$\neg \uparrow$	1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U		$\neg \uparrow$	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0043	0.005	0.002	0.00049	µg/L	J	J	15	$\neg \uparrow$	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.022	0.005	0.002	0.00068	µg/L				\neg	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	307-24-4	Perfluorohexanoic acid	0.026	0.005	0.002	0.00062	µg/L				\neg	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	375-95-1	Perfluorononanoic acid	0.0016	0.005	0.005	0.0014	µg/L	J	J	15	-+	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.024	0.005	0.002	0.0018	µg/L			-	-+	1
S8-0494	08-6724	10/08/2015	N	WG	60	70	K1511425-004	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.02	0.005	0.002	0.0015	µg/L				\rightarrow	1

Attachment 2 (continued) Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	2706-90-3	Perfluoropentanoic acid	0.028	0.005	0.002	0.00094	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0018	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	335-76-2	Perfluorodecanoic acid	0.0024	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0087	0.005	0.002	0.00049	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.0078	0.005	0.002	0.00068	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	307-24-4	Perfluorohexanoic acid	0.054	0.005	0.002	0.00062	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	375-95-1	Perfluorononanoic acid	0.0027	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.013	0.005	0.002	0.0018	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.032	0.005	0.005	0.0015	µg/L			i T		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	2706-90-3	Perfluoropentanoic acid	0.076	0.005	0.002	0.00094	µg/L			í T		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U	í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0099	0.0043	0.002	0.00075	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.0043	0.002	0.0015	µg/L	U	U	í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U	í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0037	0.0043	0.002	0.00049	µg/L	J	J	15		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.03	0.0043	0.002	0.00068	µg/L			í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.016	0.0043	0.002	0.00062	µg/L			í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	U	í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.038	0.0043	0.002	0.0018	µg/L			í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.014	0.005	0.005	0.0015	µg/L			í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.007	0.0043	0.002	0.00094	µg/L			í T		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.011	0.0045	0.002	0.00075	µg/L			í T		1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.0045	0.002	0.0015	µg/L	U	U			1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0047	0.0045	0.002	0.00049	µg/L					1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.04	0.0045	0.002	0.00068	µg/L					1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.02	0.0045	0.002	0.00062	µg/L					1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	U			1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.055	0.0045	0.002	0.0018	µg/L			i T	\neg	1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.018	0.005	0.005	0.0015	µg/L			i t	\neg	1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0088	0.0045	0.002	0.00094	µg/L				+	1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U	i t	\neg	1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.012	0.0045	0.002	0.00075	µg/L			t	-+	1

Attachment 2 (continued) Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1	R2	Dilution Factor
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.0045	0.002	0.0015	µg/L	U	U			1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	U			1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.005	0.0045	0.002	0.00049	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.042	0.0045	0.002	0.00068	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.023	0.0045	0.002	0.00062	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	U			1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.058	0.0045	0.002	0.0018	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.018	0.005	0.005	0.0015	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0094	0.0045	0.002	0.00094	µg/L					1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	U			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.00075	0.005	0.002	0.00075	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	335-76-2	Perfluorodecanoic acid	0.0015	0.005	0.002	0.0015	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	307-55-1	Perfluorododecanoic acid	0.0048	0.005	0.005	0.0048	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.00049	0.005	0.002	0.00049	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.00068	0.005	0.002	0.00068	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.0023	0.005	0.002	0.00062	µg/L	J	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	375-95-1	Perfluorononanoic acid	0.0014	0.005	0.005	0.0014	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.0018	0.005	0.002	0.0018	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.0015	0.005	0.005	0.0015	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.00094	0.005	0.002	0.00094	µg/L	U	nv			1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0026	0.005	0.005	0.0026	µg/L	U	nv			1

Attachment 2 (continued) Summary of Analytical Results Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

µg/L denotes micrograms per liter. CAS denotes Chemical Abstracts Service. EB denotes equipment blank. DL denotes detection limit. FD denotes field duplicate sample. ft bgs denotes feet below ground surface. ID denotes identification. LC/MS denotes liquid chromatography/mass spectrometry. LOD denotes limit of detection. LOQ denotes limit of quantitation. LQ denotes laboratory data qualifier. MS denotes matrix spike. MSD denotes matrix spike duplicate. N denotes regular field sample. QC denotes quality control. R1 denotes validation qualifer reason code number 1. R2 denotes validation qualifer reason code number 2. VQ denotes validation qualifier. WG denotes groundwater matrix. WQ denotes water quality matrix.

Laboratory Data Qualifier Definitions:

No qualifier denotes analyte was detected in the associated sample. J denotes the reported analyte is an estimated value. U denotes the compound was analyzed for, but was not detected at the minimum DL.

Validation Qualifier Definitions:

No qualifier denotes analyte was detected in the associated sample; no qualification of the data required. J denotes the analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed. nv denotes the analyte was not validated. U denotes not detected. The compound/analyte was analyzed for, but was not detected above the associated DL or above the reported concentration due to blank contamination.

Validation Qualifier Reason Code Definitions:

08A denotes MS/MSD/Duplicate results outside QC criteria.15 denotes result reported below the LOQ and above the DL.

Attachment 3 Summary of Analytical Results greater than the Detection Limit

Attachment 3 Summary of Analytical Results greater than the Detection Limit Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0016	0.0045	0.002	0.00075	µg/L	J	J	15		1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0016	0.0045	0.002	0.00049	µg/L	J	J	15		1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.014	0.0045	0.002	0.00068	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.0075	0.0045	0.002	0.00062	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.025	0.0045	0.002	0.0018	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.0061	0.005	0.005	0.0015	µg/L					1
S8-0485	08-6046	10/14/2015	Ν	WG	160	160	K1511678-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0033	0.0045	0.002	0.00094	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0018	0.0044	0.002	0.00075	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0018	0.0044	0.002	0.00049	µg/L	J	J	15		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.016	0.0044	0.002	0.00068	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.0086	0.0044	0.002	0.00062	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.028	0.0044	0.002	0.0018	µg/L					1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.0069	0.005	0.005	0.0015	µg/L			1		1
S8-0486	08-6046	10/14/2015	FD	WG	160	160	K1511678-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0036	0.0044	0.002	0.00094	µg/L	J	J	15		1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.15	0.005	0.002	0.00075	µg/L					1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.076	0.005	0.002	0.00049	µg/L					1
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.75	0.25	0.1	0.034	µg/L					50
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.43	0.25	0.1	0.031	µg/L					50
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	375-95-1	Perfluorononanoic acid	0.0015	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.89	0.25	0.1	0.09	µg/L					50
S8-0487	08-6722	10/05/2015	Ν	WG	128	140.5	K1511321-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.3	0.005	0.005	0.0015	µg/L		J	08A		1
S8-0487	08-6722	10/05/2015	N	WG	128	140.5	K1511321-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.18	0.005	0.002	0.00094	µg/L					1
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.24	0.005	0.002	0.00075	µg/L			i – – – –		1
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.12	0.005	0.002	0.00049	µg/L					1
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	1.2	0.25	0.1	0.034	µg/L					50
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.66	0.25	0.1	0.031	µg/L					50
S8-0488	08-6722	10/06/2015	Ν	WG	115	125.5	K1511321-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0027	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	1.6	0.25	0.1	0.09	µg/L			i – †		50
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.47	0.25	0.25	0.075	µg/L		 		-+	50
S8-0488	08-6722	10/06/2015	N	WG	115	125.5	K1511321-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.29	0.005	0.002	0.00094	µg/L		 		-+	1
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.26	0.005	0.002	0.00075	µg/L		$ \square$	-+	\rightarrow	1
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.16	0.005	0.002	0.00049	µg/L		\square	-+	-+	1
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	1.6	0.25	0.002	0.034	µg/L		$ \square$	-+	-+	50
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.82	0.25	0.1	0.034	µg/L			-+		50
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	375-95-1	Perfluorononanoic acid	0.0042	0.23	0.005	0.0014	µg/L	I		15	\rightarrow	1
S8-0489	08-6722	10/06/2015	N	WG	88	98	K1511321-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	2.3	0.003	0.003	0.0014	µg/L µg/L	5		13	-+	50

Attachment 3 (continued) Summary of Analytical Results greater than the Detection Limit Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1		Dilution Factor
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.66	0.25	0.25	0.075	µg/L					50
S8-0489	08-6722	10/06/2015	Ν	WG	88	98	K1511321-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.45	0.25	0.1	0.047	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.22	0.005	0.002	0.00075	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	375-85-9	Perfluoroheptanoic acid	0.22	0.005	0.002	0.00049	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	108427-53-8	Perfluorohexane sulfonate	2.2	0.25	0.1	0.034	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	307-24-4	Perfluorohexanoic acid	1	0.25	0.1	0.031	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	375-95-1	Perfluorononanoic acid	0.0064	0.005	0.005	0.0014	µg/L					1
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	2.8	0.25	0.1	0.09	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.96	0.25	0.25	0.075	µg/L					50
S8-0490	08-6722	10/06/2015	Ν	WG	74	86	K1511321-004	LC/MS	2706-90-3	Perfluoropentanoic acid	0.73	0.25	0.1	0.047	µg/L					50
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.24	0.01	0.004	0.0015	µg/L		J	08A		1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.31	0.01	0.004	0.00098	µg/L					1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	2.8	0.2	0.08	0.028	µg/L		J	08A		20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	307-24-4	Perfluorohexanoic acid	1.2	0.2	0.08	0.025	µg/L					20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	375-95-1	Perfluorononanoic acid	0.0083	0.01	0.01	0.0028	µg/L	J	J	15		1
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	3.7	0.2	0.08	0.072	µg/L					20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	1.5	0.2	0.2	0.06	µg/L					20
S8-0491	08-6723	10/14/2015	Ν	WG	93	93	K1511678-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.87	0.01	0.004	0.0019	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0017	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	335-76-2	Perfluorodecanoic acid	0.0044	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0076	0.005	0.002	0.00049	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.0074	0.005	0.002	0.00068	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.042	0.005	0.002	0.00062	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	375-95-1	Perfluorononanoic acid	0.003	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.016	0.005	0.002	0.0018	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.029	0.005	0.005	0.0015	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.06	0.005	0.002	0.00094	µg/L					1
S8-0492	08-6724	10/07/2015	Ν	WG	160	170	K1511425-001	LC/MS	2058-94-8	Perfluoroundecanoic acid	0.0032	0.005	0.005	0.0026	µg/L	J	J	15	08A	1
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0026	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	335-76-2	Perfluorodecanoic acid	0.0031	0.005	0.002	0.0015	µg/L	J	J	15	+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0089	0.005	0.002	0.00049	µg/L	-	-	-	+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.013	0.005	0.002	0.00068	µg/L				+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.053	0.005	0.002	0.00062	µg/L				+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	375-95-1	Perfluorononanoic acid	0.0031	0.005	0.002	0.0014	µg/L			15	+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.018	0.005	0.003	0.0014	µg/L	5	5		+	1
S8-0493	08-6724	10/07/2015	N	WG	110	120	K1511425-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.034	0.005	0.002	0.0015	µg/L µg/L				+	1

Attachment 3 (continued) Summary of Analytical Results greater than the Detection Limit Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1)ilution Factor
S8-0493	08-6724	10/07/2015	Ν	WG	110	120	K1511425-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.066	0.005	0.002	0.00094	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0032	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	335-76-2	Perfluorodecanoic acid	0.0017	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0043	0.005	0.002	0.00049	µg/L	J	J	15		1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.022	0.005	0.002	0.00068	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	307-24-4	Perfluorohexanoic acid	0.026	0.005	0.002	0.00062	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	375-95-1	Perfluorononanoic acid	0.0016	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.024	0.005	0.002	0.0018	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.02	0.005	0.005	0.0015	µg/L					1
S8-0494	08-6724	10/08/2015	Ν	WG	60	70	K1511425-004	LC/MS	2706-90-3	Perfluoropentanoic acid	0.028	0.005	0.002	0.00094	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0018	0.005	0.002	0.00075	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	335-76-2	Perfluorodecanoic acid	0.0024	0.005	0.002	0.0015	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0087	0.005	0.002	0.00049	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.0078	0.005	0.002	0.00068	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	307-24-4	Perfluorohexanoic acid	0.054	0.005	0.002	0.00062	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	375-95-1	Perfluorononanoic acid	0.0027	0.005	0.005	0.0014	µg/L	J	J	15		1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.013	0.005	0.002	0.0018	µg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.032	0.005	0.005	0.0015	μg/L					1
S8-0495	08-6724	10/08/2015	Ν	WG	17	27	K1511425-005	LC/MS	2706-90-3	Perfluoropentanoic acid	0.076	0.005	0.002	0.00094	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.0099	0.0043	0.002	0.00075	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0037	0.0043	0.002	0.00049	µg/L	J	J	15		1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.03	0.0043	0.002	0.00068	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.016	0.0043	0.002	0.00062	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.038	0.0043	0.002	0.0018	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.014	0.005	0.005	0.0015	µg/L					1
S8-0496	08-6725	10/09/2015	Ν	WG	27.5	37.5	K1511544-003	LC/MS	2706-90-3	Perfluoropentanoic acid	0.007	0.0043	0.002	0.00094	µg/L					1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.011	0.0045	0.002	0.00075	µg/L					1
S8-0497	08-6725	10/09/2015	Ν	WG	218	228	K1511544-001	LC/MS	375-85-9	Perfluoroheptanoic acid	0.0047	0.0045	0.002	0.00049	µg/L					1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.04	0.0045	0.002	0.00068	µg/L				+	1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	307-24-4	Perfluorohexanoic acid	0.02	0.0045	0.002	0.00062	µg/L				+	1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.055	0.0045	0.002	0.0018	µg/L				+	1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.018	0.005	0.005	0.0015	µg/L				+	1
S8-0497	08-6725	10/09/2015	N	WG	218	228	K1511544-001	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0088	0.0045	0.002	0.00094	µg/L			\vdash	+	1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	29420-43-3	Perfluorobutane sulfonate	0.012	0.0045	0.002	0.00075	µg/L				+	1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	375-85-9	Perfluoroheptanoic acid	0.005	0.0045	0.002	0.00049	µg/L			\vdash	+	1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	108427-53-8	Perfluorohexane sulfonate	0.003	0.0045	0.002	0.00047	µg/L			\vdash	+	

Attachment 3 (continued) Summary of Analytical Results greater than the Detection Limit Site 8, Fire Department Training Area 2 PFC Investigation Former Pease Air Force Base Portsmouth, New Hampshire

Field Sample ID	Station Name	Sample Date	QC Sample Code	Sample Matrix	Start Depth (ft bgs)	End Depth (ft bgs)	Laboratory Sample ID	Analytical Method	CAS No.	Parameter	Result	LOQ	LOD	DL	Units	LQ	VQ	R1	Dilution Factor
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	307-24-4	Perfluorohexanoic acid	0.023	0.0045	0.002	0.00062	µg/L				1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	1763-23-1	Perfluorooctane sulfonate (PFOS)	0.058	0.0045	0.002	0.0018	µg/L				1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	335-67-1	Perfluorooctanoic acid (PFOA)	0.018	0.005	0.005	0.0015	µg/L				1
S8-0498	08-6725	10/09/2015	FD	WG	218	228	K1511544-002	LC/MS	2706-90-3	Perfluoropentanoic acid	0.0094	0.0045	0.002	0.00094	µg/L				1
ER-S8-2015-PFC-1	FIELDQC	10/07/2015	EB	WQ	0	0	K1511425-003	LC/MS	307-24-4	Perfluorohexanoic acid	0.0023	0.005	0.002	0.00062	µg/L	J	nv		1

µg/L denotes micrograms per liter.

