

600 State Street, Suite 2 Portsmouth, NH 03801 tel 603-433-1935 fax 603-433-1942

December 22, 2017

StoneHill Project No. 15046

Mr. Mike McCluskey Oil Remediation & Compliance Bureau New Hampshire Department of Environmental Services P.O. Box 95, Concord, NH 03302-0095

RE: Supplemental Site Investigation and Remedial Action Plan Former Dagostino Rose Farm Oak Street Extension, Exeter, NH NHDES Site #201203003

Dear Mr. McCluskey:

This is to inform you that a Supplemental Site Investigation (SSI) Report and Remedial Action Plan (RAP) Report, completed by StoneHill Environmental, Inc., has been uploaded to the New Hampshire Department of Environmental Services One Stop Data and Information database. The SSI and RAP is specific to the remediation of lead contaminated soil in the area of three former greenhouses, solid waste and soil containing ash in the former boiler and packing building area, and sediments in a manmade retention basin located south of the former greenhouses at the former Dagostino Rose Farm, Oak Street Extension, Exeter, NH.

Please do not hesitate to call us with any questions you may have concerning the report.

Sincerely,

StoneHill Environmental, Inc.

Allen Wyman Project Manager

cc: Todd Baker, Exeter Rose Farm, LLC Brenda Kolbow, MSC

Timorto Diamo

Timothy S. Stone, PG President

Department of Environmental Services Contaminated Site Management Remedial Action Plan Check List

The objective of this document is to improve the quality of the Remedial Action Plans, submitted under New Hampshire Code of Administrative Rules Env-Or 600 *Contaminated Site Management*. Quality reports are fundamental to reducing DES review time and backlog, and will lead to faster remediation and site closures.

It is recommended that this check list be submitted with all Remedial Action Plans. All items must be checked. For items that are not applicable, "N/A" is to be checked and provide an explanation in the comments column. If you have questions as to the applicability of any items please contact DES staff. Check "Yes" only if the Remedial Action Plan adequately documents the required information and include in the comments field the page number where the item can be found in the Remedial Action Plan. Failure to provide adequate information required by Env-Or 600, will result in department disapproval of the Remedial Action Plan.

Site Number: NHDES# 201203003	Document Title:Remedial Action Plan
Site Name:Dagostino Rose Farm	Document Date:December 21, 2017
Site Address:Oak Street Extension	Consultant Company:StoneHill Environmental, Inc
Site City/Town:Exeter	Licensed Professional:Timothy Stone

REMEDIAL ACTION PLAN CRITERIA	YES N/A	COMMENTS	DES USE ONLY Adequate Inadequate
 Professional Registration a. Professional Engineer Seal (Env-Or 606.10(c)) 		Timothy Stone	

REMEDIAL ACTION PLAN CRITERIA	YES N/A	COMMENTS	DES USE ONLY Adequate Inadequate
 Provide recommendations to: a. Remove or treat the source of contamination, Env Or 606.10(d)(3)a. b. Contain the contamination source to limit the impact to groundwater, surface water, and soil to the extent feasible, Env-Or 606.10(d)(3)b. c. Protect human health from exposure through the indoor air exposure pathway, Env-Or 606.10(d)(3)c. d. Protect human health from exposure through the direct contact exposure pathway, Env-Or 606.10(d)(3)d. e. Contain contaminated groundwater within the limits of a groundwater management zone, Env-Or 606.10(d)(3)e. f. Restore groundwater quality to Ambient groundwater Quality Standards (AGQS), Env-Or 606.10(d)(3)f. g. Restore soil quality to the S-1 soil cleanup standards, Env-Or 606.10(d)(3)g. Provide a summary of the site investigation including: a. Site Background Information, Env-Or 606.12(a). b. Summary of Subsurface Explorations and Sampling, Env-Or 		Lead impacted soils and sediments Additional details of background, geology, hydrology and contaminants can be found in historical reports.	
 606.12(a). c. Site Geology and Hydrology, Env-Or 606.12(a). d. Conceptual Model including contaminant contour maps, Env-Or 606.12(a). 		See Figure 6, contouring not applicable	
 4. Provide a remedial alternative evaluation of a minimum of 2 alternatives or combination of alternatives which includes: a. Effectiveness and reliability comparison, Env-Or 606.12(c)(1). b. Feasibility and ease of implementation comparison, Env-Or 606.12(c)(2). c. A risk/benefit comparison, Env-Or 606.12(c)(3). d. A cost effectiveness comparison using the present worth of all future costs, Env-Or 606.12(c)(4). e. A clean-up time comparison, Env-Or 606.12(c)(5). f. A justification for the recommended alternative; Env-Or 606.12(d). 		Excavation and off-site disposal of lead contaminated soils is the only option given the proposed residential use of the property.	

	REMEDIAL ACTION PLAN CRITERIA	YES	N/A	COMMENTS	DES US Adequate I	
	he recommended alternative, provide the following information: A site map showing the remedial system lay out including areas of influence, Env-Or 606.12(e)(1). A preliminary process flow diagram showing major system components and controls, Env-Or 606.12(e)(2). Final and interim contaminant reduction performance standards including target dates, Env-Or 606.12(e)(3). Recommendations for conducting any additional investigations, pilot tests, or bench scale studies, Env-Or 606.12(e)(4). A description of performance monitoring, including monitoring locations and frequency, Env-Or 606.12(e)(5). A schedule for implementing the recommended alternative, Env-Or 606.12(e)(7). A list of federal, state, and local permits required, Env-Or 606.12(e)(8). A description of any activity and use restrictions being proposed at the site, Env-Or 606.12(e)(9).			Remediate until lead in soils < NHDES SRS and sediments < ecological PEC Post excavation soil sampling Between spring 2017 and winter 2018 Wetland permit to be submitted by Marc Jacobs, certified wetland scientist		
6. Prov a. b. c.	ide the following: Recommendations for potable water to receptors when a water supply well exceeds AQGS Env-Or 606.12(f). A proposed GMZ overlaid on a tax map, Env-Or 606.12(g). Water Well Board Completion Report Prepared by Licensed Technical Driller (HB 459).		\boxtimes			

DES USE ONLY Overall Report: Approved D

Disapproved

Approval Decision Comments:

Type of Submittal	Petroleum Reimbursement Fund Phase		
(check one)	(check one)		
 Workscope/Budget Technical Report Reimbursement Request Monitoring Result (Pre-permit) Monitoring Result (Post-permit) 	 Initial Response Action Free Product Removal Initial Site Characterization Site Investigation Remedial Action Plan Remedial Design Plan Remedial Implementation Operations/Monitoring Groundwater Management Permit 		

Supplemental Site Investigation and Remedial Action Plan

Former Dagostino Rose Farm Oak Street Extension, Exeter, NH NHDES Site #201203003

Prepared For:

Exeter Rose Farm, LLC 953 Islington Street, Suite 23D Portsmouth, NH 03801 (603) 425-8598 Contact: Mr. Todd Baker

Prepared by:

StoneHill Environmental, Inc. 600 State Street, Suite 2 Portsmouth, NH 03801 (603) 433-1935 Contact: Timothy Stone

December 21, 2017 StoneHill Project No. 15046

RECOMMENDED	RISK (Check one)	CATEGORY
 1. Immediate Human Health Risk (Impacted Water Well, etc.) 2. Potential Human Health Risk (Residential well within 1000' or site within wellhead area) 3. Free Product or Source Hazard 	 4. Surface Water Impact (Actual Impact to Class B or Potential Impact to Class B) 5. No Alternate Water Available/ No Existing Wells in Area 6. Alternate Water Available/ High Level Groundwater Con- tamination (> 1,000 x AGQS) 	 7. Alternate Water Available Low Level Groundwater Contamination (< 1,000 x AGQS) 8. No AGQS Violation/ No Source Remaining

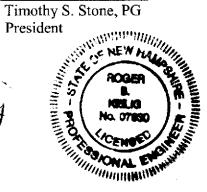
Supplemental Site Investigation and Remedial Action Plan

Former Dagostino Rose Farm Oak Street Extension, Exeter, NH NHDES Site #201203003

Prepared for:

Exeter Rose Farm, LLC 953 Islington Street, Suite 23D Portsmouth, NH 03801

Prepared by:


StoneHill Environmental, Inc. 600 State Street, Suite 2 Portsmouth, NH 03801

December 21, 2017 StoneHill Project No. 15046

Allen Wyman Project Manager

Roger B. Keilig, P.E., PG Project Reviewer

Table of Contents

Supplemental Site Investigation and Remedial Action Plan Former Dagostino Rose Farm Oak Street Extension, Exeter, NH

Section	Page No.
1.0 INTRODUCTION	5
 2.0 SUMMARY OF SITE CONDITIONS	6 8 9
 3.0 CONCEPTUAL SUMMARY	12 12
 4.0 REMEDIAL ALTERNATIVES	13 13
 5.0 REMEDIAL ACTION PLAN	15 16 19
6.0 LIMITATIONS	19

LIST OF FIGURES

- Figure 2 Tax Map
- Figure 3 Site Plan
- Figure 4 Groundwater Contour Plan
- Figure 5 Remediation Areas
- Figure 6 Former Greenhouse Area Field Investigation
- Figure 7 BPB Area Pre-consolidation
- Figure 8 BPB Area Post-consolidation
- Figure 9 Grid Former Greenhouse Area

LIST OF TABLES

- Table 1 Summary of Groundwater Elevation Data
- Table 2 Former Greenhouse Area Field Investigation XRF Lead Results
- Table 3 Former Greenhouse Area Field Investigation XRF and Laboratory Data Results
- Table 4 PBP Area Test Pit Descriptions, StoneHill
- Table 5 Summary of BPB Area Soil Analytical Data & Credere Test Pit Descriptions
- Table 6 Summary of Groundwater Sample Analytical Results
- Table 7 Summary of Sediment Sample Analytical Results

LIST OF PHOTOGRAPHS

- Photograph 1 Aerial view to the north of greenhouses circa 1958.
- Photograph 2 Current view of former greenhouse area facing east.
- Photograph 3 View facing north of former packing building.
- Photograph 4 View of solid wastes and appliances in Former Boiler and Packing Buildings Area.
- Photograph 5 View facing east of concrete and solid wastes discarded on bank behind former packing building.
- Photograph 6 View facing south of solid wastes on bank behind former boiler building.
- Photograph 7 View west of 12-inch pipe behind former packing building.
- Photograph 8 View looking east of interior of former packing building.
- Photograph 9 View of trench in GH #3.
- Photograph 10 View looking west of Basin #4.
- Photograph 11 View looking west of 12-inch culvert in Basin #4.
- Photograph 12 View looking west of 12-inch culvert in Wetland H.
- Photograph 13 View of concrete in GH Area.
- Photograph 14 View of concrete in GH Area.