CAS denotes Chemical Abstracts Service.

EB denotes equipment blank.

DL denotes detection limit.

FD denotes field duplicate sample.

ft bgs denotes feet below ground surface.

ID denotes identification.

LC/MS denotes liquid chromatography/mass spectrometry.

LOD denotes limit of detection.

LOQ denotes limit of quantitation.

LQ denotes laboratory data qualifier.

MS denotes matrix spike.

MSD denotes matrix spike duplicate.

N denotes regular field sample.

QC denotes quality control.

R1 denotes validation qualifer reason code number 1.

R2 denotes validation qualifer reason code number 2.

VQ denotes validation qualifier.

WG denotes groundwater matrix.

WQ denotes water quality matrix.

Laboratory Data Qualifier Definitions:

No qualifier denotes analyte was detected in the associated sample. J denotes the reported analyte is an estimated value.

Validation Qualifier Definitions:

No qualifier denotes analyte was detected in the associated sample; no qualification of the data required. J denotes the analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed. nv denotes the analyte was not validated.

Validation Qualifier Reason Code Definitions:

08A denotes MS/MSD/Duplicate results outside QC criteria.15 denotes result reported below the LOQ and above the DL.

Attachment 4 Data Validation Qualifier Reason Code Definitions

APPENDIX G DATA QUALITY SUMMARY REPORT

Reason Code	Definition
01	Sample received outside of 4+/-2 °C
01A	Improper sample preservation
02	Holding time exceeded
02A	Extraction
02B	Analysis
03	Instrument performance—outside criteria
03A	BFB
03B	DFTPP
03C	DDT and/or Endrin percent breakdown exceeds criteria
03D	Retention time windows
03E	Resolution
04	Initial calibration results outside specified criteria
04A	Compound mean RRF QC criteria not met
04B	Individual %RSD criteria not met
04C	Correlation coefficient <0.995
05	Continuing calibration results outside specified criteria
05A	Compound mean RRF QC criteria not met
05B	Compound %D QC criteria not met
06	Result qualified as a result of the 5×/10× blank correction
06A	Method or preparation blank
06B	ICB or CCB
06C	ER
06D	ТВ
06E	FB
07	Surrogate recoveries outside control limits
07A	Sample
07B	Associated method blank or LCS
08	MS/MSD/duplicate results outside criteria
08A	MS and/or MSD recovery not within control limits (accuracy)
08B	%RPD outside acceptance criteria (precision)
09	Postdigestion spike outside criteria (GFAA)
10	Internal standards outside specified control limits

APPENDIX G DATA QUALITY SUMMARY REPORT

Reason Code	Definition
10A	Recovery
10B	Retention time
11	LCS recoveries outside specified limits
11A	Recovery
11B	%RPD (if run in duplicate)
12	Interference check standard
13	Serial dilution
14	Tentatively identified compounds
15	Quantitation
16	Multiple results available; alternate analysis preferred
17	Field duplicate RPD criteria is exceeded
18	Percent difference between original and second column exceeds QC criteria
19	Professional judgment was used to qualify the data
20	Pesticide cleanup checks
21	Target compound identification
22	Radiological calibration
23	Radiological quantitation
24	Reported result and/or laboratory qualifier revised to reflect validation findings

Contract No. FA8903-09-D-8580, Task Order No. 0010 • Revision 0

%D denotes percent difference.

%RPD denotes percent relative percent difference.

%RSD denotes percent relative standard deviation.

BFB denotes bromofluorobenzene.

CCB denotes continuing calibration blank.

DDT denotes dichlorodiphenyltrichloroethane.

DFTPP denotes decafluorotriphenylphosphine.

ER denotes equipment rinsate.

FB denotes field blank.

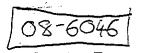
GFAA denotes graphite furnace atomic absorption.

ICB denotes initial calibration blank.

LCS denotes laboratory control sample.

MS denotes matrix spike.

MSD denotes matrix spike duplicate.


QC denotes quality control.

RPD denotes relative percent difference.

RRF denotes relative response factor.

TB denotes trip blank.

Appendix H Groundwater Sample Collection and Purge Logs

Groundwater Purge Log Former Pease Air Force Base, Portsmouth, NH

SITE ID: <u>کمی</u> SITE ID: <u>کمی</u> Purging Method Well Casing Dia Sounding (Dep	LOCAT Kequipment: - Imeter (in):	6"	Unit	Equipment/ID N Casing Volume	ber) lo: SUI e:	BMERSIB	AMPLE #: LE PUMP	(Serial No	58-0485 023911 er condition:	_) T) s: 70 *	ype of tubin	g: <u>% 'ID 1</u> 7557-	20LY
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (min) 41162	Temp C°	pH	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:		Water escription
10-14-15	13:00	200 /	55-43'	0	10.21	8.64	0.651	13.4	0.88	-124-0	C.B.	CLEAR,	COLORCESS,
10-14-15	13:10	200	55.46'	2	10.07	8.56	0.642	8.25	0.38	-96.1	C.B.		
10-14-15	13:20	200	55.46'	4	10.02	8.54	0-642	11.2	0.27	-98.7	c.B.		
10-14-15	13:30	200	55.46'	6.	10-02	8.56	0.642	16-4	0,23	-114.5	C. B.		
10-14-15	13:40	200	55.46'	8	10.02	8.57	0-641	15.3	0-20	-107.1	C.B.		/
10-14-15	13:45	SAMPLE T	ME.	·									;
	:								•				
	:	•••••		•									
													····
			a									-	· · · · · · · · · · · · · · · · · · ·
····-			Co.										
			10-14	25.	-				· · · · · · · · · · · ·		· · · · · · · · · · · · · · · ·	-	
	:	· · · · · · · · · · · · · · · · · · ·		\sim		· · · · · · · · · · · · · · · · · · ·				-			
	:												
		I	1			1	<u> </u>		<u></u>		· · · · · · · · · · · · · · · · · · ·		

NOTE - DO NOT FORGET TO INCLUDE THE UNITS FOR THE CONDUCTIVITY READINGS.

Recovery Depth* (ft from TOC) : 55-43

Final Recovery Time* (min) : 10

* Taken As Final Water Level Reading and Time after sampling is complete and well has recovered.

·												•	
											T=	9127	
TRADUCE P	ACKER		۲		**	Cat		•				9132 INFLOTED PALKE	
TRADUCS P	MPIG ZON	E		•	•	-6-15	irge Lo	<i>e</i> ns				7.461 TO WATCO AT SUBS. 148 STORE SC PURSUM G	& (~)(B
5.5-125.	51			GIOU Former Pea									
	- •			Shimple				•	,		1-71	50 CONFIRED PACKED	Sie.
		\neg		~		ECT: 1432						AFTER PURPSENT I I HE	e DRO
ID: STIES	LOCAT	TION ID: 08	-6722	(Well Num	ber)	S	AMPLE #: _	58-0	438	P	ump setat de	epih: 126.51	728
ina Method/E	auinment: N		E v:: Sampling E	auipment/ID N	lo: SU	BMERSIB	ن جران LE PUMP (Senat No.	523911	L) T	ype of tubir	ng: 3/ 10 Po2/	120. V
Casing Diam	oter (in):	4 JS GOSUNP	Unit (Casing Volum	-24 cul	362:62	LINES ?]	Weath	er condition	s: 60rZ	5, CLEM.	, 	27
					<u>-</u>	- +2	1						
nding (Depth	to Well Both	tom): ~/4	-0-5	Static Wa	ter Level	l (Depth to	Water):	27.25	(TOC)	s	creen Leng	gth: 74-140_51	-
		Purge	Dynamic	Volume	Tomp		Specific	Turbidity	Dissolved	ORP	Prepared	Water	000
Date	Time 24hr	Rate (m.L.min)	HŽO Level (ft)	Volume Purged (mk)	Temp C	PH	Cond. (mS/cm)	(NTU)	oxygen (mg/L)	(mV)	By:	Description	
0-6-15	9:50	1.5 Gm/	28-941	3 gl	9.5	8.17	0-488	17.2	1.63	144_0	С-в -	WATER CLEAR COLORIESS)	
	10:10	1-5622	29.60'	24 gel	9.6	8-40	0-473	6.38	0-70	98-2	C-R-		(23.
7-6-15	0:25	1.56m	29.67'	48gel	9.5	8-35	0:470	3-14	0.78	69.8	C.B.		(29.0
2-6-15 1	0:40	1.56%	29.71	72gl			0.466	2.50	0.85	14.1	<u> </u>	<u> </u>	(29
	L=: 1014	0 000000000	Sample S8	-0488 Fr	on 115	-5-125	5'201	6-					-
													-
						ļ				-	 		_
	:						_			-	·		_
	:			- Ch						<u> </u>		,	-
	:				10-	- 	.						
	:												-
				· ·		<u> </u>	\vdash			·			-
			· · ·			·					·		ľ
·	•			<u> </u>	1	<u> </u>	<u> </u>	<u> </u>		4	<u></u>		.
	TTO INCLUDE T	HE UNITS FOR THE	CONDUCTIVITY REA	DINGS.									

•

i												• •	
1	EPACKER	-	,	.[0	0-5	-15				1		LOTED PHONESE	
1	6 Sample 28-140.5'	BGS		GFOU Former Pea Simpler	ase Air Fo	orce Base,					SIIS CON SERI MINO TINGGE	· MALLER (SCA.)	0.51 Kac Differences NSIDE US-ansube Herence INTRAVAL.
SITE ID: SITE S	<u>š </u>		8-6722	(Well Num	P <u>R</u> OJ: ber)	ECT: 1432 S/	279 Ample #: _	58-0487	+ns/ns/	2P	ump setai de	pth: 125'	
Purging Method Well Casing Dia	/Equipment: 4 Ameter (in):	MICRO PURCE ACCH SS 66654 (4.54	Sampling E	Equipment/ID N Px<#E/- Casing Volum	No: SU e: <u>28-5</u>	BMERSIB gul 34	LE PUMP (5-5 GAL	vvedu(i		s: <u>601</u> 6	s, Antl	g: <u>3%"ID POLY</u> y clangy	
Sounding (Dep	th to Well Bot נהלאנט אין אין	x - 1 - 3 Gran		Static Wa	iter Leve	i (Depth to	ाव्य	< 15 1'AD		·/	···	jtin: <u>74 - 140-5</u> 1	
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рН	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Description	-
10-5-15	15:50	1-5gpm	28.551	15 gal	10.0	7.97	0.488	6-00	1-24	35.5	CB	CLEAR, COERIES, NO OWN	
10-5-15	16:00	1.5GRm	2821'	28.592	9.7	8-21	0.471	4.33	0.94	17.7	CB		
10-5-15	16:25	1.56Pm	29.05	57gl	9.7	8.38	0.456	2.35	0-77	-0.5	<u></u>		•
10-5-15 (16:45	1-56Bm	29.137	85.5gD	9.6	8.40	0-458	1.87	0-68	-10-5	CB	V ·	_
•	-5	Sanpis 58	-0487+ns/	INSD COLLEGT	5								
<u></u>											• 		- ·
									•				
	:	•			B	_							
	:					0-5-	/				· · · - · ·	-	
			,										-
· · · · · · · · · · · · · · · ·													
				-	-					<u>, </u>		-	
	:				1	- <u> </u> .							
	:	· · · · · · · · · · · · · · · · · · ·											
<u></u>		1	<u> </u>	· · · · ·	(

NOTE - DO NOT FORGET TO INCLUDE THE UNITS FOR THE CONDUCTIVITY READINGS.

(Recovery Depth* (fi from TOC) :---

-7

1

. .

Einal Recevery

Time* (min

* Taken

.

As Final Water Covel Reading and Tim

and well has recovered.

·		•				·								
STRADDLE	PBCKER												- 11:09 WALTED AN 27.35' to Loten DUTSIDE PACKERS.	lasing &
150477.00	SBAPCE FO,	c		,	. 10-6	-15	,						GOOD PACKED_SON _ MI	
97 -90	lana	~~					irge Lo						-1/124 PUMP STOPT	
81 00	- 1855 ·		•	Former Pea		-		n, NH			•		11:30 31-85, 27.7	S OUTENAL
)				CHIELS BL		•						- conside)
EID: SUG	Z LOCAT	TION ID:	8-6722	(Well Num	her)	ECT: 1432 SA	AMPLE #:	58-0		P	ump set	tai depth	~ 97 (TOC)	
aina Method	 VEquipment: N	NICEN SS GOOS	میں E Sampling E	Equipment/ID N	lo: SUI	BMERSIB	LE PUMP	Pire Coultr. Serial No.	02.39.11) T	ype of	tubing: _	3/2 "Pory	
	ameter (in):			Casing Volume		BUOL	une		er conditions					
all Casing Dia	ameter (in):	1	UIII	Casiliy volulin	3. <u>11 zv</u>	51	for t			_				
undina (Dec	oth to Well Bot	tom): ~1	40.51	Static Wa	ter Levei	l (Depth to	water):		;'(TOC)	_ s	creen	Length	74-140.51	-
(_ op				······································	·	· ·	Specific		ABOLS GROU	<u>p</u>		•		1
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рН	Cond. (mS/cm)	Turbidity (NTU)	oxygen (mg/L)	ORP (mV)	Prepa By		Water Description	
10-6-15	11 : 30	0.464	31.95'	Z grl	10.0	8-98	0.470	58.7	0.87	8-1	C.E	>. SI	condy, No and , accord	-
10-6-15	i1 : 39	0-464		+ Woton the	5 5716 C	NEWPUS AL	Ceny Low	purpus	12-675-					
10-6-15	11:54	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q TO 1-5							l ausi	O PA	icher j	16-10 (Q~1.802)	•
10-6-15	12:10	1-86p	63.20'	20gl.	9.9	9.29	0.439	47.1	1.22	22.4			¥	-
10-6-15	12:30	1.56Pm	67.6'	38gel	9.9	9.04	0.473	9.3	1-190.8		1		Englandspector	
0-6-15	12:50	1.5CPm	68.62'	578l	0-01	8-99	0.487	6.02	0-92	15,9	¥.	<u> </u>		(38.20/
0 0-13					1	_	.		1 .	1				
0 6-15		150 0000	TED SAMPLE	58-0489	Fron	38-98	ZONG.						· · · · · · · · · · · · · · · · · · ·	-
		:50 00000	tes Shaple	58-0489	than	38-98	Zona.							
		:50 couse	tes Shaple	<u> 28-048</u> 9	trion	38-98	2016.							
		150 COLLEC	tes Shaple			-	Zons.						· · · · · · · · · · · · · · · · · · ·	
		50 COLLEC	CEO SAMPLE	<u>C</u> P 28-0423	10-6	-	2016.						······································	
		:50 COUSC	CG SAMPLE			-	2016.	· · ·						
		50 COLLEC	CES SAMPLE			-		· · ·			· · · · ·			

has recovered.

Final Water Level Reading and Time after sampling is complete

Occovery Depth* (It from TOC) : ____

Final Recovery Time" (min) ._

1~340 6: 26.35', OUTSUDE 27.17'

1148 Insences Pump

\sim						\frown	N					\sim
						** <u></u>						
SE Preven	ד '88-38 י	5									- pick	GRINFLATED AT 15:09
	74-86'For	2	1		10	-6-15					6 20	ER INFLATED IT IS 109 DE TESTED, GEO SEL (
SAMPLING				Crou	റെഹിരമത്ത	war Du	irge Lo	75				
NOTE: 74	15 BOTTON	_		Former Pea	ise Air Fo	irce Base.	, Portsmoutl	y n. NH			13:43	ISTANTED AT Q=1-5G
OF 54 Case	~E)				nfilen	···-,			-			
				-	• • –	ECT: 1432						
TEID: STO	8 LOCA	TION ID: _ O	3-6722	(Well Num	ber)	SÆ	AMPLE #: _	58-04	90	P	'ump set at de	pth:_~
Iraina Metho		WICRO PURG	Æ Sampling E ₽	Equipment/ID N	lo: SU	BMERSIB	LE PUMP (Beriai No.	123911	T	ype of tubin	g: 3/" ID FOLY TUBING
		KIN SS GOSVA	P	Casing Volum	. 490	.0		W/eatha	er condition	s. 6	ores, clear	<u>ه</u>
eii Casing Di	ameter (in):	<u> 4-,5 ′′ </u>	Ofm		-							<u> </u>
ounding (De	oth to Well Bot	tom): <u>~ 4e</u>	5'	Static Wa 13:40 D	ter Level	i (Depth to): 29 -72	Water): - (=k;-ons Specific	27.25 pinosta	(TOC)	s	Screen Leng	gth: 74-140-51
Date	Time 24hr	Purge Rate (mL/min) .	Dynamic H2O Level (ft)	Volume* Purged (m)	Temp	рH	Specific Cond. (mS/cm)	Turbidity (NTU)	Disśolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Description
10-6-15	13:48	1.5 Qm /	34.051	2 Gil	10.2	9.35	0.454	16.3	0-86	-1.9	CB .	ciene, courses, no one
0-6-15	14 : 27	1.0 GEn	55.90 '	49 Ga	10-1	9-29	0_511	14.1	0.67	-4.1	C.B.	
10-6-15	14 : 41	were as	Q TO 1.5	GPm								
10-6-15	15:03	RUNPED BR	y FETGE PURG				PUMP OF	to la	Ligg- 1	25500005		· · ·
10-6-15		- 15110 :6 5	190'tru,	15:22	Dtw: 5	5_40 '						
	÷ · ·		LECTED 74	- 86 ' SAN	منک 52	1-0490					V .	
10-6-15	15 45	T-06Pm	52.60	100 GA	10.4	8.40	0.622	3.60	0.46	-10.9	<i>C</i> 13	U
	:	•										
		L			1							
	:					-						
			· · ·									
· · · · · · · · · · · · · · · · · · ·			- CO	10~			-	•				
				10-5-15			•	•		···		
				10-5-15		· · · ·		•		······································		

NOTE - DO NOT FORGET TO INCLUDE THE UNITS FOR THE CONDUCTIVITY READINGS.

Einal Reeover,

-Recovery Depth* (It from TOC) : -

.

Final Mater Level Reading and Time after sampling is complete and well has recovored.

.....

1.000	•	•				·							
										•	•	•	•
					08	-67	23						
				Grou Former Pea							•		
						NRIS BUG				:			
<u>େ</u> ସେ	3:			-		ECT: 1432							. 1
ماریمبر SITE ID: <u>محمد</u>	STON LOCAT	TION ID: 0	8-6723	(Well Numb			AMPLE #:	58- 04	491	P	ump setat de	oin: C	13'BGS
Purging Methoc	<u>iany</u> LOCA	CH SS GOSUE	3					SQUIP-FUT	72911	······································	ype of tubin	~ 3/11	POLY
Purging Methoc	l/Equipment: +	wickoroka っチッ		•				зона No. <u>с</u>	<u>12311</u>				
Well Casing Dia	ameter (in):	3/2	Unit	Casing Volume	e:			Weathe	er conditions	s: <u>70 l</u>	F, PANTLY C	UNY -	· · · · · · · · · · · · · · · · · · ·
Sounding (Dep	oth to Well Bot	tom): <u>10</u>	8.51 BGS	Static Wat	ter Level	(Depth to	Water):	55.01	1 (Facult Too	<u>.)</u> s	Creen Leng	yth: <u>8</u>	3-108.5' 85
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рН	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:		Water Description
10-14-15	10:25	200 ml/min	55.021	0	10.17	7.65	0-799	117	8.91	-21.2	CB	SLIGHTE LIGHT BB	www. no open
10-14-15	10:35	200	55.02'	2 41762-5	10.22	7.58	0.796	101	8.75	-35.4	CB	L V	
10-14-15	10:45	200	55.02'	4 UTERS	10-19	7.56	0-800	79-2	8-31	-48-1	CB	BROWN	TUT, NO ODER.
10-14-15	10:55	200	55.02'	GLITGES	10.21	7.50	0.809	65.4	8.07	- 50-8	СВ		•
10-14-15	11:00	200	55-02'	7 PLITELS	10.22	7.43	0-822	58.7	7.91	-47.2	CB	<u> . </u>	
10-14-15	11 1080	200	55.021	9 LITELS	10.23	7-38	0.831	51.3	7.88	-46.0	СВ		
10-14-15	11 20	200	55.021	il utters	10.25	7.33	0-834	45_1	7.90	-42.5	CB		······································
10-14-15	11:30	200	55.0Z'	13 LITERS	ja. 30	7.31	0.836	38.8	7.94	-36.5	CB		
10-14-15	11:40	200	55.02'	15 LITERS	10-28	7.29	0_842	34.5.	7,98	-30-7	CB		· · · · · · · · · · · · · · · · · · ·
10-14-15	11:50	200	55.021	17 LITERS	10.29	7.27 .	0.842	27,6	8.04	-20.4	CB	CLERR	good
10-14-15	12:00	200	55.02	19 4162.5	10.32	7.27	0.844	24.2	8-01	-17.5	СВ		
10-14-15	12:10	200	55.0Z	21. LITELS	10-34	7.26	0-846	23.1	8.05	-14.5	СВ		·
10-14-15	12:15	Sample TIN	iE.								·		
	<u>er</u> 10	-14-15						1					

NOTE - DO NOT FORGET TO INCLUDE THE UNITS FOR THE CONDUCTIVITY READINGS.

Recovery Depth* (ft from TOC) : _____55.01 /

Final Recovery Time* (min) : ______

* Taken As Final Water Level Reading and Time after sampling is complete and well has recovered.

												•	
12:24													
SET STR	60025 PACE 0-170' BG	GR S		,	10	-7-15	-		12 121	135 Dt 36 DT	W (I-SIDE) √ (07 SIDE)):7.95% 1236 8.2)=8.35'	12'
		-		Grou Former Pea		a ter Pu orce Base,				-		be 1.5 GR	
SITE	:8:			Sample	er Hip	S BURDAL	E	•		12:38	077	57 70' Instra	
				-	PROJ	ECT: 1432	79	-	· ·	-		[22.70 1 WSIKE [8.46 1 OUDSIKE	
مانتصر بولين SITE ID: <u>Sen</u>	1C DOL LOCAT	TION ID: 08	3-6724	(Well Num	ber)	SA	MPLE #: _	58-0	1492	P	ump setat de	epth: <u>160</u> 1	
Purging Method		2020 22 11203	Vap Someling F				PING C	Sources	52399	۱ T	vne of tubin	10: 3/" 10 PZY	
				Casing Volum		13000	Ungs:			60	,55 0. a.c.	19: 3/" 10 PZY	
Well Casing Dia	ameter (in):	<u> </u>	Unit	Casing Volum	e: <u>30%</u>	<u> </u>	<u>soc</u>	Weath	er condition:	s:	- Fores (
Sounding (Dep	oth to Well Bot	tom): _~ /8	18-01	Static Wa	iter Leve	l (Depth to	Water):	8.44' 7 67 1'ABO	FROM 1'ADO	ustac s	creen Leng	gth: 19.2-180_81	
		Purge	Dynamic	Volume			Specific	Turbidity	Dissolved	ORP	Prepared	Water	1
Date	Time 24hr	Rate (mL/min)-	H2O Level (ft)	Purged (mL)	Temp C°	рН	Cond. (mS/cm)	(NTU)	oxygen (mg/L)	(mV)	By:	Description	-
10-7-15	12:38	1.5 GPm		1.5 Gb2	11.9	7.51	3.03	49.6	6.62	-4.3	C)	cusioy, onewn, no over	7
10-7-15	13:03*		38.701	30 Gáil	11.8	6.78	2.97	36.1	3.41	-36.6	Ch	SL. COUNT, MONT BROWN.	
10-7-15	13:40	1-052		60 GAL	12-1	6.82	2.87	23.7	3.55	-49.9	en	CLEAR, NO OND	(8.4
10-7-15	14:10	1.00m	45.75'	906ec	11-9	6.78	2.89	9.10	3.60	-42.5	ch	T.	(8,40
, <u>, , , , , , , , , , , , , , , , , , </u>		+10 cours		A GUSLON	16 58								
				C COL SAMIES			`			1	•		
	:	· · ·			-				·				
				•									
										<u></u>			
						<u> </u>		· · ·					-
·	: .			13									
	:				×			· ·	ļ	_			
	:			· · · · · · · · · · · · · · · · · · ·		\rightarrow	ļ					·	
	:	ļ				<u> </u>			\				_ <u> </u> ·
	:												
NOTE SO NOT FOR			CONDUCTIVITY REA	DINGS									

12:24 INFLOTED POLLED.

, OVD

Recovery Depth* (fit from TOC) : ______ Final Recovery Time* (min) : _____ * Taken As Final Water Level Reading and Time after sampling is complete and well has recovered.