LIST OF APPENDICES

- Appendix A Credere Test Pit and Boring Logs
- Appendix B Laboratory Analytical Data

Supplemental Site Investigation and Remedial Action Plan Former Dagostino Rose Farm Oak Street Extension, Exeter, NH NHDES Site #201203003

1.0 INTRODUCTION

The Former Dagostino Rose Farm, Oak Street Extension, Exeter, NH (Site), approximately 41 acres, is located in "The Oaklands" section of Exeter, on the north end of the downtown area (Figure 1 and 2). The historical use of the property included the construction of three large greenhouses (GH1 to GH3), a boiler building and rose packing building circa 1940, in which a commercial rose growing facility was active until the 1990s (Photograph 1). Activities at the Site have remained relatively inactive following the closure of the rose farm. Decades prior to that, the Site was used for brick manufacturing. At some point during these activities, man-made apparent unlined water containment basins (Retention Basins) were also constructed (Figure 3). The historical uses of the Site have, by best current estimate, resulted in:

- 1. A release of lead to soils within the area of the three former greenhouses (± 3 acres).
- 2. Deposition of fill containing coal ash, brick, concrete, metal and large electrical goods (such as a washing machine) west of the former boiler and packing buildings (BPB Area), of approximately 1 acre.
- 3. Lead impacted soil and/or sediments in man-made Retention Basins #1, #2, #3 and #4 (±0.3 acres).

The soil (shallow) lead contamination is believed to be the result of a lead based caulking used while glazing the greenhouse windows, likely scattered throughout the Former Greenhouse Area upon the greenhouse demolitions in the 1990s. Given the lead impacted soils were thereafter exposed to precipitation events, it is likely the lead contamination discovered in the man-made retention basin sediments were the result of overland flow from the greenhouse area. The deposition of soil containing ash, filled in along a slope behind the boiler building on the western side of the property, was likely the result of soil mixed with ash from the former brick manufacturing operations. These areas of fill and lead contamination were first identified via site investigations conducted by Credere Associates, LLC, Westbrook, ME (Credere) between 2012 and 2016 in support of the Rockingham Planning Commission, Exeter, NH (Commission). The Credere reports on file with the New Hampshire Department of Environmental Services (NHDES) include:

- Phase I Environmental Assessment (ESA) Report, April 2012
- Site-Specific QAPP Addendum, November 2012
- Supplemental Phase II ESA Work Plan, July 2015
- Phase II Environmental Site Assessment, November 2015
- Phase II Environmental Site Assessment, April 2016
- Supplemental Phase II Environmental Site Assessment, July 2016
- Amendment to Supplemental Phase II Environmental Site Assessment, September 2016

On January 27, 2016, following the Credere November 2015 Phase II Site Assessment report, the NHDES provided the Commission a letter requesting additional investigations, remedial actions, or longer-term monitoring of contamination at the Site. Specifically, the NHDES requested additional soil sample collection and analysis to determine the extent of lead contamination in the Former Greenhouse Area, further delineation of the soil containing ash in the BPB Area, as well as a proposed approach to address sediment impacts in areas now designated as Basin #4 and Wetland H. Credere began additional investigative work and submitted an amendment to the Phase II in September 2016, addressing some of the concerns identified in the NHDES letter. By this point, however, Exeter Rose Farm, LLC, Portsmouth, NH (Exeter Rose) had declared their interest in, and eventually purchased the Site in August 2017 for a proposed residential development. As a follow-up to the work completed by Credere and NHDES request for additional actions, Exeter Rose retained StoneHill Environmental, Inc., Portsmouth, NH (StoneHill) to complete the additional site investigations and develop a Remedial Action Plan (RAP). This Site Investigation Report (SIR) and RAP is the result of work conducted by StoneHill to address portions of the NHDES letter and includes recent test pits, soil data and groundwater elevation measurements. This additional assessment determined the extent of site contamination and/or fill in three areas; i) the lead impacted soil within the footprint of the former greenhouses, ii) the lead impacted sediments in Basin #4 and Wetland H, and iii) the soil containing coal ash and solid waste deposition in the BPB Area. This RAP recommends methods of addressing these three areas. This RAP does not address building demolition regulated material abatement, such as for asbestos or lead paint. This RAP is specific to the lead in the surficial soils within the Former Greenhouse Area, fill in the Former Boiler and Packing Building Area, and mitigation of lead in the sediments of Basin #4.

This RAP requires no direct engineering of the recommended remedial actions. MSC Civil Engineers (MSC), 170 Commerce Way, Suite 102, Portsmouth, NH, is working with Exeter Rose to submit final grading elevations to the town and will be responsible for post remedial site grading and completion as necessary for the proposed development. Similarly, Marc Jacobs, New Hampshire certified wetland and soil scientist will be acquiring any necessary state and local wetland permits prior to StoneHill implementing the recommendations in this RAP.

2.0 SUMMARY OF SITE CONDITIONS

2.1 Site Description

The property includes three parcels of land totaling 41+/- acres of primarily undeveloped, wooded area with a brook, a natural spring and several man-made retention basins. Aside from a three car garage on the property intermittently used for automobile repair, there are currently no commercial or industrial operations ongoing at the property. There are four occupied residential structures located on the southern portion of the property. Additionally there are three dilapidated mobile homes and one house, uninhabitable and unoccupied, located on the northern portion of the property. A detailed description of the historical uses of the property can be found in the Credere reports listed above and on file at the NHDES. Currently, the property is owned by Exeter Rose for the proposed development as a residential subdivision with municipally supplied water and sewer. Groundwater elevation data (Table 1) reveals groundwater flow through the Former Greenhouse Area is to the west toward Norris Brook, which flows southerly (Figure 4).

Page 6 of 20 December 21, 2017 Project No. 15046 The subjects of this RAP include three areas on the property; one area is approximately 3 acres within the footprint of the former greenhouses used between the 1940s to the 1990s to grow roses. The second is an area of fill containing coal ash, concrete, brick and solid waste historically disposed of over an embankment on the western edge of the property in the BPB Area (± 1 acre). The third area is a man-made retention basin (Basin #4) of approximately 0.2 acres and jurisdictional wetland (Wetland H) on the east and west sides of Oak Street Extension, respectively.

The Former Greenhouse Area

The Former Greenhouse Area is currently covered in grass, bushes and trees (Photograph 2). Concrete slabs and metal greenhouse window frames are partially buried throughout the footprint of each of the three former greenhouses. Several concrete drainage troughs exist throughout the length of and perpendicular to each of the former greenhouses (Figure 5). These appear to have historically drained water used in the greenhouses to piping along the south edge of the southernmost greenhouse (GH#3), which likely drained into Basin #4.

Glass, wood and caulking is mixed to approximately two feet below ground surface (bgs) within the dark sand, silt and organic matter (loam) throughout areas of the Former Greenhouse Area. Native silt and clay is present below the loam. Three small man-made retention basins (Basin #1, #2, and #3), dug into the silt and clay, currently exist within the Former Greenhouse Area. Shallow exploratory excavations within the Former Greenhouse Area reveal groundwater perched intermittently on the silt and clay after precipitation events. However, groundwater elevation measurements collected from monitoring well CA-MW-102, located in the approximate center of the Former Greenhouse Area, reveal a groundwater level at 11.78 feet below the existing grade on September 25, 2017.

Former Boiler and Packing Buildings Area

An area of mixed soil and coal ash as well as solid waste debris (fill) is located off the southern edge of the former BPB Area, and covers an area approximately 550 feet by 150 feet along the west side of Oak Street Extension (Photograph 3). Soil containing coal ash, concrete pieces, household appliances, asphalt, bricks, glass, and other debris vary in depth in this area between 3 to 13 feet bgs (Photographs 4 - 6). There is a 12-inch metal pipe (within which is a smaller diameter pipe) coming from the embankment beneath the existing packing building, thought to be associated with a floor drain within the packing building (Photograph 7). The 12-inch pipe is believed to have been placed to protect the smaller pipe. StoneHill observations of the packing building revealed layers of white goods and wood debris (from the collapsing roof) covering the floor throughout the packing building, thus making identification of the floor drain infeasible without significant debris removal (Photograph 8).