* Q proposo TO 70.50pm. 13:05 (menories & TO 1.0 GPM

1317 DTW: 36.20' / 8.48' (000 (0005106) - 6000 Processor -

(4135 5	E STRADOLE EE 110-	5 provest TO	(155)							4 [4	35 WELD	€ 51740066 € 2 8 - 45 / 8 -	Bitch 1	[10∙ 0:€1
1.5-		120 - 506		,	10-	-7-15						TT 14142		-6-4
L		·····		Grou	ındwa	ter Pu	rge Lo	9				•		
	1		•	Former Pea	ase Air Fo	rce Base,	Portsmout	n, NH			PROKED S	AT D CO		
হাছে হ	~ (- <u>S</u>	•	: Chirlis		•		0'07 TU'0	n consant SIDE AKLED			
NSVING PUPUC ID: PUPUC		00	-6724		PROJ	ECT: 1432	.79	58-0	492			-		
ID: Strong		DINID: US	-OTLI	(Well Num	.ber)	SA	_ :#PLE :# <i>Pا</i> مح	BUllener		P(<u></u>	
ng Method/	Equipment: R	ACRO PURG	E Sampling E	Equipment/ID I	No: SUI	BMER sib	LE PUNP (Sorial-No.	073911	יד (יד ל		19: <u>3/10 POLY</u>	<u>, </u>	
Casing Dia	meter (in):	<u>3 Z *</u>	E Sampling E Unit	Casing Volum	e: <u>40</u>	al 3	beitign	Weath	er conditions	s: <u>60-70</u>	res, cisa	<u>n</u>		
			-81								creen Leng	gth: <u>19.2-130.</u>		
Date	Time 24hr	Purge Rate (r nL/min) C&	Dynamic 🕇 H2O Level (ft)	Volume Purged (mL)	Temp C°	рH	Specific Cond. (mS/cm)	• Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Descriptio	n F	DTW Pocie
-7-15	14:47	1.5 QUA	38.50'	S Gr-	[2-]	6.71	2-21	17.6	4.34	1-7	CB	CLEAR, COLORIES		8.50
-7-15	15:05		64.30'	2464	12.2	6.70	2.80	23-3	3-68	-29.8	<i>CG</i>			8-50
-7-15	15:27	1.0 GRin	94.70'	44GL	12-4		2.85	23.2	2.96	-62-6	CB		2	&^20 5'20
7-7-15	15:50	1.09m	93-80'	66 G.E.	12.5	<u></u>	2.79	17-2	3.35	-70-9	CB		X	8.30
•	6 15:5) Correct	110-120'	SEMPLE -	38-94	13				1				
		<u> </u>							· · · ·					
				•								-		
	:		S										· ·	
		<u>.</u>		10-2-		·		·						
	:				×			· ·						
	:			· · · ·	\rightarrow					•		,		
	:		·			<u> </u>	\sim		_[- -		
•	•		<u></u>	ļ		1		<u> </u>	<u> </u>	<u> </u>			ļ	
- DO NOT FORG	SET TO INCLUDE TH	E UNITS FOR THE	CONDUCTIVITY REA	DINGS.										
	k* (ft-from T O	~	·	al Recovery T		·	-		S FIND Water Lew			ning is complete and wel	has recovered	4

.

. H-8

· ·						* ** _{*****}							
\sim										()	0:00 56	8.65'/8.65	-271
Sett	ing strace	is	,								DTW :	8.65 / 18.65	" (WSIKS/OU
PISAC	e to isour	6		,	. (C	5-8-15				ŀ	0.01 MR	ETGS PACKER	0-1
17	-27/2015			Grou	indwa	ter Pu	rge Lo	3			ntite	8.52/18-63	1 (Louda
		シ		Former Pea	ase Air Fo	rce Base,	Portsmouth	, NH		4			(un subs for
				Simpl		មនុវសន៍ ទោក		•		1	oizs pu	np sime	
SITE?	2 ~TO~	- 5	-6774	-		ECT: 1432		(121	
FID- DUAL	LOCAT	TION ID: 08	-0727 	(Well Num	ber)	SA	MPLE #: _	58-02	195	Pi		pth:7/	
یکر rging Method	/Equipment: N		E Sampling E	quipment/ID N	No: SUI	змеr <u>sibi</u>	EPUMP	Serial No.	023911	יד (g: <u>3, "ID Poly</u>	
ell Casing Dia	ameter (in):	374"	Unit (Casing Volum	e: 6.5	TH2 /34	-19-5 Ghi] Weath	er conditions	s: <u>60</u>	-70 res	, cues .	
		-				v						C + inc	o'
ounding (Dep	oth to Well Bot	iom): 180	-8	Static Wa	ter Level	(Depth to	Water):	8.44		s	creen Leng	19.2-180	<u>B</u> Dth over
	Time	Purge	Dynamic H2O Level	Volume	Temp		Specific Cond.	Turbidity	Dissolved	ORP	Prepared	Water	Potie
Date	24hr	Rate Con (mi/min)	H2O Level (ft)	Purged (mL)	Temp C°	рН	(mS/cm)	(NTU)	oxygen (mg/L)	(mV)	By:	Description	
10-8-15	10:25	0-56Pm/	8-63 /	1 Goc	11.6	6.20	2.57	9.51	4.22	-24.3	С.В.	WOTES CLEARE CE	achessi, 8.5
10-8-15	10:35	0.56Pm		6 Chr	11.8	6.62	2.58	3,50	4.52	3.6	C.B.		8.5
10-3-15	10:50	1.86Pm	8-931	<u>336</u>	11.8	6.60	2.70	0,90	4.46	24.3		ļ	8.9
10-2-15	11:05	1-86Pm	8-95'	60 Grc	11.9	6.59		8,39	4-71	43.7	C-B-	V	. 8-6
•	L>: 1/15	COLLECTED (Speringer	Shuple 17-2	71 (S	8-0495)		1 	<u> </u>		ļ	
										<u> </u>			
		•		4									
		<u> </u>							1		1		
		· ·		• • • •									
		· · ·											-
					4								-
	:			- <u>Se /o</u> `;	a 14			· ·					-
	:				0.4								-
	:			<u> </u>	a y			· ·		·			-

* <u>Take</u>r

after compling is complete and well has recovered.

* DTW MERSING From illigate toc ** 10:38 WORKS Q TO 1.8 6Pm . H-9

-man

<u>Recovery Depth* (ft from TOC</u>

G,

<i>.</i>							N.						\sim	
60 SITE	TON PUBLIC	1502675 NG (1365)	28-67.24		Indwa ase Air Fo <i>wcc</i> A.: (PROJE	orce Base, CHNIS BU ECT: 1432	Portsmouth Portsmouth 179	n, NH	494	8:55P <u>e</u>	5:40 SET 5:40 DEW 3:45 WEL UMP START, 0000 PIECE	· PUM A *: 8.53 160 Aua 6 <u>. 5601</u> :	When outs Rectand	(WSBSBS) Broks WBS T DEOPPUS
Casing Dia	ameter (in):	<u> </u>		Casing Volume	e: <u>14 چرکا</u>	2 [300	Water).	Sorial No. <u>(</u> Weathor <u>8.44</u>	er conditions	s: <u>60</u>	ردی , حلام creen Leng	<u>97.</u> jth:	FOLY 2-18-3 ¹	
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level	Volume Purged (mL)	Temp C°	pН	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:		Water scription	OUTSIDE
-8-15	8:56	2 GP	8.66	1 Gai	10.6	6.94	2.78	12.4	4-46	80.9	С.В.	CLEAR, CO	vo mor	8.54
-8-15	9:03	2.GRM	10.64 -	16 Ger	10-2	6-98	2.32	2.67	1.63	29-4	C.B.			8.58'
-8-15	9:10	ZGem	10.707	30 GAL	10,3	7.07	2.16	0.80	i.26	20.3	C-B-	ļļ.		_ 8-28'
0 / 5			1 - 7/1	lille at	10.2	1 - 1 II	2.13	-09	1 5 1 1	6 /	A 1.	1 1	/ ·	_
	9:17	2.69~	10.71	44 GAL		7-11	4.15	1-03	1-16	9.4	C.B_	V		
	<u> </u>		10.71 Lágo 60-	·		·	2.15	1-0,	1-16	7.4	C-13_	¥		_
	<u> </u>			·		·	2.15	1-01	1-16	7.4	<u> </u>	¥		
	<u> </u>			·		·				7-4	C.B		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>			·		·					<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>			·		·					C-B_			
				·							C-B_	¥	· · · · · · · · · · · · · · · · · · ·	
				·	53-0	·					<i>C</i> - <i>B</i> _			
				·	53-0			· · ·			<u> </u>			
-8-15				·	53-0						<i>C</i> - <i>B</i> _			

Recovery Depth* (ft from TOC) .

.

Final Recoven/ Time* (min) :

Som names than 11 ABURTOC.

id well has recovered.

Water Level Reading and Time alter

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 						~							- 1 a	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A E	K Markets &				10	-9-15	-			-	80	00 inteste	ep facelor	2(8 1
The The transformation of transformatio	to si	but come 215	8-228		Grou	Indwa	ter Pu	rge Ĺo	9			•			
$ \begin{array}{c} \begin{array}{c} first first field fie$	STTG S				Former Pea	SAMPLEN	: CHRIS B	NECZLE	n, NH	, ,		11	Sost of Sost of Theorees	D Philes NY Mirch Enduissien	(5), 44, 65 (7) V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FID: P2	۔ خربہ المحکمہ المحکمہ	TION ID: 08	3-6725	(Well Num	ber)	SA	MPLE #: _				ump setat de	epth: 200	> 7	-
unding (Depth to Well Bottom): $\underline{223'}$ Static Water Level (Depth to Water): $\underline{9.29'}$ (B65) Screen Length: $\underline{27.5^{-}223'}$ Date Time Rate Purge Dynamic Cond. Cond. Origination Originatin the store origin to the store origination to the st				Sampling E	Equipment/ID N Casing Volum	vio: SUI e: <u>385gai</u>	BMERSIBI 2 (3002 2 (= 11	LE PUMP (Seriaf No Weath	er condition	_) [] s: <u>60/c</u>				•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			tom): <u>22</u>						9-291	(065)	s	creen Len	gth: <u>27</u> .	5-2281	_ Drv
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date		Rate	H2O Level	Volume Purged (mi.)	Temp C°	pH	Cond.	Turbidity (NTU)	oxygen			Des	scription	OUTSIK Philo
18:59 1/4 Andressele G. TO 2 GPA 9.711 13 10.2 7.49 1.13 0.92 0.37 -146.2 2.8. Cullan, Cullances, 9 9.2 0-9-15 9:15 2.6p. 9.95' 4.8 10.2 7.56 1.13 0.92 0.37 -146.2 2.8. Cullan, Cullances, 9 9.2 0-9-15 9:15 2.6p. 9.95' 4.8 10.2 7.56 1.13 0.54 0.76 -143.3 c.8. 9.35 (0-9-15 9:35 2.6p. 10.08' 88 10.3 7.61 1.13 0.54 0.86 -133.3 C.6. 9.35 (0-7-15 9:55 2.6p. 10.8' 128 10.2 7.63 1.12 0.65 0.99 -131.0 C.m. 9.35 10-9:15 9:55 couldated by 218-228' Shapele 58-04977 4.04975 58-0498 - - - - - 9.35 9.35	0-9-15	8:53	1.7 Chy /	9-25'		10-4	7.34	1.14	2.05	[-99	-103-4	CB.	CLER2)	00020655) vo axe	8-83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nerseb a	to 26Pm												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-9-15	8:58	26Pm	9.71	13	j0.2							ani	n open.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9:15	26pm	9.951	48 .	10.2	7.56	1.13			-1#3	C.B.			- 9.57'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9:35	2 GAM	10.08'	88	10.3	7.61	1.13			-133.3	C.B.			
Lip 9:55 coulset to 218-228' Shupe 6 58-0'49 7 + DUbuspit 6 58-0'498- : : : : : : : : : : : : : :		9:55		10-18'		10-2	7.63	1.12	0.65	0-99	-131_0	Cisi			9.38
		<u>(i</u> - 9	.55 coulect	50 218-225	s' Somple S	58-049	7 t D4	419575	\$8-0498						
		:					· .			ļ					
		:				10	9		· · ·			. <u> </u>			<u> </u>
IE-DO NOT PORSET TO INCLUDE THE UNITO FOR THE CONDUCTIVITY READINGS:		:			·		1-12		<u> </u>			<u> </u>			
E - DO NOT FORSET TO INCLUDE THE UNITO FOR THE CONDUCTIVITY READINGS:		:					· · · · ·		<u> </u>			·		<u></u>	
TE-DO NOT FORGET TO INCLUDE THE UNITO FOR THE CONDUCTIVITY READINGS:	•														
	Note-lo not po:		HE UNITO FOR THE		wines					<u>\</u>		_		<u></u>	

NOTE: DTW MERCHENESS ARE FRAN GROUND SUMPRIE AT THIS LOCATION.

<u> </u>				· · · ·		\frown						2 - ²⁰ 4	
Daar		•		•		·				11-14	Dtu: «	7.45	
										11:15	-	FLOTED POLADER AT 3	7.5 1605
SINGLES PAC			•		• • •	-9-15	rge Log	ni		11121	DTL: 8	.82' (here sish comusul) I:	
Sampia	TO 27.5-37.5	Zone	• •	Former Pea	se Air Fo	ice Pase, Ince Base, Inc. J. Bu	Portsmouth	B n, NH		11-27	PUNIP SIZAN	<u>,</u>	
												,	
SITE ID: TAZZE BITE ID: TAZZE Prepa	K Ki LOCA		38-6725	(Well Numb	-	Ċ A	Nadi II - H-	58-04	96	Pu	.mpsetatde	pth: 27.5	<u> </u>
SITE ID: 7222 79990 Purging Method	ZY /Equipment: 1	MICRO PURGE	E Sampling E	quipment/ID N	lo: SUE	BMERSIBL	E PUMP (Seriet No	023711	עד כ	pe of tubin	g: 3/ "(D Pory	
Purging Method Well Casing Dia	meter (in):	374	Unit	Casing Volume	: 17.5	Gr (3V	2.50rl)	Weath	er conditions	s: <u>60</u>	ies, Fain		-
				•				9 29 1	22	0		th: 27.5-228	
Sounding (Dep	oth to Well Bot	tom): ~ 228		Static Wa	ter Level	(Depth to	Water):	1 1.			creen Leng	jun	
Date	Time 24hr	Purge Rate (n 1.hnin) -52 4	Dynamic H2O Level (ft)	Volume Purged (m L)	Temp C°	рH	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Description	-
10-9-15	11:27	1.3Gm		0	11-0	7.61	1.08	18.2	2-11	-168.4	CB.	Cutor, caurless,	
10-9-15	11:43	1.062	19.651	18	10-7	7.58	1-15	6.32	0.37	-141.9			<u>;</u>
10-9-15	12:00	1.000	21.00'	36	10-6	7.55	1.17	2.60	0.72	-135.7			
10-9-15	12:18	1.000	21.43'	54.	10.6	¥	1-19	2.01	0-79	-129.4		<u> </u>	
	12	12:20 Car	scares 27.	5-37.51	SIMPLES	38-0	<u>t96 .</u>			ļ			
T	: ?												
						-			·				
)	:												
	· ·			CB 10-0									
			<u> </u>		75-								
<u> </u>		· · · · ·				-	1						
	<u>.</u>												
						1.							
·							<u> </u>	· · · · · · · · · · · · · · · · · · ·		`			

BRO

NOTE: ALL DTW ASSYRAGETS AND FROM GROUND SUNED OF.

recovered.