Retention Basin #4 and Wetland H

As discussed above, it appears that excess water from the greenhouse operations drained through troughs (Photograph 9) within the former greenhouses to pipes located adjacent the south side of GH#3 to the man-made retention Basin #4 (Photograph 10). The depth of Basin #4 is unknown. The overflow from Basin #4 drains through a 12-inch diameter concrete pipe (Photograph 11) that runs westerly under Oak Street Extension to Wetland H (Photograph 12). The inlet of the concrete pipe is significantly higher than high-water staining and flora elevations within the banks of Basin #4 indicating the likelihood that the pipe currently drains water from Basin #4 only during significant rainfall events. It is possible, during the active use of the greenhouses, greater quantities of water resulted in higher water levels within Basin #4, thus explaining the need for overflow drainage from Basin #4, beneath Oak Street Extension into Wetland H.

Wetland H is a shallow depression located adjacent the Oak Street Extension westerly embankment, beyond which is another jurisdictional wetland (Wetland B) that borders Norris Brook. Although the ground surface in Wetland H was wet during the spring of 2017, it does not retain surface water.

2.2 Assessment of Lead Impacted Soils in the Former Greenhouse Area

In response to the NHDES request to delineate the lead contaminated soil in the Former Greenhouse Area initially identified by Credere, StoneHill completed sampling and lead analyses of surficial soils around and throughout the footprint of the former green houses (Figure 6). On May 17th, 18th and June 9th 2017, StoneHill sampled 121 locations (F-1 through F-106, and A through O) at multiple depths (surface to 18 inches), 11 wood samples (W1 through W11), and 8 caulking samples (G1 through G8). Field concentrations of lead in each sample (204 samples in total) were measured using a Scientific Niton XL3t GOLDD+ XRF Analyzer (XRF). These samples were collected primarily from a layer of loam which is present to depths up to 2 feet bgs. The results are presented in Table 2. Based upon the XRF results, select sample locations were resampled and submitted to Absolute Resource Associates, Portsmouth, NH, for laboratory confirmation of the field measured lead results (Table 3). Comparison of the laboratory and field results indicated that the XRF could be relied upon to read at least 75 percent of lead concentrations reported by the laboratory. The laboratory and field measurement results indicate that lead contaminated soils, likely above the NHDES Soil Remediation Standards (SRS) of 400 mg/kg, are scattered throughout the Former Greenhouse Area. The laboratory analytical data is provided in Appendix B.

As shown by the field and laboratory analytical data of soil samples (A through M) collected from outside of the perimeter of the Former Greenhouse Area, the lead impacted soils are contained within a few feet of the footings of the former greenhouses.

To assess the vertical extent of the lead contamination, clay and silt samples were collected from 18 and 24 inches bgs, beneath the layer of loam, at select locations (F11, F23, F40, and F86) throughout the Former Greenhouse Area. These samples were submitted to Aquarian Analytical Laboratory in Canterbury, NH (Aquarian) for total lead analyses. The highest lead concentration

reported was 20.1 mg/kg, indicating that the lead contamination is likely confined within the loam. Lead soil sample locations and the corresponding XRF field measurement results are depicted in yellow on Figure 6.

This additional investigation revealed that lead contaminated soil above the NHDES SRS of 400 mg/kg exists in the loam throughout, but is primarily contained within, the Former Greenhouse Area to depths of approximately 2 feet bgs.

2.3 Test Pitting and the Extent of Ash Impacted Soil in the BPB Area

To address the NHDES request to provide further information in the delineation of the soil containing coal ash and solid waste fill in the BPB Area, StoneHill conducted several test pits (TP-107 through TP-114) on June 2, 2017 (Figure 7). The StoneHill test pits were located primarily along the edges of the impacted area previously identified by Credere. Based on the test pit descriptions provided in Table 4 and a visual assessment of the area, the extent of fill identified by Credere was decreased slightly in the south end of the area identified by Credere. Specifically, Credere identified fill material in the eastern edge of Wetland B. StoneHill noted no significant amount of solid waste in that area. Further, to address the NHDES request to revise the location of coal ash containing soil in relation to the solid waste area to better reflect current conditions, StoneHill reviewed the analytical data and test pit descriptions provided in the Credere test pit and boring logs (Appendix A) along with descriptions from the recent StoneHill test pits. The review resulted in the locations of coal ash impacted soil and solid waste as depicted in Figure 7. This reflects differences in the solid waste fill and ash locations identified in in the July 29, 2016, "Supplemental Phase II Environmental Site Assessment," Figure 2. Specifically, it appears Credere transposed the identifiers in the legend on Figure 2 between the "Approximate Area of Coal Ash and Clinker" and "Approximate Area of Solid Waste Fill." That is, StoneHill's review of the Credere logs indicate that the coal ash area identified by Credere is actually solid waste and the area identified as solid waste is actually soil containing ash. Also, what was identified as coal ash and clinker in Credere Figure 2, according to the Credere boring logs, is more accurately identified as sand, silt, clay, gravel, clinker and ash. Given this, it does not appear that the embankment in the BPB Area is just coal ash but rather fill material generated elsewhere on the property and used to fill the embankment in the BPB Area prior to the construction of the former boiler building. It is likely that coal ash generated as part of the historical use of the Site for brick manufacturing was, at some point, mixed with sand, silt, clay, and gravel for the purpose of filling the embankment on which the boiler and packing buildings were constructed.

2.4 Sources of Contamination

Former Greenhouse Area

It is likely that the source of lead contamination in soils within the Former Greenhouse Area is lead based caulking used when glazing the greenhouses. The laboratory result for total lead of a composite sample of caulking collected from various locations throughout the Site was 5,600 mg/kg. Mr. Dagostino, the former owner and operator of the greenhouses, also indicated that lead powder was used to make caulking that was then used during the replacement of window panes. During field activities, StoneHill noted that the caulking is primarily adhered to pieces of

old wood and metal trim used to hold the greenhouse window panes in place.

The composite sample of caulking was also analyzed for polychlorinated biphenyls (PCBs), often associated with old caulking. The results identified PCBs (Aroclor 1254) at 0.224 mg/kg. Although the PCB result from the caulking is lower than the NHDES SRS of 1 mg/kg, the existence of PCBs within the caulking raised the question as to the existence of PCBs in the area soils. It was assumed that soil samples with high lead levels were the best candidates for PCB analyses because the same soils exposed to lead leaching from the caulking would be the most likely to be exposed to PCB leaching from that same caulking. To assess the possibility that PCBs leached from the caulking into the soils, three known lead contaminated soil samples (F-20, F-24 and F-63) were analyzed for PCBs. The analytical results for PCBs were all below the laboratory detection limit of 0.0720 mg/kg.

To assess the possibility of removing the lead contaminated soils to an off-site disposal facility, the three lead contaminated soils were also analyzed for eight Resource Conservation and Recovery Act (RCRA) total metals and leachable lead via total characteristic leaching procedure (TCLP). The TCLP result associated with the greatest reported concentration of total lead in the three samples (1,570 mg/kg) was 1.51 milligrams per liter (mg/l). This is below the TCLP lead limit of 5 mg/l for acceptance of lead contaminated soils at various New Hampshire soil disposal facilities. Aside from lead, none of the other seven total metals results were above the NHDES SRS.

Former Boiler and Packing Building Area

Relative to the source of the low concentrations of PAHs identified in two samples (CA-SB-1 and CA-SB-4) collected from the historical fill in the BPB Area, these are likely the result of asphalt noted to be within the samples submitted to the laboratory. Further, no source was discovered for the arsenic concentrations reported in sand, silt, and clay samples collected from CA-SB-4 (67 mg/kg) and CA-TP-102 (45 mg/kg) in the BPB Area. However, these results are well within one order of magnitude of the site established background (up to 27 mg/kg). Given no clear source of arsenic and the similar background levels, it is likely the arsenic reported in CA-SB-4 and CA-TP-102 is background.

The above stated conclusions are based upon a review of test pit and boring descriptions and laboratory data of debris samples collected by Credere. In all, nine locations were sampled at multiple depths throughout the BPB Area (CA-TP-100A, 101, 102, 104, 105, and CA-SB-1, 2, 4, 5). In total, 14 samples were collected and submitted for laboratory analyses of TPH, VOCs, PAHs, metals, pesticides, and/or PCBs (Table 5). Of those, two samples (CA-SB/MW-1 and CA-SB/MW-4) contained benzo(a)anthracene (2.4 mg/kg), benzo(b)flouranthene (1.8 mg/kg), and/or benzo(a)pyrene (2.1 mg/kg), above the NHDES SRSs of 1 mg/kg, 1 mg/kg, and 0.70 mg/kg, respectively. As the development of the NHDES SRS standards includes a leaching component, and the three PAHs from these two locations were above the NHDES SRS Standards, the groundwater sample results from MW-1 and MW-4 were reviewed to assess whether the PAH impacted soils were leaching and thus affecting the groundwater at those locations. The three PAH compounds were below the groundwater method detection limits of 0.7 ug/l, 0.7 ug/l, and 0.3 ug/l, respectively. It should be noted, however, that the method detection limits are above the NHDES

GW-1 standards of 0.1 ug/l, 0.1 ug/l, and 0.2 ug/l, respectively.

The sample descriptions for CA-SB/MW-1 and CA-SB/MW-4 contain no reference to coal, coal ash, or coal clinkers. These two soil samples are identified as sand, silt, gravel, concrete, and asphalt. Given this, and the existence of anthracene and phenanthrene (petrogenic PAHs) in these two samples, it is likely the benzo(a)anthracene, benzo(b)flouranthene, and/or benzo(a)pyrene are associated with the asphalt in the sample and not coal ash. Further, the anthracene and phenanthrene that were found in the asphalt containing samples were not found in the ash containing samples CA-SB-2, CA-SB-5, CA-TP-101s, and CA-TP-105s, thus confirming the petrogenic nature of the PAHs. It is also unlikely the PAHs found in the two asphalt containing samples are the result of a release of a petroleum product such as diesel, oil/waste oil or gasoline given the laboratory results of the diesel range organics and volatile organic compounds in these two samples were below their respective analytical method detection limits. Given the available lines of evidence, it is likely the three PAHs detected above the NHDES SRS in CA-SB/MW-1 and CA-SB/MW-4 are the result of asphalt and thus considered background conditions per NHDES Env-Or 602.03ⁱ.