			•	,					5			4
				Grou	indwa	iter Pu	rge Lo	g		§:39	PUMPSTA	u e
	,	·	· -	Former Pea				h, NH	-	•	,	
§চন§				- SEAR	Ge: CH	US BLECK	- G	•		10		
(nentro)	a	C*	Z-CZA	(Weil Num Equipment/ID I	PROJ	=0111432		58-0	1499	T	king	pth: 24'Bes
EID: TUNCIC	Steal LOCAT	FION ID: $\underline{\bigcup}$	5 0124	(Vvell Num	per)	SP MISKCTIC			2790	· · · ·		g: POLY TVALME
ging Method	/Equipment: N		E Sampling	Equipment/ID [lo: <300 	BMERSIBI	E PUMP (Senal No	-2:0	 		
ll Casing Dia	meter (in):	3 /4 1	Uni	Casing Volum	e:	·····		Weath	er conditions	s: <u>30</u> i	r judip	·····
unding (Dep	th to Well Bott	tom): (&	0.81	Static Wa	iter Ĺeve	l (Depth to	Water)	<u>): 30</u>	56'	s	creen Leng	gin: 19.2-180.8'
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рН	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Description
0-19-15	3:39	300 /	8.59	0	11.3	7.10	1-61	24.3	4.21	-59.3	C13.	St. CLOWY, COLODISS
2-19-15	8:59	300	8-59	6,000	11.0.	6-67	1.77	5.76	4.54	-49-5	Cġ	Clean, counciess,
0-19-15	9:10	300)	3.59	9,000	10.8	6.59	1.09	4.10	4.32	- 37.7	<u> </u>	<u> </u>
0-19-15	4:9:15	SAMPISE +	1116	· .					•	-	ļ	· · · ·
<u>`</u>	:											
									· ·			
<u>_</u>								<u> </u>				
	:				ļ			ļ		<u> </u>		
	:			100	N/2							
		··· ·, ··· ···	,		Keze					<u> </u>		
	:					\searrow		· ·				
						+				<u>.</u>		
			· 			· ·			}	-		
•			0.01/10/10/10/10/10/10			1	<u>l</u>					<u></u>
		HE UNITS FOR THE				×.	-					
covon Den	th* (ft from TC): <u>8.5</u>	s Fir	al Recovery T	ime* (mir	10 : 10		* Taken A	s Final Water Lev	el Reading and	d Time after samp	ling is complete and well has re

• •

•

Il Casing Diameter (in): 3 7/2 % Unit Casing Volume:	n: 19.2'-180. Water Description
Mig Method: Lupinent: Micror entrol: Compute Lupinent: Micror entrol: Compute Lupinent: Micror entrol: Compute Lupinent: Micror entrol: Compute Lupinent: Micror entrol: Static Volume:	n: <u>19.2¹-180</u> Water Description
nding (Depth to Well Bottom): $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Water Description
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Water Description
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Description
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clan, Calinass,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-19-15 10:15 300 8.59 9,000 10-4 6.73 2.36 4.87 4.74 6.4 C.B Lip 10:20 Course 56mpres 58-0500 -	
Lig 10:20 Collecter Samples 38-0500 -	·
	· · · · · · · · · · · · · · · · · · ·
	·
	-

. H-14 .

				Former Pea	ase Air Fo				,	/ 01	152 PV-p	, डायल्न
S[76 SITE ID: (F612) Purging Method	GCL LOCA	TION ID:O	<u>8-6725</u> E Sampling E	(Well Num	PROJE ber) No:	ECT: 1432 SA RISTAUTI C	79 .MPLE #: _ . C PUMP (*	<u>58-0</u> Serial No	50 229 ₀ er conditions	<u>т</u> Р Ту	pe of tubing	pth: 32.5' g: POW TUBING
Well Casing Dia Sounding (Dep		•						Weather			1	th: 27.5-228 '
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рH	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water : Description
10-19-15	10:52	300	8.871	0	10-7	7.16	1.05	4.21	2-12	-159.6	C.B	CLEAR, COLORIESS,
10-19-15	11:02	300	8.90'	3,000	11.3		1.03	4.10	1.01	-179.7	C.B	
10-19-15	11:02	300	8.90'	6,000	11.2	7.50	1.03	3.25	19.0	-182.3	C.B.	· · · · · · · · · · · · · · · · · · ·
10-19-15	11:22	300	8.90'	9,000	11-3	7.57	1.03	1.92	0-87	-185.1	C.V.	<u> </u>
	11:25	/ <i>-</i> =	SEMPLE S8	-0501 Fre	m 32.9	5/~						
											•	
						-			•			
	;	·		•								
	:						<u> </u>					· ·
		•		10-10-12								
· · · · · · · · · · · · · · · · · · ·	:				+			• •				
i	:							!				
	;		· ·									
	· :					1	\sim					
L					<u> </u>	<u> </u>	<u> </u>	->			·	

NOTE - DO NOT FORGET TO INCLUDE THE UNITS FOR THE CONDUCTIVITY RE

Recovery Depth* (ft from TOC) : 8.85/ Final Recovery Time* (min) : 10

* Taken As Final Water Level Reading and Time after sampling is complete and well has recovered.

				Grou Former Pea	ase Air Fo	orce Base,	rge Lo Portsmout	h, NH			11:42	PUnp Stat.
31768 (77422601 PP TE ID:	LOCA	TION ID:	8-6725	(Well Num Equipment/ID N	PROJI	ECT: 1432 SA	:79 AMPLE #: _	58-05	02	Pi		pth: 2.2.3 1
urging Method	l/Equipment: !		E Sampling I	Equipment/ID N	10: - SÚ	BMERSIB	le -PUMP (Serial No. 2	290			g: POLY TUELLS
Vell Casing Dia	ameter (in):	3 7 8 4	Unit	Casing Volum	3:			Weath	er condition:	s: <u>32°</u> F	, CLENR_	
ounding (Dep	oth to Well Bot	tom): ~228	1	Static Wa	ter Level	l (Depth to	Water):	8.85'		_ \$	creen Leng	gth: 27.5-225
Date	Time 24hr	Purge Rate (mL/min)	Dynamic H2O Level (ft)	Volume Purged (mL)	Temp C°	рH	Specific Cond. (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP (mV)	Prepared By:	Water Description
10-9-15	11:442	300 /	8.901	0	11.6	7.6	1.09	3-49	0-86	-172.2	<u>د</u> ن	TELEOR COLORLESS
10-19-15	11 : 572	३००	8-901	3,000	11-7	7.53	1.09	3.20	0-79	-169-1	CE	
10-19-15	12:02	300	8.90'	6,000	11-9	7-66	1.09	3.30	0.99	-156.4		
10-19-15	12:12	300	8-90;	9,000	11.7	7.66	1.09	2.57	0-79.	-160.0	(B	· · · ·
10-19-15	412,	20 Sample	38-052	From 2231	auso	2~				ļ		
	: .										· ·	
	÷								•			
	× :			*							-	
	:	· · · · · · · · · · · · · · · · · · ·		le la								
	:				10-19.	<u>.</u>				-		
· _ · · · · · · · · · · · · · · · · · ·	:						1	•				
	:			· ·						-		-
	:			<u></u>	1		\sim					
· · · ·	1 :				1]		1	

. H-16

.

1	
MPIN	
	1

Sample Collection Log

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Logging Co Collection Date Collection Time	10-14-15
-	
Collection Time	1220
-	13:45
Start Depth	160'
- End Depth	1601
- Sample Matrix	GROUNDWATER
SampleTec	m CHRISBLARKLE
	ervative Lab
0 mi Poly Container Co	ol to 4° ALS - Kelso, WA
•	Sample Matrix SampleTec Pres

nents: PUMP INTAKE AT 160'. LOW FLOW SUMPLING OFFIN HOLD SECTION 85-282'BG5-

Sketch Location:

10-14-15, ere - 1

GDA			San	nple	e Colle	ection	Log			
			143279		e 8 Treati Inger Mike	•	tem - PEASE			
Location Code	08-6046					RFA /	COC Number	101	415-C)(
Sample Number	S8-0486						Logging (o		
Filtered Sample	Total						Collection Dat	te (0-14·	-/5-
Sampling Method		ILE PUMP					Collection Tim	ne -	3145	
Sample Type	Ground Wa	ater	Samole	Purnose	e Investiga	tory	Start Dept	h [so l	
	FIELD DUPL		24111411			iony.	End Dept	th 14	so'	
Sompling Equipm	nent Geo	tech ss	GEOSUA: t	Poly	TULING		Sample Matr	•		ER
QC Partners:				•						
(TB)	<u>ب</u>	(EB)		•	(FB)		Sample	Team C	HRIS	BLEMKLE
Containers	:									
Analytical Suite		Frtn A	Filtered	Qty				reservati		
PFCs by ALS Intel HPLC/MS Technic		A	Total	2	250	ML 250 ml	Poly Container	Cool to 4	Is Al	.S - Kelso, WA
Comments:	ጥሆ		27-04	or						
	<u>D</u> Uf		58-04			r (Have	SECTION 85-	2821	e /s)	
<u></u>	mr ia/laks:	<u>, ol 160. j</u>	www.ewg	~ ~~~~	yrio j Of		· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>co</u> 2-	~ (~~	

Sketch Location:

(

(

- 1 10-14-15 Logged By / Date:

OBI				9 - Site	8 Treatme ger Mike Qu	ent Syste	-	
Location Code	08-6722		¥			RFA / CO	C Number	1007.15-01
Sample Number	S8-0487						Logging Co	
Filtered Sample	Total						Collection Date	10-5-15
Sampling Method		LE PUMP					Collection Time	16145
Sample Type	Ground Wa	tor	Samale	Purnase	Investigator		- Start Depth	12.8 /
QC Code	Ground Water Sample Purpose Investigatory				mestigator	Ŷ	End Depth	140.51
Sampling Equipn	nent 66076	eci es e	EOSUB (D	ッシ イレ	MNG		Sample Matrix	GROUNDWATER
QC Portners: (TB) Containers Analytical Suite PFCs by ALS Inte HPLC/MS Technic	: mai Method	(EB)	Filtered		(FB)			um_ <u>CHR.S_BLKRLLE</u> ervative Lab ol to 4°. ALS - Kelso, WA
Comments:	(\$1)	616 P/C/LQ	in s er 12	<u>6-128</u>	')			

Sketch Location:

(•

10-5- \mathcal{C} -15

CBI		143279 - Site	8 Treatmer <i>ger</i> Mike Quin	nt System - PEASE	
Location Code 0	8-6722			RFA / COC Number	100715-01
Sample Number S	8-0487-MS			Logging Co	
Filtered Sample T	otal			Collection Date	10-5-15
Sampling Method S				Collection Time	16:45
Sample Type (Ground Water	Sample Purpose	Investigatory	Start Depth	128 /
	MATRIX SPIKE	oumpie raipose	mesuBotory	End Depth	140.5'
Sampling Equipme	nt Geotecii st	i GEOSUC + Pay	TUBLICK	Sample Matrix	GROUNDWATER
QC Partners: (TB)	(EB)		(FB)	SampleTea	om CHAIS BUGALLES
Analytical Suite	Frtn	Filtered Qty	Container Ty	pe Pre:	servative Lab
PFCs by ALS Intern HPLC/MS Techniqu	al Method A	Total 2	250 ML	•	pol to 4° ALS - Kelso, WA
Comments:	(susce p	hee set 126-11	28 ⁷)		• • • • • • • • • • • • • • • • • • •

Sketch Location:

(

<u>C</u> R -10-5-15 >

Sample Collection Log

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinian

Location Code	08-6722				RFA / COC Number	100715-01
Sample Number	S8-0487-MSD				Logging Co)
Filtered Sample	Total				Collection Date	10-5-15
Sampling Method	SUBMERSIBLE PUMP				Collection Time	/6:45
Sample Type	Ground Water	Samole	Purpose	Investigatory	Start Depth	128'
	MATRIX SPIKE DUPLI				End Depth	140.51
Sampling Equipn	nent GEOTECH	ss Geosue	> Lepon	1 TUBING	Sample Matrix	GROUNDWATER
QC Partners:	(EB)			(FB)	SampleT	eamCHPLS OUGUL
Containers	:					
Analytical Suite	Frtn	Filtered	Qty	Container Ty	pe Pro	eservative Lab
PFCs by ALS Inte HPLC/MS Technic		Total	2	250 ML	250 ml Poly Container C	Dool to 4° ALS - Kelso, WA
Comments:	CSINGLES PRA	182. SEC 17	16-128)		

Sketch Location:

10-5 15

Sample Collection Log

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

08-6722				RFA / COC Number	100715-01
s8-0488				Logging C	ò
· Total				Collection Dat	re 10-6-15
SUBMERSIBL	E PUMP			Collection Tim	10140
e Ground Wate	er	Sample Purpose	Investigatory	Start Depl	h 115.51
NORMAL				End Dept	h 125.51
ment <u>Co</u>	eeu ss ca	OSUMP + POL	y tusing	Sample Matr	ix GROUNDWATER
	(EB)		(FB)	Sample	ream CHRIS BURKLE
s:					
	Frtn Filt	tered Qty	Container Ty	pe P	reservative Lab
ernal Method Ique	Α Τα	tal 2	250 ML	250 ml Poly Container	Cool to 4° ALS - Kelso, WA
`					
	e Ground Wat • NORMAL ^{ment} <u>(সেক</u>	S8-0488 Total SUBMERSIBLE PUMP Ground Water NORMAL Ment GCCTCCU SS GC SS Frtn Fil Ernal Method A Tc	S8-0488 $Total$ $SUBMERSIBLE PUMP$ $Ground Water$ $Sample Purpose$ $NORMAL$ $ment$ $GSOTSUMP + Pol$ (EB) SS $Frtn Filtered Qty$ $Frtn Filtered Qty$ $GSOTSUMP + Pol$ SS	S8-0488 P Total V SUBMERSIBLE PUMP e Ground Water Sample Purpose Investigatory e NORMAL ment GGOTGGU SS GGOSUMP + POLY TUBLAG	S8-0488 Logging C Collection Date Collection Date SUBMERSIBLE PUMP Collection Time Ground Water Sample Purpose Investigatory Start Dept Start Dept NORMAL End Dept ment G <i>i (EB) (FB) Sample Sample Start Sample Matr. Sample Sample Sample Sample</i>

Sketch Location:

Logged By / Date:	and	1 10-6-17
-------------------	-----	-----------

Sample Collection Log 143279 - Site 8 Treatment System - PEASE Manager Mike Quinlan RFA / COC Number 100715-01 Location Code 08-6722 Logging Co Sample Number \$8-0489 10-6-15 **Collection Date** Filtered Sample Total 12:50 **Collection Time** Sampling Method SUBMERSIBLE PUMP $Q \chi'$ Start Depth Sample Type Ground Water Sample Purpose Investigatory End Depth 98 QC Code NORMAL 55 GEOTECH'GODSUMP + POLY TUBING Sampling Equipment Sample Matrix GROUNDWATER QC Partners: SampleTeam CHRIS BLERKLE, (TB) (EB) (FB) Containers: Analytical Suite Frtn Filtered Qty **Container** Type Preservative Lab PFCs by ALS Internal Method Α Total 2 250 ML 250 ml Poly Container Cool to 4° ALS - Kelso, WA HPLC/MS Technique

Comments:

Sketch Location:

Logged By / Date:

10-6-15

Reviewed By / Date: H-23

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code	08-6722	RFA / COC Number	1007/5-0]
Sample Number	\$8-0490	Logging Co	
Filtered Sample	Total	Collection Date	10-6-15
	SUBMERSIBLE PUMP	Collection Time	15:45
Sample Type	Ground Water Sample Purpose Investigatory		741
	NORMAL	End Depth	861
Sampling Equipm	Pent GENTECH SS GENSUB + POLY TUBLIC	Sample Matrix	GROUNDWATER
QC Partners:	(EB) (FB)	SampleTear	" CHRIS REDKLE
Containers	:		
Analytical Suite	Frtn Filtered Qty Container T	ype Prese	rvative Lab
PFCs by ALS Inte HPLC/MS Technic		250 ml Poly Container Coo	il to 4° ALS - Kelso, WA

Sketch Location:

Logged By / Date:

(

10-6-15 _____ Q

143279 - Site 8 Treatment System - PEASE

• .

Manager Mike Quinlan

Location Code	08-6723					RFA / COC Nur	nber	101415-01	
Sample Number	S8-0491						Logging Co		
Filtered Sample	Total					C	Collection Date	10-14-15	
Sampling Method	SUBMERSIB	LE PUMP				C	ollection Time	12:15	
Sample Type	Ground Wa	iter	Sample	Purpose	Investigatory		Start Depth	88' 108.10	931
	NORMAL						End Depth	108-5 0	931
Sampling Equips	nent GOTG	cht ss ce	iosub + f	aly T	UBING	5	Sample Matrix	GROUNDWATER	
QC Partners:									
(TB)	 :	(EB)	-	,	(FB)	~	SampleTee —	am CHRIS BUERK	.uc
Containers	s:								
Analytical Suite		Frtn	Filtered	Qty	Container Typ	De	Pres	servative Lab	
PFCs by ALS Inte HPLC/MS Technic		A	Total	2	250 ML	250 ml Poly Co	ntainer Co	ool to 4° ALS - Kelso,	WA
Comments:	(PUni) 1,	SET AT 9	31).	LOW FLOW	SIMPLES	OPEN HOLE	seenan 88-10	8.51

Sketch Location:

Logged By / Date:

10-14-15

 \sim

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code	08-6724		RI	FA / COC Number	100815-01
Sample Number	S8-0492			Logging Co	
Filtered Sample	Total			Collection Date	10-7-15
Sampling Method	SUBMERSIBLE PUMP			Collection Time	14:10
Sample Type	Ground Water	Sample Purpose	Investigatory	Start Depth	1601
	NORMAL		U ,	End Depth	1701
Sampling Equipn	nent GEOTECH SS	sociosus + p	OLY TUBLING.	Sample Matrix	GROUNDWATER
QC Partners: (TB)	(EB)	V	(FB)	- SampleTec	m Chris Risauce
Containers	:				
Analytical Suite	Frtn	Filtered Qty	Container Type		ervative Lab
PFCs by ALS Inte HPLC/MS Technic		Total 2	250 ML 25	0 ml Poly Container Co	ol to 4° ALS - Kelso, WA
Comments:					

Sketch Location:

Logged By / Date:

ĺ

ED 10-7-15 ~

		Sampl	le Collec	tion Log	
(CIRII)			te 8 Treatme nager Mike Qu	ent System - PEASE Jinlan	
Location Code 0	8-6724			RFA / COC Number	100815-01
Sample Number S	8-0493			Logging Co	
Filtered Sample 1	otal			Collection Date	10-7-15
Sampling Method S				Collection Time	15:50
Sample Type	Ground Water	Sample Purpo	ose investigator	v Start Depth	110'
QC Code				End Depth	1201
Sampling Equipme	nt BETECH SS G	osus + Pal)	TUMAG	Sample Matrix	GROUNDWATER
QC Partners:	> (EB)	V	(FB)	SampleTe	om CHAIS QUARUS
Containers: Analytical Suite PFCs by ALS Intem HPLC/MS Techniqu		Filtered Qty Total 2	250 ML		servative Lab ool to 4° ALS - Kelso, WA
Comments:					

Sketch Location:

Logged By / Date:

10-7-15

			San	nple	Colle	ction	Log	
			143279	- Site	8 Treat	ment Sys	tem - PEASE	
				Manag	er Mike	Quinlan		
Location Code	08-6724					RFA /	COC Number	100815-01
Sample Number	S8-0494						Logging Co	
Filtered Sample	Total						Collection Date	10-8-15
Sampling Method		LE PUMP					Collection Time	9:20
Sample Type			Samola	Durnoco	Investiga	ton	Start Depth	60 '
	NORMAL	lei	Sumpler	urpose	mvestiga	lory	End Depth	70'
Sampling Equipm		डटम हर	Geosunp	+ A	XY TU	UNC	- Sample Matrix	GROUNDWATER
QC Partners:								
(ТВ)		(EB)	·		(FB)	- <u></u>	SampleTec	m CHRISBURRKUS
Containers	:							
Analytical Suite		Frtn	Filtered	Qty	Contain			ervative Lab
PFCs by ALS Inte HPLC/MS Technic		Α	Total	2	250 (ИL 250 m	l Poly Container Co	ool to 4° ALS - Kelso, WA
Comments:								

Sketch Location:

Logged By / Date:

(

10-8-15 Ø.

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinian

Location Code	08-6724				RFA / COC N	umber .	1008	15-01
Somple Number	S8-0495					Logging Co		
Filtered Somple	Total					Collection Date	10-8	-15
Sampling Method	SUBMERSIBLE P	UMP				Collection Time	11:15	
Sample Type	Ground Water	Sam	ole Purpose	Investigator	у	Start Depth	171	
QC Code	NORMAL					End Depth	271	
Sampling Equipm	^{nent} CENTECL	1 SS GENUMP	+ poly	TUBING		Sample Matrix	GROUNDWAT	TER
QC Partners: (TB)	(EE	3))	(FB)	۲	SampleTe	^{am} CHRIS	s BUERLE
Containers	:							
Analytical Suite		Frtn Filtered	Qty	Container				ab
PFOs by ALS Inte HPLC/MS Technic	1. die 1. dae water die datae in Pr	A Total	동가 같은 것 같은 것이 같아?	CLEACE (SCONSECC)	250 ml Poly	Container C	ool to 4° A	LS - Kelso, WA
Comments:						-		

Sketch Location:

Logged By / Date: 2

10-8-15

GIRIA			San	nple	Collect	tion Lo	g			
			143279		<mark>8 Treatme</mark> J ^{er} Mike Qui	•	n - PEASE			
Location Code	08-6725					RFA / COC I	Number	10131	5+02	
Sample Number	S8-0496						Logging Co			
Filtered Sample	Total						Collection Date	10.	-9-15	
Sampling Method		ILE PUMP					Collection Time	121	20	
Sample Type			Samula	Durooca	Investigatory		Start Depth	2.7.	.51	
	NORMAL	160	Jumple	urpose	nivestigatory		End Depth			
Sampling Equipn	nent 6601	ecu SS GG	iosus tl	oly t	VIXIN/6		Sample Matrix	GROUND	WATER	
QC Partners: (TB)	<u> </u>	(EB)			(FB)		SampleTe	ram_CH	rus burnes	
Containers	:									
Analytical Suite		Frtn	Filtered	Qty	Container Ty			servative	Lab	
PFCs by ALS Inte HPLC/MS Technic		A	Total	2	250 ML	250 ml Poly	Container C	cool to 4°	ALS - Kelso, W	Α
. [· ·								
Comments:										
••••••••••••••••••••••••••••••••••••••									den d'Al-denne de service en contra de	

Sketch Location:

Logged By / Date:

(

Clah 10-9-18

.

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code	08-6725		I	RFA / COC Number	101315-02
Sample Number	S8-0497			Logging Co	
Filtered Sample	Total			Collection Date	10-9-15
	SUBMERSIBLE PUMP			Collection Time	9:55
Sample Type	Ground Water	Sample Purpose	Investigatory	Start Depth	2181
	NORMAL		U ,	End Depth	228'
Sampling Equipn	nent GOOTERASS	GEOSUB + POLY	TUBING	Sample Matrix	GROUNDWATER
QC Partners: (TB)			(FB)	SampleTec	m CHUS DUGACUS
Containers Analytical Suite PFCs by ALS Inte HPLC/MS Technic	Frtn rnal Method A	<u>Filtered Qty</u> Total 2	Container Typ 250 ML 2		ervative Lab rol to 4° ALS - Kelso, WA
Comments:					

Sketch Location:

Logged By / Date:

, 10-9-15 \bigcirc

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code	08-6725		RFA / COC Number	101315-02
Sample Number	\$8-0498		Logging Co	
Filtered Sample	Total		Collection Date	10-9-15
Sampling Method	SUBMERSIBLE PUMP		Collection Time	9155
Sample Type	Ground Water Sample Purpose	Investigatory	Start Depth	2.18'
	FIELD DUPLICATE	υ,	End Depth	2.281
Sampling Equipm	nent creaticity is creasure + poly	TUBUS.	Sample Matrix	GROUNDWATER
QC Portners:	•			
(ТВ)	(EB)	(FB)	SampleTea	m CHINIS BLENKIS
Containers	:			
Analytical Suite	Frtn Filtered Qty	Container Typ	e Pres	ervative Lab
PFCs by ALS Intel HPLC/MS Technic		250 ML	250 ml Poly Container Co	ol to 4° ALS - Kelso, WA
Comments:	DUP OF \$8-0497.			

Sketch Locotion:

Logged By / Date:

Ĺ

X 5 1 10-9-15

143279 - Site 8 Treatment System - PEASE

. .