The laboratory results of arsenic in soil samples CA-SB/MW-4 (67 mg/kg) and CA-TP-102 (45 mg/kg) were above the background concentrations (up to 27 mg/kg), identified via samples BKG-1 and BKG-2. However, the soil sample descriptions for these two samples were sand, silt, and clay. There was no indication of ash, clinker, or cinders. Also, the difference in arsenic concentrations between these two samples (67 mg/kg and 45 mg/kg, respectively) and background (27 mg/kg) is well within an order of magnitude, and thus could be the result of Site or laboratory analysis variations. Also, the results of arsenic in the four "coal ash" reference samples (CA-SB-1 and 5, CA-TP-101S and 105S) were no greater than 13 mg/kg and thus the arsenic detected in CA-SB/MW-4 and CA-TP-102 are unlikely the result of coal ash or anything in the fill from which the four reference samples were collected. That is, the boring descriptions throughout the "ash filled" area are similarly identified as sand, silt, clay, or gravel and ash as is the case with the four reference samples. Thus, the analytical results for the four samples should be indicative of the fill throughout the "ash filled" area. Given the fill is unlikely a source and there are no other indications of a source of arsenic, it is likely these arsenic results are indicative of background.

To assess whether the arsenic identified in CA-SB/MW-4 and CA-TP-102 is leaching, arsenic results in groundwater samples collected from MW-4 and MW-1 (immediately downgradient of CA-TP-102) were reviewed and found to be non-detectable (<8 ug/l) and 9 ug/l, respectively. Both are below the NHDES GW-1 standard of 10 ug/l (Table 6). Given such, it is unlikely the arsenic reported in soils collected from CA-SB/MW-4 and CA-TP-102 is impacting groundwater above the NHDES GW-1 Standard.

Retention Basin #4 and Wetland H

The drainage piping, which runs along the south side of GH#3, leads to a man-made retention basin immediately adjacent the east side of Oak Street Extension (Basin #4), through a culvert beneath Oak Street Extension, to a wetland down slope of the west side of Oak Street Extension (Wetland H). Sediment samples collected from Basin #4 and Wetland H revealed lead levels up to

180 mg/kg and 220 mg/kg, respectively (Table 7). Although these are above the ecological probable effect concentration (PEC) for lead of 128 mg/kg (levels above which benthic invertebrates may be adversely impacted), these concentrations are below the NHDES SRS for lead of 400 mg/kg. As previously stated, it is likely that the lead contamination identified in Basin #4 and Wetland H is the result of sediment transport from the Former Greenhouse Area.

3.0 CONCEPTUAL SUMMARY

3.1 Former Greenhouse Area

As reported in the Credere April 2012 ESA, the property was purchased by the historical Exeter Rose Farm, Inc. in 1939 and the greenhouses were constructed by 1942. The property was reportedly operated by the Dagostino family as a rose farm until the 1990s and the greenhouses were razed by 1998. Lead contaminated soils, initially identified by Credere and further defined by StoneHill, are mixed with several concrete drainage troughs and large concrete slabs likely associated with the foundations and drainage systems of the three former greenhouses. Also, present within the soils is glass, wood and caulking. Although Credere reported their belief that the lead contamination in the area may be the result of lead based paint, additional investigation by StoneHill revealed lead levels, via XRF field measurements, up to 3,600 ppm in loam sampled from within the footprint of the former greenhouses. A composite sample of caulking (G1, G4, and G5) contained lead at 5,600 mg/kg. While sampling for lead in the Former Greenhouse Area, StoneHill noted that much of the caulking was found adhered to pieces of wood located around the perimeter of the three greenhouses and in the eastern portions of Greenhouses GH#2 and GH#3. Lead contaminated soils are contained within a few feet of the perimeter of the Former Greenhouse Area.

As previously discussed and depicted in Figure 6, the extent of lead contaminated soils within and beyond the former greenhouse locations is defined sufficiently to pursue the remediation plan proposed in this RAP, the objective of which will be the off-site disposal of soils contaminated with lead equal to or above the NHDES SRS for lead of 400 mg/kg.

3.2 Former Boiler and Packing Buildings Area

Prior to operation as a rose farm, the Site was reportedly used for the manufacturing of brick. Given that brick and coal ash are mixed in with the fill in the area behind the former boiler building location, it is likely coal was used for that process. This filled area slopes significantly downhill to the west and away from the boiler building, impacting jurisdictional Wetlands B and G at the toe of the slope. It appears that the soil containing coal ash, along with solid waste such as brick, concrete and residential appliances, was used to fill this area (Photographs 3 and 4). Given the varying ages of the mix of concrete, brick, coal ash, and appliances, it is likely this area was filled over decades. Several test pits, borings, and soil sampling and laboratory analyses conducted by Credere and StoneHill in and around the BPB Area resulted in the characterization and extent of the fill such that a recommendation can be made for managing this fill.

3.3 Retention Basin #4 and Wetland H

During site investigation activities, StoneHill noted concrete drainage troughs within the former greenhouses. It appears these troughs were used historically to drain excess water during the greenhouse operations to pipes located in a trench that runs east to west, along GH#3. The pipes subsequently drain into Basin #4. Given the concentrations of lead in soil samples collected from the Former Greenhouse Area, it is likely that the lead concentrations identified in sediments collected from Basin #4 and Wetland H are the result of sediment transport from the Former Greenhouse Area being deposited into these features. Rather than conducting an ecological assessment of the effects of the lead impacted sediment on benthic invertebrates, a sufficient understanding of the conditions exists to recommend a remedial alternative in lieu of additional study.

4.0 REMEDIAL ALTERNATIVES

4.1 Former Greenhouse Area

The proposed use of the property is as a residential development, some of which will be located in and around the Former Greenhouse Area. As such, the lead contaminant levels in area soils must be brought below the NHDES SRS of 400 mg/kg. This cannot be accomplished via on-site encapsulation or treatment. The only feasible means of lessening lead contaminated soils below residential levels in the Former Greenhouse Area is via the excavation and removal of the lead contaminated soils. Given this, Exeter Rose will remove soils contaminated with lead equal to or above the NHDES SRS lead standard of 400 mg/kg. These soils will be disposed off-site at a facility permitted to accept lead contaminated soils. As a preliminary assessment of acceptance of the material for daily cover, three lead contaminated soil samples (F-20, F-24, and F-63) were collected and analyzed for 8 RCRA metals and TCLP lead. Of the results for the 8 RCRA metals, only lead required further analyses via TCLP. Of the three soil samples, the highest total lead level was 1,570 mg/kg and the TCLP result was 1.51 mg/l. These results are within the acceptable criteria for disposal as daily cover at disposal sites within New Hampshire. As such, the remedial alternative will be the excavation and off-site removal of soil contaminated with lead equal to or greater than 400 mg/kg.

4.2 Former Boiler and Packing Buildings Area

This area, in part, currently impacts jurisdictional Wetland G. The only alternative for mitigating the wetland impacts is to remove the fill from within the jurisdictional wetlands and return the wetlands to their natural condition. To that end, the solid waste will be removed and the concrete and brick will be consolidated (Figure 8) in place east of the wetland boundary or otherwise used as road base elsewhere on the property. Similarly, the sand, silt, clay, gravel and coal ash impacted soil will be encased in place.

4.3 Retention Basin #4 and Wetland H

The NHDES January 27, 2016 response to the Credere Phase II requested an ecological risk characterization or the remediation of areas with sediments impacted with lead above the ecological PEC. If an ecological risk characterization is proposed, the NHDES requires that this RAP include a description of how the EPA Sediment Quality Triad ecological risk assessment will be conducted. The purpose would be to determine whether lead in sediments from man-made Basin #4 and Wetland H are detrimentally impacting benthic or higher trophic organisms that may consume aquatic life. Benthic (meaning "bottom-dwelling") organisms spend all or most of their time in water. Basin #4 is a waterbody that may sustain benthic organisms. Wetland H, however, is a distinct wetland area that does not retain surface water and thus cannot sustain benthic organisms. Also, relative to higher trophic organisms that may consume aquatic life, inorganic forms of lead do not bio-magnify within the food chain. Thus, the consumption of aquatic life from Basin #4 will not impact higher level trophic organisms. Even so, the sediment lead levels in Basin #4 are in excess of the ecological PEC for lead of 128 mg/kg. Given this, either an ecological assessment of lead impacts to benthic organisms living in Basin #4 must be performed or otherwise the sediments in Basin #4 must be remediated.

Given Wetland H does not sustain benthic organisms, lead does not bio-magnify, the strong adhesion characteristics of lead to soils, and laboratory results indicating lead concentrations in Wetland H being below the NHDES SRS, there is no beneficial justification for disturbing the wetland and associated flora for the sole purpose of removing lead impacted soils. Also, it is likely this area will be filled during the widening of the road. Thus, soils in Wetland H will not be removed and are not being considered while assessing remedial alternatives for this area.