Manager Mike Quinlan

Location Co	de 08-6724					RFA / COC Number	1014	115-01	
Sample Numl	ber S8-0499					Loggir	ng Co		
Filtered Sam	nle Total					Collection	Date	10-19-15	
-	od SUBMERSIBL	E PUMP				Collection	Time	91/5	
Somple Tu	pe Ground Wat	er	Sample	Purnose	Investigatory	Start L	Depth 7	241	
	de NORMAL		oompre		investigatory	End E	epth 2	241	
Sampling Equ	ipment PG	2157671	C PVMP	+ POLY i	tVola C.	Sample N	atrix GRO	UNDWATER	
QC Partners:				•					
(TB)		(EB)			(FB)	Sam	pleTeam 	CHIPIS BURRKEE:	
Contain	ers:					·			
Analytical Suit	e	Frtn	Filtered	Qty	Container Ty	pe	Preservat	tive Lab	
Chloride, Nitral EPA 300	te, and Sulfate by	Α	Total	1	125 ML	125 mL Poly Container	Cool to	4° SEACOAST AI	VALYTIC
Total Coliforms	s by A9221B	В	Total	ા	125 ML	125 mL Poly Container	Cool to	4° SEACOAST AI	VALYTIC
Comments:	~								

Sketch Location:

Ì , 10-19-15 0

CBI				- Site		men	ion Lo g nt System _{Ilan}	-				
Location Code	08-6724						RFA / COC N	lumber	1019	15-01	1	
Sample Number	\$8-0500							Logging	Со			
Filtered Sample	Total							Collection Do	_{ote} 10	-19-15	-	
Sampling Method		LE PUMP						Collection Ti	me C	1120		
Sample Type	Ground Wa	ter	Samole	Purnose	Investiga	atory		Start Dep	oth	691		_
	NORMAL		oumpie	rurpose	mvestige	itor y		End Dep	oth (69 '		_
Sampling Equipm	ient	PERISTAC	TIC PUMP 1	r Pory	Ť <i>UNI</i> Λ			Sample Mat	rix GROUI	NDWATER		_
QC Partners: (TB) Containers:		(EB)	-		(FB)		-	Sample	eTeamC	CHR(S)	BLERKLE	
Analytical Suite		Frtn	Filtered	Qty	Contain				Preservativ			
Chloride, Nitrate, a EPA 300	and Sulfate by	y A	Total	া	125	ML	125 mL Poly	Container	Cool to 4	° SEA	COAST ANAL	YTICA
Total Coliforms by	A9221B	В	Total	1	125	ML.	125 mL Poly	Container	Cool to 4	° SEA	COAST ANAL	YTIC/
Comments:	ہ ے											

Sketch Location:

(

Logged By / Date:

 \mathcal{O}

l

- - 10-19-13

Reviewed By / Date:

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code 08-6725					RFA / COC I	Vumber	10191	5-01
Sample Number S8-0501						Loggin	g Co	
Filtered Sample Total						Collection	Date 10 -	19-15
Sampling Method SUBMERSIBL	E PUMP					Collection	Time 112	5
Sample Type Ground Wate	er	Sample	e Purpose	Investigator	v	Start D	epth <u>32</u> .	51
QC Code NORMAL		,		Ū.		End D	epth 32.	51
Sampling Equipment	Penist	ALTIC PU	npt A	OLY TUDIN	- 	Sample M	atrix GROUND	WATER
QC Partners:								
(TB)	(EB)			(FB)	-	Samj	oleTeamCH4	us Bugerice
Containers:								
Analytical Suite	Frtn	Filtered	Qty	Container	Гуре		Preservative	Lab
Chloride, Nitrate, and Sulfate by EPA 300	A	Total	1	125 ML	125 mL Poly	y Container	Cool to 4°	SEACOAST ANALYTIC
Total Coliforms by A9221B	В	Total	ા	125 ML	125 mL Poly	y Container	Cool to 4°	SEACOAST ANALYTIC
Comments:	-							

Sketch Location:

Logged By / Date:

<u>___</u> 10-19-10 \mathcal{O}

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code 08	-6725						RFA / COC N	lumber	1019	115-0)/
Sample Number S8	-0502							Logging	Со		
Filtered Sample To	tal							Collection D	ote(0-/9	-15
Sampling Method SU	IBMERSIBLE I	PUMP						Collection T	ime	2120	
Sample Type G	round Water		Sample	Purpose	Investi	gatory		Start De	pth	2231	
QC Code N	ORMAL							End De	pth	2231	
Sampling Equipmen	t ft	RISTRU	TIC. PUmp	+ POLY	r tuai	NG		Sample Ma	trix GRO	UNDWA	TER
QC Partners: (TB)	(E		ب		(FB) _			Sampl	leTeam	CHRIS	BLERKLE
Containers:					_						
Analytical Suite		Frtn	Filtered	Qty	Conta	iner Ty	/pe		Preservat	tive l	lab
Chloride, Nitrate, and EPA 300	Sulfate by	Α	Total	1	125	ML	125 mL Poly	Container	Cool to	4° E	SEACOAST ANALYTIC
Total Coliforms by A9	9221B	в	Total	1	125	ML	125 mL Poly	Container	Cool to	4° 5	SEACOAST ANALYTIC
Comments:		<u>.</u>									

Sketch Location:

Logged By / Date:

0-1 10-19-15

Reviewed By / Date:

143279 - Site 8 Treatment System - PEASE

Manager Mike Quinlan

Location Code	FIELDQC		RFA / COC	Number	100815-01
Sample Number	ER-S8-2015-PFC-1			Logging Co	
Filtered Sample	Total			Collection Date	10-7-15
Sampling Method	SUBMERSIBLE PUMP			Collection Time	17:00
Sample Type	Ground Water	Sample Purpose	Unknown	Start Depth	MA
QC Code	EQUIPMENT BLANK			End Depth	NIA
Sampling Equipr	nent DI KLASS	OF PUMP (GENTI	SCH SS GEOSUMP)	Sample Matrix \	WQ
QC Partners:					
(TB)	> (EB)	· · · · · · · · · · · · · · · · · · ·	(FB)	SampleTear	" CHRIS PLEALLES
Containers	;;				
Analytical Suite	Frtn	Filtered Qty	Container Type	Prese	ervative Lab
PFCs by ALS Inte	rnal Method A	Total 2	250 ML 250 ml Pol	y Container Cor	ol to 4° ALS - Kelso, WA
Comments:	Contected	DI WATER	EQUIPMENT RU	nce tran s	SUB MERS BLG PUMP

(PUMP MODEL & GEOTECH SS GEOSVB).

Sketch Location:

This page intentionally left blank.

Appendix I Seacoast Analytical Lab Results

SEACOAST ANALYTICAL SERVICES Route 125 & Pinkham Road Lee, New Hampshire 603 868 1457 (Mail to: PO Box 555, Barrington, NH 03825)

SUPERIOR QUALITY & SERVICE SINCE 198

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195P

Client: CB & I Federal Services 312 Directors Drive Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6724

Sample Id S8-0499

		Sample to S0-0499				
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard	
EPA 300.0	Fluoride (mg/L)	4.0	< 0.6	-	-	
EPA 300.0	Chloride (mg/L)	250	606 *	-	Х	
EPA 300.0	Nitrite-N (mg/L)	1.0	< 1.0	-	-	
EPA 300.0	Nitrate-N (mg/L)	10.0	< 2.0	-	-	
EPA 150.1	pH (range)	(6.5 - 8.5)	6.4	-	Х	
SM 2340B	Hardness (mg/L)	No limit	246	-	-	
SM 3111B	Sodium (mg/L)	250	280 *	-	Х	
SM 3111B	lron (mg/L)	0.300	0.834	-	Х	
SM 3111B	Manganese (mg/L)	0.050	< 0.025	-	-	
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-	
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-	
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-	
COLILERT	Total Coliform Bacteria	absent	PRESENT	х	-	
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-	

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 9:15am EPA 300.0 analysis: 10/20/15 10:31am COLILERT analysis: 10/20/15 10:31am COLILERT analysis: 10/19/15 4:10pm SM3111B, SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 14 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457. SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron, manganese, lead, arsenic, copper, total coliform bacteria and <u>E.</u> <u>coli</u> bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

I-1

SEACOAST ANALYTICAL SERVICES Route 125 & Pinkham Road Lee, New Hampshire 603 868 1457 Mail to: PO Box 555, Barrington, NH 03825)

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195Q

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6724

Sample Id S8-0500

Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard		
EPA 300.0	Fluoride (mg/L)	4.0	< 0.6	-	-		
EPA 300.0	Chloride (mg/L)	250	734 *	-	Х		
EPA 300.0	Nitrite-N (mg/L)	1.0	< 1.0	-	-		
EPA 300.0	Nitrate-N (mg/L)	10.0	< 2.0	-	-		
EPA 150.1	pH (range)	(6.5 - 8.5)	6.6	-	-		
SM 2340B	Hardness (mg/L)	No limit	339	-	-		
SM 3111B	Sodium (mg/L)	250	327 *	-	Х		
SM 3111B	lron (mg/L)	0.300	0.767	-	Х		
SM 3111B	Manganese (mg/L)	0.050	< 0.025	-	-		
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-		
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-		
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-		
COLILERT	Total Coliform Bacteria	absent	PRESENT	х	-		
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-		

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 10:20am EPA 300.0 analysis: 10/20/15 10:53am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 11 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

I-2

SEACOAST ANALYTICAL SERVICES Route 125 & Pinkham Road Lee, New Hampshire 603 868 1457 Mail to: PO Box 555, Barrington, NH 03825)

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195R

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6725

Sample Id S8-0501

Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard		
EPA 300.0	Fluoride (mg/L)	4.0	< 0.3	-	-		
EPA 300.0	Chloride (mg/L)	250	200	-	-		
EPA 300.0	Nitrite-N (mg/L)	1.0	< 0.5	-	-		
EPA 300.0	Nitrate-N (mg/L)	10.0	< 1.0	-	-		
EPA 150.1	pH (range)	(6.5 - 8.5)	7.5	-	-		
SM 2340B	Hardness (mg/L)	No limit	297 *	-	-		
SM 3111B	Sodium (mg/L)	250	97	-	-		
SM 3111B	lron (mg/L)	0.300	0.456	-	Х		
SM 3111B	Manganese (mg/L)	0.050	0.040	-	-		
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-		
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-		
SM 3113B	Arsenic (mg/L)	0.010	0.006	-	-		
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-		
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-		

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 11:25am EPA 300.0 analysis: 10/20/15 11:12am COLILERT analysis: 10/19/15 4:10pm SM3111B. SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 13 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N, pH, sodium, calcium, total hardness, iron manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

I-3

SEACOAST ANALYTICAL SERVICES Route 125 & Pinkham Road Lee, New Hampshire 603 868 1457 Mail to: PO Box 555, Barrington, NH 03825)

WATER TEST RESULTS

Date: October 22, 2015

Reference #: S10195S

Client: CB & I Federal Services **312 Directors Drive** Knoxville, TN 37923

Water location: Former Pease Air Force Base Site 8 Portsmouth, NH Well Id 08-6725

		Sample Id S8-0502					
Test Method	ANALYTE (mg/L) = milligrams per liter	EPA MAXIMUM recommended concentration	YOUR WATER'S VALUE < means less than	Exceeds Primary Standard	Exceeds Secondary Standard		
EPA 300.0	Fluoride (mg/L)	4.0	< 0.3	-	-		
EPA 300.0	Chloride (mg/L)	250	167	-	-		
EPA 300.0	Nitrite-N (mg/L)	1.0	< 0.5	-	-		
EPA 300.0	Nitrate-N (mg/L)	10.0	< 1.0	-	-		
EPA 150.1	pH (range)	(6.5 - 8.5)	7.5	-	-		
SM 2340B	Hardness (mg/L)	No limit	272 *	-	-		
SM 3111B	Sodium (mg/L)	250	102	-	-		
SM 3111B	lron (mg/L)	0.300	1.776	-	Х		
SM 3111B	Manganese (mg/L)	0.050	0.039	-	-		
SM 3111B	Copper (mg/L)	1.300	< 0.200	-	-		
SM 3113B	Lead (mg/L)	0.015	< 0.005	-	-		
SM 3113B	Arsenic (mg/L)	0.010	< 0.005	-	-		
COLILERT	Total Coliform Bacteria	absent	PRESENT	Х	-		
COLILERT	<u>E. Coli</u> Bacteria	absent	absent	-	-		

THE TESTED PARAMETERS DO NOT MEET FEDERAL PRIMARY DRINKING WATER STANDARDS. Secondary standards measure the aesthetic quality of the water and if exceeded should not affect healthy individuals. Analytes which exceed the recommended concentration or range are indicated with an X under the primary or secondary column above. Nitrate-N/nitrite-N should be analyzed within 48 hours of collection. Samples tested after this time period may not yield accurate results. pH should ideally be measured at the time of collection. Reported pH may differ from field measurement. This report relates only to the sample received.

http://des.nh.gov/organization/commissioner/pip/index.htm is the NHDES website where you can get information about water contaminants. Scroll down to 'Publications', and choose 'Fact Sheets', then Drinking Water/Ground Water. Date/time sampled: 10/19/15 12:20pm EPA 300.0 analysis: 10/20/15 11:48am COLILERT analysis: 10/19/15 4:10pm SM3111B, SM3113B analysis: 10/21/15 Date rec'd: 10/19/15 Temp (°C) rec'd: 13 EPA 150.1 analysis: 10/19/15 3:00pm * estimated value - greater than highest standard THIS REPORT IS CONFIDENTIAL. IF YOU RECEIVE THIS INFORMATION IN ERROR, PLEASE CALL 603-868-1457.

SEACOAST ANALYTICAL SERVICES is a NHELAP Accredited Laboratory (# 1733) for the analysis of fluoride, chloride, nitrite-N, nitrate-N. pH, sodium, calcium, total hardness, iron, manganese, lead, arsenic, copper, total coliform bacteria and E. coli bacteria by Colilert and Colisure. This sample was received and analyzed in compliance with the National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted. Please call with questions regarding this analysis, or anytime that we might be of service.

Seacoast Analytical Services - TRUE COPY Katy Anderson, Laboratory Director

SAS STANDARD REPORT Rev 5 (9-10-14)

1-4

Appendix J NHDES Fact Sheets

WD-DWGB-4-1

2010

Interpreting the Presence of Coliform Bacteria in Drinking Water

Determining the bacterial quality of drinking water is the single most important water quality test. Why? Because one glass of water containing just a few disease organisms can cause illness. When minimal exposure creates an immediate health risk, that contaminant is known as an acute contaminant. Bacterial contaminants such as *E. coli* and fecal coliform in drinking water represent an acute health risk. In contrast, meaningful health risk from most chemical contaminants, such as arsenic, radon, or benzene, requires a long period of exposure. Consequently, these contaminants are considered chronic.

The total coliform test is the starting point for determining the biological quality of drinking water. This test is performed frequently because of the acute risk that disease-causing organisms pose to the users of that water supply. The test is easy to perform and inexpensive.

Total Coliform as an Indicator

The total coliform test is considered an indicator, since the presence of bacteria in this group indicates the possibility, but not the certainty, that disease organisms may also be present in the water. When total coliforms are absent there is a very low probability of disease organisms being present in the water. The ability of the total coliform test to reliably predict the bacterial safety of drinking water relative to the hundreds of possible diseases is critical since it is impossible, in a practical sense, to frequently check for every type of disease-causing organism.