As stated in the NHDES January 27, 2016 letter, "Depending on the volume of impacted sediment, a responsible party may determine it is more cost-effective to assume toxicity to organisms and move forward with remediation." Similarly, as stated in the 2005 NHDES Evaluation of Sediment Quality Guidance Document, "it may be more efficient to initially skip the triad and move directly to remediation." Given the cost of conducting an ecological risk assessment, and the uncertain outcome, sediments from Basin #4 will be remediated. There is no means of conducting in-situ encapsulation of the lead impacted sediments. As such, excavation of the sediments is recommended.

5.0 REMEDIAL ACTION PLAN

Site remediation activities will temporarily alter or eliminate site drainage features or other areas that involve wetlands which may trigger local, state or federal jurisdiction. Wetland permit applications will be prepared by Marc Jacobs, wetland scientist and submitted to the State of New Hampshire and Town of Exeter as appropriate prior to commencing excavation and remediation activities.

5.1 Former Greenhouse Area

Soil Excavation and Staging

Remedial actions in the Former Greenhouse Area will be completed by removing the largest pieces of concrete and metal (Photographs 13 and 14) and the material will be staged on 6 mill poly sheeting. Afterwards a pattern of 50 foot by 50 foot grids will be laid across the Former Greenhouse Area (Figure 9). Starting at the east end of the Former Greenhouse Area, soil will be removed to the native silt and clay (approximately 2 feet bgs) from each grid and stockpiled on 6 mill poly sheeting resulting in multiple, approximate 200 ton piles.

Any residual pieces of concrete and metal not previously removed will be staged separately. Representative composite soil samples will be collected from each stockpile and submitted to a NHDES certified laboratory for total lead analysis. Soil samples from stockpiles shown to contain total lead concentrations equal to or greater than the NHDES SRS of 400 mg/l will be further analyzed for the disposal parameters necessary for off-site disposal and transported from the staging area to the receiving facility. This will be ongoing, thus allowing for additional staging as the excavation in the Former Greenhouse Area continues west. Stockpiles shown to contain lead concentrations below 400 mg/kg will remain stockpiled for eventual reuse on site. All stockpiles will be covered with 6 mil poly sheeting until otherwise found to contain total lead levels below 400 mg/kg or while being removed for off-site disposal. It is estimated that 5,500 to 7,500 cubic yards of lead contaminated soil may need to be removed and transported off site for disposal.

The remediation of lead contaminated soils in the Former Greenhouse Area will result in the removal of man-made retention Basins #1, #2, and #3, which also contain lead contaminated soils. The fate of the metal and concrete will be determined as explained in Section 5.2, "Former Boiler and Packing Buildings Area," below.

Off-Site Disposal

A representative composite soil sample is required for every 200 tons of the first 2,000 tons of contaminated soil taken to the receiving facility. Representative composite soil samples will be collected for every 500 tons (or approximately every two soil piles) beyond the initial 2,000 tons. These samples will be analyzed for the disposal parameters dictated by the receiving facility and may include total RCRA metals, total volatiles and semi-volatiles, pesticides, herbicides, PCBs, ignitability, corrosivity, reactive sulfide and cyanide. After the first five rounds of sampling, if the data consistently reveals certain chemical compounds consistent with background conditions and there are no known sources, StoneHill recommends working with the receiving facility and the NHDES to have an agreement in place to assess whether the disposal parameters can be updated to better reflect actual site conditions. That is, if the stockpile results consistently reveal no semi-volatile or volatile organic compounds or ignitability, StoneHill will request the requirement of laboratory analyses for PAH, VOC, and ignitability be replaced by the use of a ppbRAE 3000 Photoionization Detector for the measurement of volatile organic compounds and ignitability and Oil IN SoilTM, a colorimetric field test kit with a total petroleum hydrocarbon detection limit of 500 parts per million.

The contaminated stockpiles will be loaded and transported to the disposal facility via a nonhazardous waste manifest. If necessary, water will be sprayed over the remedial area to minimize the dust created during remedial activities. Further, steps will be taken to manage and maintain the loading area such that it remains clear of lead contaminated soil.

The Town of Exeter will be notified and the necessary town permits acquired and agreements with the receiving facility, including whether the laboratory data receiving parameters can be modified as recommended above, will be put in place prior to the start of the excavation of lead contaminated soils.

Post Excavation Sampling and Analyses

Simultaneous with the excavation and off-site disposal of the lead contaminated soils, several post excavation soil samples will be collected from within each grid to assess total lead using the XRF. Upon verification that the soils remaining in the grid are below 300 ppm as measured using the XRF, a confirmatory composite soil sample from each grid will be collected and submitted to a NH certified laboratory for total lead analyses. The grids will not be backfilled until the confirmatory total lead results for each grid are received by StoneHill, confirming the efficacy of the lead contaminated soil removal.

This RAP is specific to the removal and off-site disposal of up to 2 feet of loam from a large swath of the Former Greenhouse Area, the removal of which requires no post remedial backfilling for conformance with this RAP. If backfilling occurs it will be overseen by the construction contractor for the purposes of completing the residential construction as proposed in the pre-approved Exeter Town permits.

Once all the stockpiles are removed StoneHill will collect several surficial soil samples throughout the stockpile areas and perform field measurements for lead using the XRF. Any soil sample locations found to be in excess of 300 ppm will be excavated, stockpiled, sampled and submitted to a NH certified laboratory for total lead analysis. Stockpiles containing total lead levels equal to or in excess of 400 mg/kg will be further assessed for off-site disposal. The purpose is to assure the areas used for stockpiling the lead contaminated soils, even though protected by poly sheeting, were not contaminated by lead as a result of the stockpiling efforts.

5.2 Former Boiler and Packing Buildings Area

The primary strategy in this area, which currently impacts jurisdictional wetlands downslope to the west of the BPB Area, is to remove an estimated 1,100 cubic yards of fill from the wetlands and the adjacent slope such that the area between Oak Street Extension and the wetlands can be graded to the specifications proposed by MSC in their construction plans and as further described in the Wetland Restoration Program prepared by Marc Jacobs. The final construction of the banking will be completed by the construction contractor as specified by MSC. This RAP is specific to the removal and disposal, as necessary, to allow MSC to meet those slope specifications and to assure that fill remaining in the final slope is properly encapsulated as detailed below. Erosion and siltation control measures will be implemented to contain potential

migration of sediment into the wetland.

For disposal purposes, any material removed from the BPB Area will be sifted, likely resulting in the creation of four piles of differing materials, including:

- 1. Metal debris
- 2. concrete and brick,
- 3. plastics and white goods (such as couches and mattresses), and
- 4. fill containing coal ash.

These materials will be stockpiled separately west of the Former Greenhouse Area.

Metal Debris

The metal debris will be transported off-site to a recycling facility or a solid waste landfill.

Concrete and Brick

The proper management of solid waste and the facilities that collect, process and dispose of solid waste such as concrete and brick are regulated per Env-Sw 100-2100 and is overseen by the NHDES Solid Waste Management Bureau (SW Bureau). As per NHDES Env-Sw 103.26ⁱⁱ, concrete and brick are considered inert construction and demolition debris. Thus, per NHDES Env-Sw 302.03(b)(9)ⁱⁱⁱ, the disposal of waste concrete, cement, and brick does not require a permit from the SW Bureau if the material meets the specifications outlined in that section of the regulation and the disposal occurs after March 30, 1999. The specifications include concrete and brick that was derived from waste materials, is fully cured, and will not leach. The concrete and brick is cured and not expected to leach as confirmed via the groundwater analytical data as previously discussed.

Further, per NHDES Env-Sw 810.04^{iv}, "On-site Asphalt and Masonry Debris Landfills," On-site concrete fill does not need to be removed if it is located at least 75 feet from surface waters and at least 4 feet above the mean high water table (presumably to avoid inundating the material, thus causing the potential for chemicals from the material to leach and impact nearby surface and groundwater). Given this, any concrete and brick noted in the banking (75 feet and more from Norris Brook) that does not need to be removed to implement the proposed grade, may be left in place if doing so results in less damage to the surrounding wetland flora.

Exeter Rose intends to remove concrete from wetland areas and as much of the concrete and brick from the banking as necessary to open the area west of the BPB Area to allow for a properly engineered slope beyond the west side of Oak Street Extension. Concrete and brick that is removed will be pulverized and re-used, if engineering specifications allow, in a base material mix placed beneath roads constructed throughout the property. Residual concrete and brick not re-used beneath roadways will be pulverized and re-used on-site as necessary with the understanding that the material will be buried 2 feet and more bgs, 4 feet above mean high groundwater, and 75 feet from the water bodies. Concrete removed from the Former Greenhouse Area will be similarly re-used.

Plastics and White Goods

The pile of plastic and white goods will be separated between waste types such as tires, couches/mattresses, plastics, etc. or a combination thereof as applicable to the specific disposal facility and transported off-site to facilities accepting the specific types of materials for disposal or recycling.

Soil Containing Coal Ash

In their January 27, 2016 letter to the Commission the NHDES stated that the coal ash did not meet the definition of background per NHDES ENV-Or 602.03(c) which states that [Background] means the concentration of a chemical...that is ubiquitous and consistently present at or in the vicinity of the site such as chemicals associated with: (a) Coal ash associated with fill material and (c) Asphalt pavement. The NHDES specifically stated that the concentrations of arsenic and PAHs were associated with the coal ash and that these two chemicals were not "ubiquitous and consistently present at or in the vicinity of the site."

However, as previously stated the arsenic is consistent with background conditions and further, given the low levels of arsenic in the coal ash samples, not associated with the coal ash. Also, the PAHs are not pyrogenic and are considered the result of asphalt in the samples and thus also not associated with the coal ash. Further, the soil boring and test pit logs indicate the fill to be a mixture of sand, gravel and coal ash as identified in samples collected throughout the bank, revealing that the coal ash is universal throughout the fill used in the area. Further, no other PAHs or metals identified in the soil samples containing coal ash were above the NHDES SRS Standards. Given the PAHs in excess of the NHDES SRS Standards are chemicals associated with asphalt, the PAHs are considered background, and no other chemicals were noted above NHDES SRS, the soil containing coal ash that is not removed to meet the engineers specifications, will be left in place. The area will be covered with a minimum of two feet of clean fill or a geotextile fabric and one foot of riprap and graded as required per engineering specifications and Env-Sw 810.03(f)(1) and (2)^v. Soil containing coal ash removed from the northern portion of the embankment (slated as a residential lot) will be returned to the embankment, as feasible, prior to the encapsulation discussed above. Any soil containing coal ash that is not encapsulated in this manner will be transported off-site to a facility for recycling as a raw material for commercial and/or industrial purposes.

As stated, the coal ash that remains in place over the westerly embankment of the BPB Area will be covered with a moisture barrier and 2 feet of clean fill if the final pitch of the westerly slope allows. If the final finish ground surface grade is too steep to allow for 2 feet of soil, the material will be covered with a geotextile fabric and one foot of 4-inch minimum diameter rip-rap. The final finish ground surface grade will be no steeper than 2 horizontal to 1 vertical (2H:1V).

The laboratory results for samples collected throughout this area were indicative of background concentrations or below NHDES SRS standards and thus there is no known risk associated with the material. However, as per Env-Sw 810.03(c), (e) and (f)(3) and (4)^{vi}, required monitoring and maintenance will be included in the condominium association activity and use restriction relative to any fill left in place and encapsulated by either of these two means. As referenced in the above stated regulations, the purpose of including monitoring, maintenance, and use restrictions will be

to assure the area is regularly inspected to assess the integrity of the bank and cover material and to implement repairs if necessary.

5.3 Retention Basin #4 and Wetland H

The remediation of sediments within Basin #4 will require dewatering and excavation. A surface water sample (CA-SW-100) from Basin #4, collected by Credere on August 6, 2015, was analyzed for VOCs, SVOCs, pesticides, RCRA 8 metals, and hardness. No contaminants were reported above their respective laboratory method detection limits. Given no obvious changes in conditions at the site, this sample is considered indicative of current surface water conditions in Basin #4 and thus the quality of the surface water presents no concern to dewatering.

A NHDES Groundwater Discharge Permit will be obtained and Basin #4 will be hydraulically isolated and dewatered onto the western portion of the Former Greenhouse Area. The discharge will be contained to the known areas of lead contamination in the Former Greenhouse Area via the use of bales and other erosion control measures per instruction of Marc Jacobs, Certified Professional in Erosion and Sediment Control. Given lead is highly adsorbed to soil, the low leaching potential as noted by the TCLP lead data from the Former Greenhouse Area, and the soil samples collected in the Former Greenhouse Area between 18" and 24" revealed little lead impacts (20.1 mg/kg), it is unlikely dewatering onto the lead contaminated soils in the Former Greenhouse Area will change the soil conditions, impact groundwater, or otherwise prevent soil remediation in that area.

Once dewatering allows for sufficient access to the sediments, excavating within Basin #4 will begin. One to two feet of lead impacted sediment will be removed and separated into 200 ton stockpiles. A composite sample will be collected from each pile and submitted for laboratory analysis of total lead. Stockpiles found to contain total lead below the NHDES SRS standard will be re-used on site. Piles found to contain total lead equal to or above the NHDES SRS for lead will be resampled for disposal parameters and disposed off-site. Post excavation sediment samples will be collected from within Basin #4, and analyzed for total lead. Remedial actions will continue until lead concentrations within Basin #4 are below the ecological PEC for lead of 128 mg/kg as confirmed via laboratory analyses.

5.4 Implementation Schedule

Ideally, all permits and approvals would be in place to begin excavation activities in the Spring of 2018 and complete the field activities associated with the RAP prior to the Winter of 2019.

6.0 LIMITATIONS

This Supplemental Site Investigation Report and Remedial Action Plan was prepared to further assess site conditions and to propose remedial actions for contamination in the Former Greenhouse Area, management of fill in the BPB Area, and to propose an approach to address sediment impacts in man-made drainage Basin #4 and Wetland H at the former Dagostino Rose Farm, Oak Street Extension, Exeter, NH. This plan is not intended to be a complete

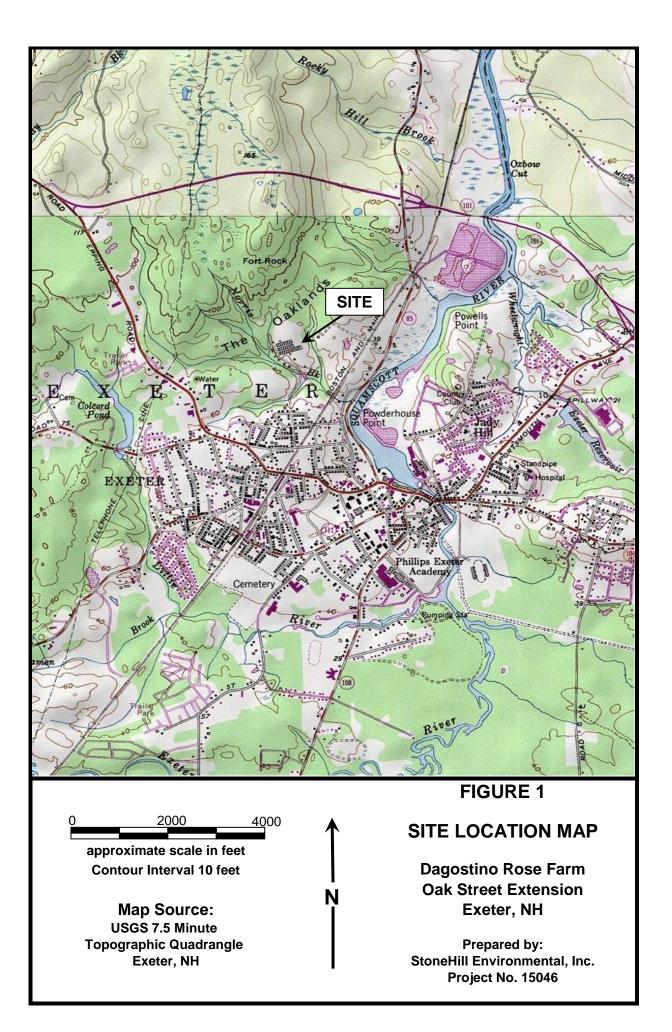
environmental site assessment, audit or industrial hygiene survey which would ascertain compliance with federal and state regulations other than those explicitly stated herein.

The information provided in this report is based upon personal interviews and research of publically available documentation, field investigations, records and maps. Therefore, the information in this report is subject to the limitations of historical documentation, the availability and accuracy of pertinent data analyses, records, and the personal recollection of the persons interviewed during the course of the investigation. The information presented in this report is applicable only to the dates of the records and lists reviewed as indicated within.

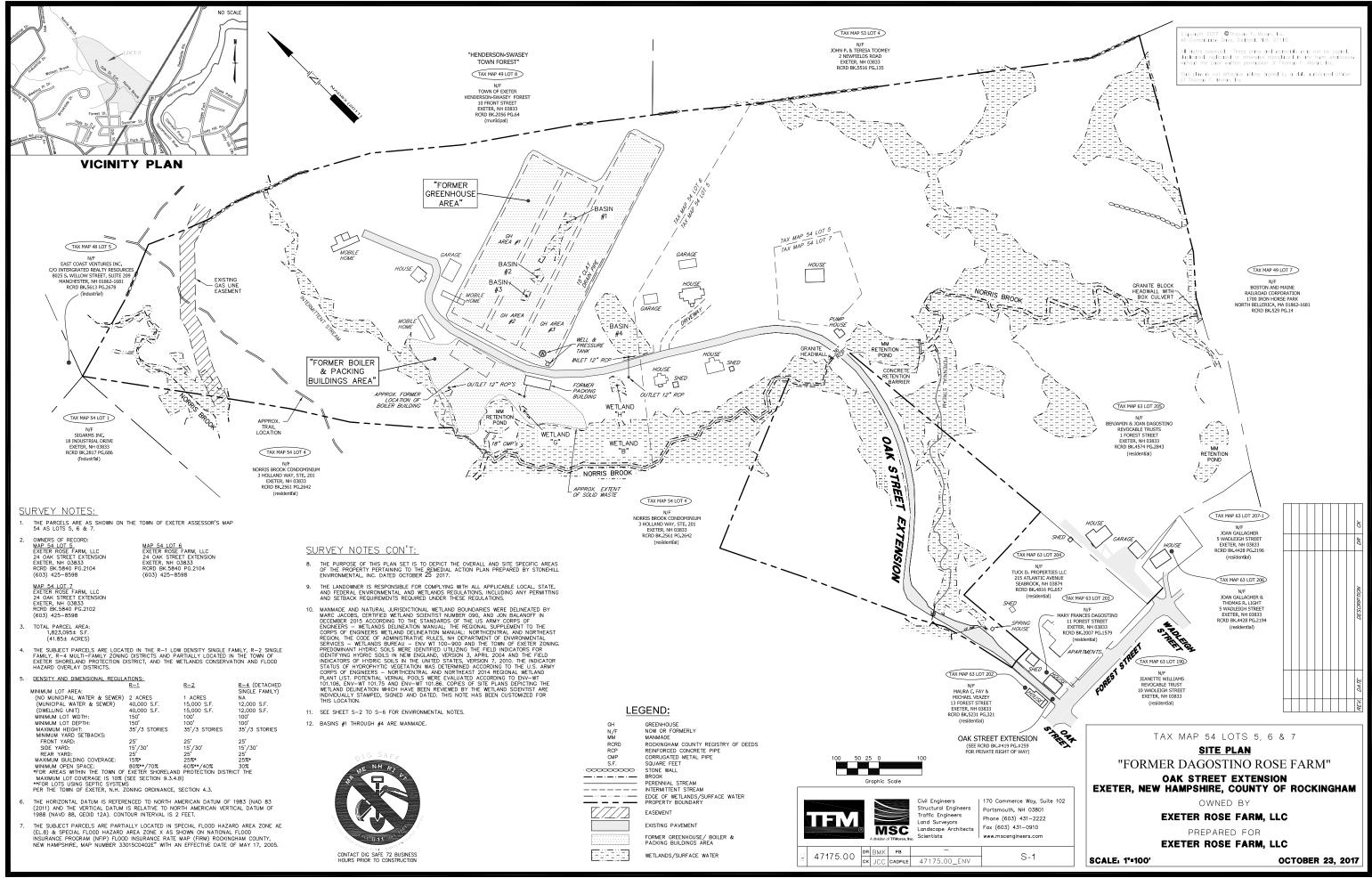
It should be noted that the findings and conclusions of this report do not constitute scientific certainties, but rather probabilities based upon our professional judgement concerning data gathered during the course of the investigation. Information potentially obtained during further investigative activities, which were beyond the scope of the work completed for this report, could result in a modification of the findings stated above. This report has been prepared in accordance with generally accepted remedial action plan preparation practices and a degree of care and skill exercised by other environmental consulting firms undertaking similar studies at the same time in the same geographical area. No other warranty, expressed or implied, is made.