Important exceptions to this generalization include protozoa such as *Giardia* and *Cryptosporidium*, which can be present in water even when the total coliform test shows an absence of organisms. Under such circumstances illness could occur. Nevertheless, the total coliform test remains the most commonly used standard for determining the bacterial quality of drinking water in the US and the world.

Risk Associated with Coliform Types

There are a number of subsets within the coliform group. The presence of bacteria from each progressively smaller subset heightens the concern that disease-causing organisms may also be present in the water. These groups and their relative risk implications are discussed below.

Total Coliform. These organisms are prolific in the soil. Their presence does not necessarily imply contamination from wastewater nor the presence of other sanitation-based health risks. The presence of total coliform by itself does not imply an imminent health risk but does indicate the need for an analysis of all water system facilities and their operations to determine how these organisms entered the water system. Public notice to water system users is required since a properly constructed and maintained water system should not have total coliform present. When only total coliform are present, the water system is allowed 30 days to give public notice to customers that the water has violated a drinking water standard. This lengthy period indicates regulatory agencies' perception of a low degree of immediacy to the risk.

Fecal Coliform. This is a subset of the total coliform group. Fecal coliform bacteria generally originate in the intestines of mammals. They have a relatively short life span compared to other coliform bacteria. Their presence could be related to improper disposal of sanitary waste. Immediate public notice and a boil order to the users (within 24 hours) are required due to the higher likelihood of disease organisms also being present in water.

Escherichia coli (E. coli). This is a species within the fecal coliform group. *E. coli* originate only in the intestines of animals including humans. As with other fecal coliform, they have a relatively short life span compared to non-fecal coliform bacteria. Their presence indicates a strong likelihood that human or animal wastes are entering the water system. Immediate public notice and a boil order (within 24 hours) are required due to a higher likelihood of disease organisms also being present in the water.

Non-Coliform Bacterial Results

The membrane filter test produces a result for non-coliform organisms. High non-coliform results are generally interpreted in two ways:

Invalidation of the Total Coliform Test

When the number of non-coliform organisms is high, their presence may inhibit the growth of organisms in the total coliform group. When present in numbers over 200 colony forming units (CFUs) in a 100 milliliter sample, non-coliforms will invalidate a total coliform test.

Non-coliform as an Indicator of Inadequate Filtration

One expects to find a small number of non-coliform organisms in a properly constructed well. Thus when non-coliforms are numerous in groundwater samples, there is concern that the water in the well is not being adequately filtered. Reasons for a lack of adequate filtration include: the well is not properly constructed, or the soil/rock layering is not adequately filtering the rainfall or runoff that is percolating down from above to the well.

CONFLICTING COLIFORM DATA

Sometimes bacterial tests from the same public water system, under the same conditions, are not consistent.

Samples Taken at Different Times

In an inadequately filtered well, bacteria are expected to be present. Organisms that gain access to a

well can be there one day and die off before a second sample is taken a few days or a week later.

Samples Taken at the Same Time

This is a somewhat unlikely but possible event. One explanation is the diversity of coliform test methods. Some bacterial tests use a filtration step while others do not. Each test uses a different proprietary media to incubate the organisms. Sometimes the bacteria themselves are counted while in other cases enzyme byproducts are measured. Some methods will better detect coliform species that have been stressed by chlorine or other harsh environmental conditions while others will not. Finally, fully representative samples are hard to obtain since bacteria often congregate together in clumps in pipes and in the sample container. Thus, in cases where there are few organisms, they may not be evenly distributed in the water.

Laboratory Methods for Total Coliform Identification

All methods of total coliform identification require culturing of the sample in the presence of a special food source. The culturing process requires approximately one to two days of culture growth before interpreting the bacterial data. There are three laboratory procedures that can be used for determining the presence of total coliform in a water sample:

Multiple Tubes. This method was developed in the early 1900s. It uses a number of test tubes and measures the amount of gas production during two days of incubation. Results are stated in terms of most probable number of organisms (MPN) per 100 milliliters of sample. Advantages include being the first reliable bacterial method for drinking water; disadvantages include significant glassware use and required laboratory cleanup.

Membrane Filter. This method was developed in early 1950s. It filters organisms from the water onto a paper surface and then incubates the initial parent organisms to produce visible colonies. A minimum of 22 hours incubation time is required. Resultant growths are counted by the laboratory staff. Results are identified as "counts" of CFUs per 100 milliliters. The advantage of this method is that it is much simpler than test tubes; the disadvantage is that it can't be used on muddy water.

MMO Chromogenic Fluorogenic Method. This method was developed in the late 1980s. It consists of culturing the organisms in the sample bottle. An incubation time of 18-28 hours is required. A yellow color indicates the presence of total coliform and the presence of a fluorescent condition under black light indicates *E. coli*. Results are stated as the presence or absence of coliform organisms per 100 milliliters. Non-coliform organisms are not produced.

FOR MORE INFORMATION

Please contact the Drinking Water and Groundwater Bureau and the New Hampshire Water Well Board at (603) 271-2513 or <u>dwgbinfo@des.nh.gov</u> or visit our website at <u>http://des.nh.gov/organization/divisions/water/dwgb/index.htm</u>. All of the bureau's fact sheets are online at <u>http://des.nh.gov/organization/commissioner/pip/factsheets/dwgb/index.htm</u>.

Note: This fact sheet is accurate as of September 2010. Statutory or regulatory changes or the availability of additional information after this date may render this information inaccurate or incomplete.

This page intentionally left blank.

WD-DWGB-4-2

2010

Causes of Positive Bacteria Results in Water Samples

This fact sheet helps to identify possible causes of positive bacteria results in drinking water samples. These causes can be categorized as either: true bacterial contamination of the water system, or errors of various types.

True Bacterial Contamination

Total and fecal coliform (including *E. coli*) grow in the intestinal tracts of animals including humans. Outside the host, these bacteria die off quickly, typically within 30 days. Therefore, if coliform bacteria are identified in a well over a long period of time, it is presumed that bacteria are continuously entering the well or aquifer as the water is withdrawn. Listed below are a number of pathways by which bacteria may enter a water system.

A. Bacterial Contamination Caused By Poor Well Construction

Poor well construction is by far the most common explanation for bacteria in water samples from wells.

Contamination of Dug Wells. Common construction problems with dug wells include a lack of mounded backfill around the outside of the well casing, insufficient casing height above the ground level, inadequate or leaky well cover, and holes or unsealed joints in the sidewall of the upper portion of the well casing.

Older wells made from fieldstone usually have many of these unsealed passageways and thus have very frequent bacterial problems. These well construction problems can sometimes be confirmed by looking for leakage on the inside of the well casing after a heavy rainstorm or simulated "rain" from a garden hose. Refer to <u>WD-DWGB-1-4</u>, "<u>Dug Well Design</u>," for the recommended design of a dug well.

Contamination of Springs. Construction problems in springs are similar to those of dug wells with one addition: the frequent entry of bacterial contaminants in the reverse direction through the overflow pipe. See <u>WD-DWGB-1-5</u>, "Residential Spring Well Design for proper spring construction recommendations."

Contamination of Bedrock Wells (also called artesian or drilled wells). Common construction problems with bedrock wells include a buried well head and an inadequate well cap. Installation of a pitless adaptor should prevent the leakage of bacteria-laden surface water directly into the well. Construction problems with bedrock wells can sometimes be confirmed by identifying leakage on the inside of the well casing after a heavy rainstorm or from simulated "rain" from a garden hose. See <u>WD-DWGB-1-2</u>, "Bedrock (Artesian, Drilled) Well Design," for the recommended design of a bedrock well.

B. Contamination Caused by Recent Well Pump Installation, Replacement, or Plumbing Repair Recent repair or pump replacement is the second most likely cause of bacteria in water samples.

New Pump Installation or Plumbing Work. When a submersible pump is taken out of a well or when a new pump is prepared for installation, it is typically placed directly on the ground near the well. When this occurs, bacteria-laden dirt often adheres to the pump, the water discharge line, and/or the electrical power cable. This material then contaminates the well when the pump is installed. After reinstallation of the pump, time and flushing are necessary to remove this solid material from the assembly. Disinfection should be conducted only after flushing to loosen this material has occurred.

When recent work has been done on the home's plumbing system, such as hot water tank replacement, pipe installation, etc., bacterial problems will likely be experienced for a few days thereafter. Very strong flushing, followed by chlorination if necessary, will likely clean the plumbing system of bacteria.

Newly Constructed Wells. The installation of any new well normally allows substantial bacteria to enter the fractures of the bedrock or the soil around the outside of the dug well casing. Mud and soil particles protect these bacteria from disinfection. Sustained flushing is needed to remove this mud, pulverized rock, and bacteria prior to disinfection. In rare cases, the removal of construction debris may take months.

C. Contamination Caused by Physical Damage to the Aquifer's Filtration Capability

Bacteria are normally removed from groundwater as water percolates through soil. However, it is possible, but unlikely, that bacteria will move through the soil or the bedrock fractures for significant distance.

Dug Wells. Bacteria and viruses may travel through certain coarse soils with insufficient filtration capacity. There is no practical way to improve soil filtration in deeper layers. The location at which the bacteria entered the soil could possibly be found by using tracer dye; however the inadequate soil filtration, caused by large soil particles, would remain. This means the well would still be vulnerable to other bacterial events in the future. Even if treatment of the well water were added, the varying levels of bacterial contamination could exceed the capability of the treatment process at one or more times in the future. DES generally recommends that a different type of well be installed, if soil filtration is proven to be inadequate.

Bedrock Wells. Contamination of bedrock fractures can occur when the overlying soil is stripped from the top of the bedrock or when the upper bedrock is blasted or ripped loose. Drilling a new well can also create localized short-term bacterial contamination of bedrock fractures. Normally these construction activities will be of short duration. When the soil backfill is replaced in the disturbed area, the filtration should be reestablished. Conditions which normally remove filtering soil and expose fractures in the bedrock include:

- Road cuts through bedrock outcrops.
- Excavation into bedrock for swimming pools or house foundations.
- Artesian well drilling on other lots.
- Abandoned but uncapped bedrock wells on other lots.

DES recommends waiting out the replacement of the soil backfill at construction sites and the natural die-

off and self cleansing process that will follow. Water quality should improve once the soil is replaced and has achieved compaction. There will likely be weeks of lag time between the replacement of soils and the end of the bacterial presence.

D. Biological Activity Occurring within Treatment Equipment and Piping

Water treatment equipment often uses sand or other media to filter bacteria from drinking water. This action typically brings bacteria together on the filter media. In such cases, the filtration provides an easily-obtained, concentrated food supply for these bacteria to sustain themselves.

Biofilm. Biofilm is a name given to a layer of biological material on the inside of pipes, tanks, etc. This material contains both mineral deposits and biological material. For reasons still not well understood, this material may grow at an accelerated rate for certain periods. As this occurs, some of this biological material may detach from the pipe, tank, or treatment devices and be present in water samples. This material generally cannot be seen. It is difficult to completely kill this biological layer. If this material contains organisms of the total coliform group, these cells could lead to detection of total coliform. One cannot differentiate between total coliform biofilm often present in pipes and bacteria originating directly from a disease source.

Although biofilm is a possible cause, not all positive bacterial tests are the result of biofilm. It is critically important that all other technical explanations for the presence of bacteria be fully explored. In all of these cases, well water samples should be taken after heavy precipitation to help differentiate well construction or soil filtration problems from bacteria associated with the distribution, plumbing, or treatment systems.

II. Sampling or Testing Errors

Each of the instances below identifies a possible error condition. In many cases, errors creating positive bacterial results can be differentiated from those bacteria attributed to poor construction and/or poor soil filtration by taking additional bacterial samples. Errors will not likely be repeated, whereas real construction or filtration problems will show either a constant or highly irregular presence of bacteria. Neither one good (nor one bad) bacteria sample can be considered sufficient testing to judge the long term consistency of a system's water quality.

A. Sample Collection Was Improper

Improper bacteria sample collection is a common error. Poor sampling practice can make a good water sample appear bad.

The following procedure should be used when collecting a bacteria sample.

- Use a fixed (non-swivel) cold water faucet.
- Remove all faucet devices (aerators, filters).
- Flush for 5 minutes at high velocity. (See additional comments below)
- Slow water flow to a trickle.
- Open sample bottle, hold cap facing down. (Do not set cap down)
- Fill bottle, leave 1" air space, recap bottle.
- NOW turn off water.

Wiping the sample faucet with a chlorine solution, flaming the faucet, or strong flushing are methods that have been practiced in the past to ensure that the end of the sample faucet is clean. The goal is to prevent a dirty faucet from contaminating an otherwise clean water sample. Remember that any chlorine in the

sample container, that has not been neutralized, prevents the sample from being processed for bacteria. For this reason, always flush the faucet thoroughly after wiping with a chlorine solution.

B. Dirty Sample Bottle, Data Recorded Inaccurately

Other error conditions include old sample bottles or bottles subject to contamination during preparation or transit. Laboratory processing may create positive bacterial test results as may a variety of clerical errors. These are very rare occurrences and these possibilities can be addressed by taking one or more additional sample(s).

FOR MORE INFORMATION

Please contact the Drinking Water and Groundwater Bureau and the New Hampshire Water Well Board at (603) 271-2513 or <u>dwgbinfo@des.nh.gov</u> or visit our website at <u>http://des.nh.gov/organization/divisions/water/dwgb/index.htm</u>. All of the bureau's fact sheets are online at www.des.nh.gov/-organization/commissioner/pip/factsheets/dwgb/index.htm.

Note: This fact sheet is accurate as of September 2010. The availability of additional information after this date may render this information inaccurate or incomplete.