ⁱⁱ ENV-Sw 103.26 "Inert construction and demolition debris means construction and demolition debris which is comprised of materials that do not degrade, combust or generate leachate."

ⁱⁱⁱ ENV-Sw 302.03(b)(9) – Solid Waste Exemptions, "no permit shall be required to: Collect, store, transfer, process, treat, or dispose of waste con rete, cement, rick, or other inert masonry materials, or bituminous concrete, provided that..." the waste is actively managed in a way that complies with Env-Sw 1000, is derived from virgin materials, are fully cured, will not leach contaminants to ground or surface waters, the asphalt is not pulverized, and the activity occurs after March 30, 1999.

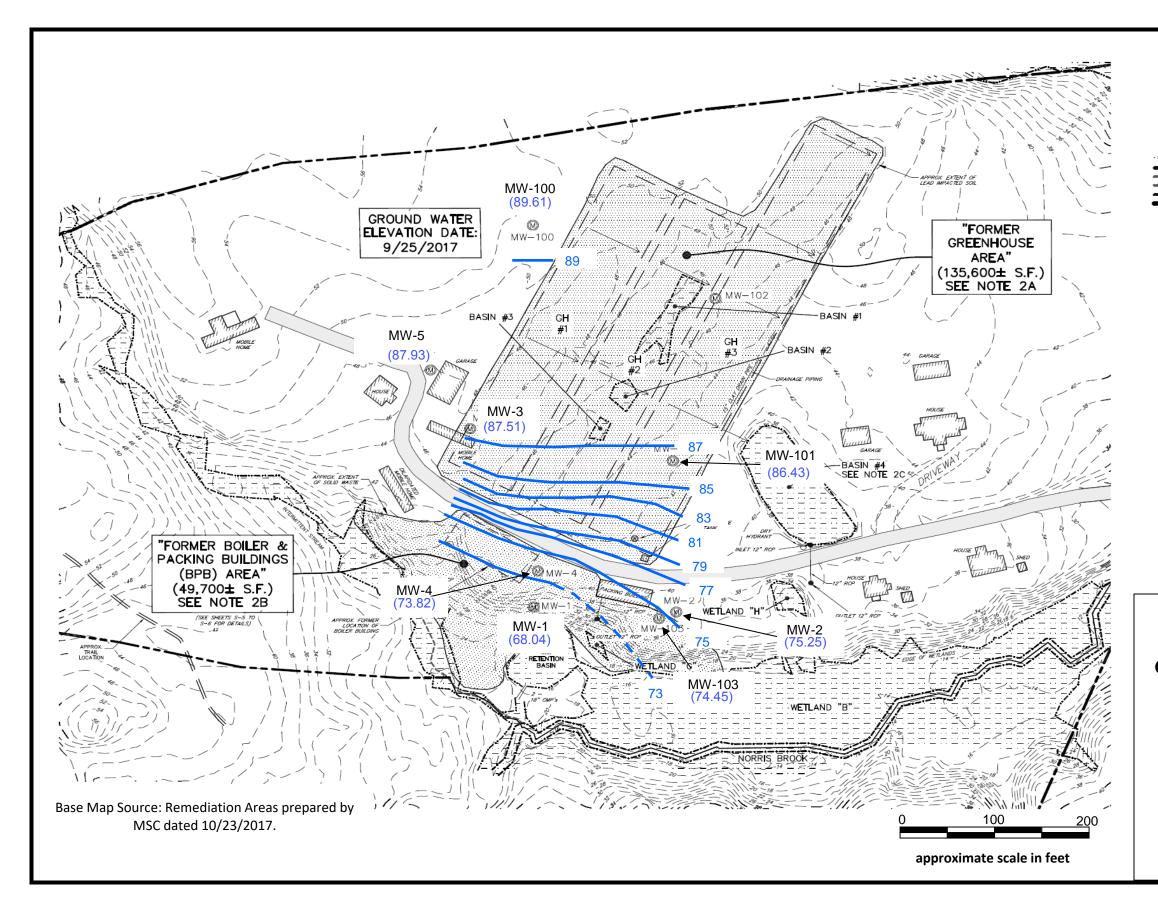

^{iv} Env-Sw 810.04 – Effective as of October 29, 1997, asphalt and masonry debris buried at the waste generation site shall not be required to be removed provided that the facility buried the following wastes only: Fully cured asphalt, concrete, brick and cement, the asphalt is not pulverized, and the material is buried 4 feet above seasonal high water table and 75 feet from surface waters and water supply wells.

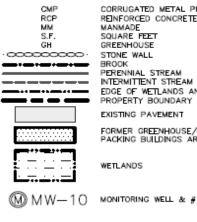
^v Env-Sw 810.03(f) Exemption Conditions – All permit-exempt landfills shall... place at least 2 feet of clean, compacted soil as a final cover over the material and the cover be, "graded, seeded and mulched to produce and sustain vegetative growth, or otherwise stabilized to prevent erosion."


^{vi} Env-Sw 810.03 Exemption Conditions – The owner of the property on which exists a permit-exempt landfill shall be designated as the permittee and subject to the requirements of the permit exemption as well as prevent dumping, regularly inspect the integrity of the cover, check for sinkholes or otherwise check that the area is protective of human health and environment, and implement repairs as necessary.

¹Env-Or 602.03 "Background" means the concentration of a chemical in the environment that would exist at a site in the absence of a discharge, including chemicals that are ubiquitous and consistently present at or in the vicinity of the site such as: (a) Coal or wood ash associated with fill material; (b) Petroleum residues that are incidental to the normal operation of motor vehicles; (c) Asphalt pavement and petroleum compounds contained in associated subbase materials...

FIGURES




201

Oct 23, F-\MSC F

FIGURE 3

LEGEND:

CORRUGATED METAL PIPE REINFORCED CONCRETE PIPE MANMADE SQUARE FEET GREENHOUSE STONE WALL BROOK BROOK PERENNIAL STREAM INTERMITIENT STREAM EDGE OF WETLANDS AND SURFACE WATER PROPERTY BOUNDARY EXISTING PAVEMENT FORMER GREENHOUSE/BOILER & PACKING BUILDINGS AREA

WETLANDS

(89.61) Groundwater Elevation in feet

Groundwater Contour Line in feet

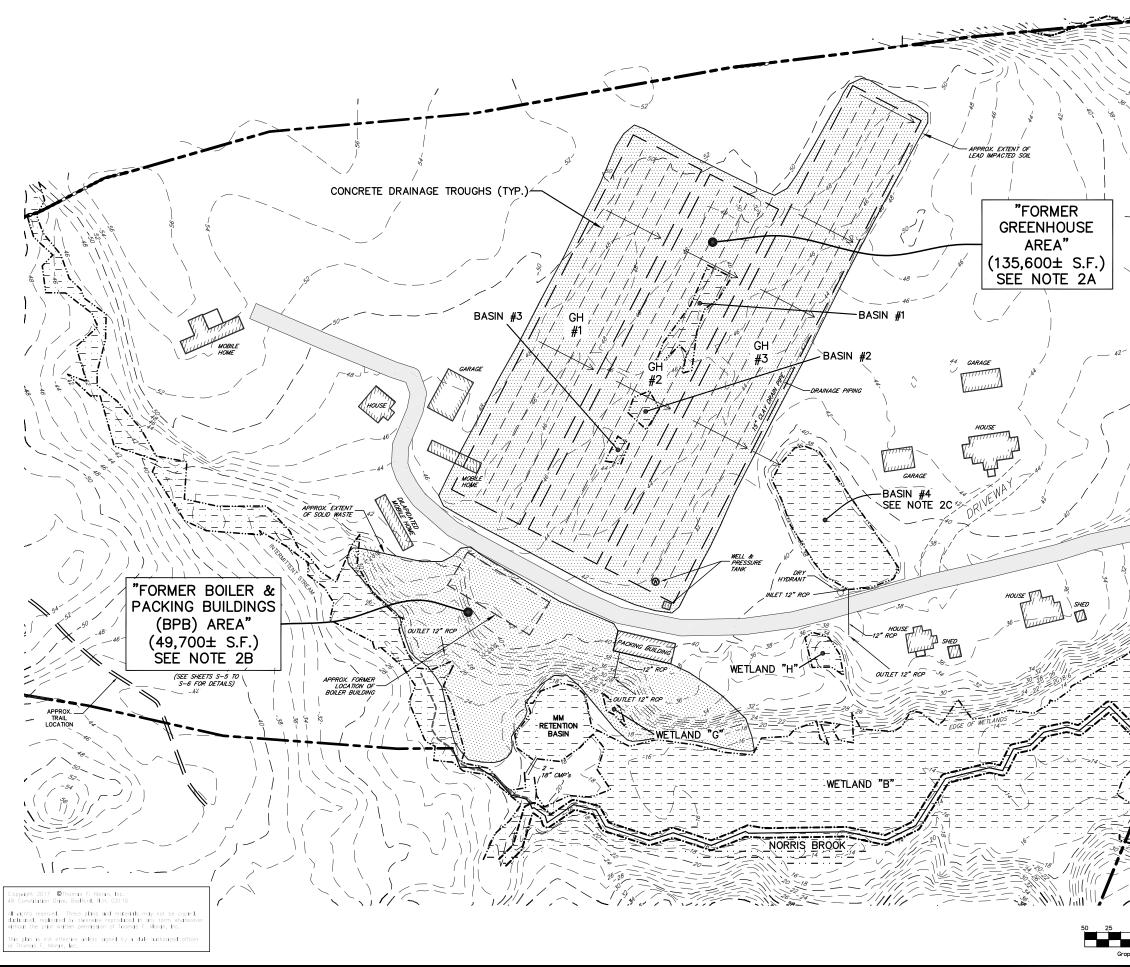
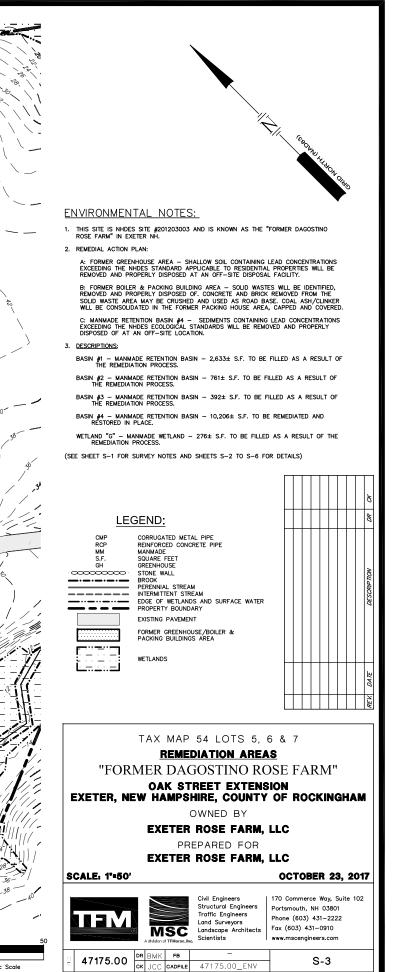

89

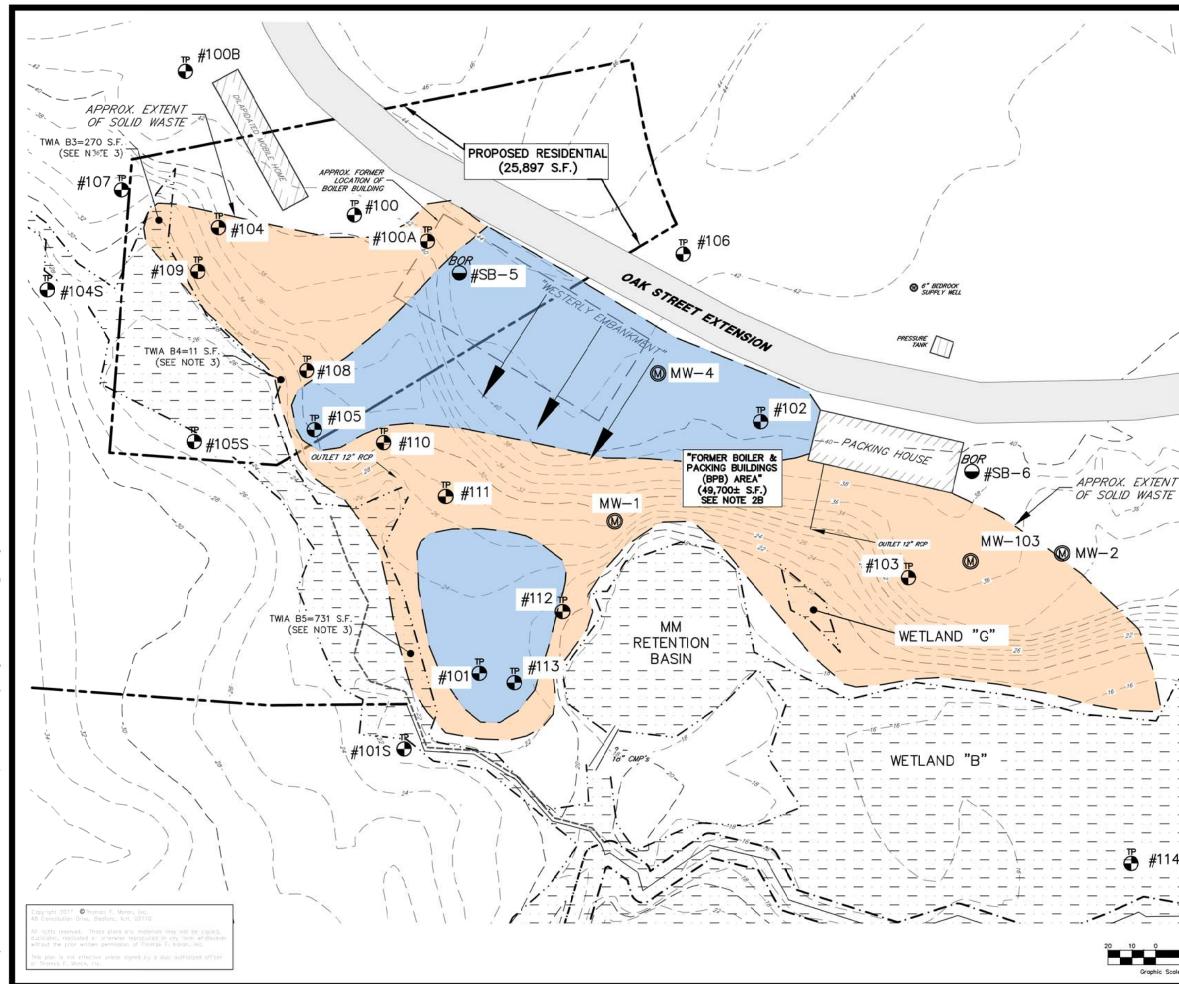
FIGURE 4

GROUNDWATER CONTOUR PLAN (September 25, 2007)

Dagostino Rose Farm Oak Street Extension Exeter, NH


Prepared by: StoneHill Environmental, Inc. Project No. 15046

201


FIGURE 5

S-3

StoneHill Environmental. Inc.

FIGURE 7

ENVIRONMENTAL NOTES:

THIS SITE IS NHDES SITE #201203003 AND IS KNOWN AS THE "FORMER DAGOSTIN ROSE FARM" IN EXETER NH.

2. REMEDIAL ACTION PLAN:

A: FORMER GREENHOUSE AREA - SHALLOW SOL CONTAINING LEAD CONCENTRATIONS EXCEEDING THE NHDES STANDARD APPLICABLE TO RESIDENTIAL PROPERTIES WILL BE RENOVED AND PROFERLY DISPOSED AT AN OFF-SITE DISPOSAL FACILITY.

B: FORMER BOILER & PACKING BUILDING AREA - SOLID WASTES WILL BE IDENTIFIED, REMOVED AND PROPERLY DISPOSED OF. CONCRETE AND BRICK REMOVED FROM THE SOLID WASTE AREA MAY BE CRUSHED AND USED AS FOAD BASE. COAL ASH/CLINKER WILL BE CONSOLIDATED IN THE FORMER PACKING HOUSE AREA, CAPPED AND COVERED.

C: MANMADE RETENTION BASIN #4 - SEDIMENTS CONTAINING LEAD CONCENTRATIONS EXCEEDING THE INFORM SECOLOGICAL STANDARDS WILL BE REMOVED AND PROPERLY DISPOSED AT AN OFF-SITE DISPOSED AFACULTY.

3. DESCRIPTIONS:

BASIN #1 - MANMADE RETENTION BASIN - 2,633± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #2 - MANMADE RETENTION BASIN - 761± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #3 - MANMADE RETENTION BASIN - 392± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #4 - MANMADE RETENTION BASIN - 10,206 \pm S.F. TO BE REMEDIATED AND RESTORED IN PLACE.

WETLAND "G" - MANWADE WETLAND - 276± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

TEMPORARY WETLAND IMPACT AREAS B3-B6 - AREAS OF WETLANDS THAT WILL BE TEMPORARILY IMPACTED DURING THE REMEDIATION OF SOLID WASTE AND RESTORED IN PLACE. (NHDES WETLANDS PERINTI APPLICATION TO BE SUBMITTED IN CORRELATION WITH THIS REMEDIAL ACTION PLAN)

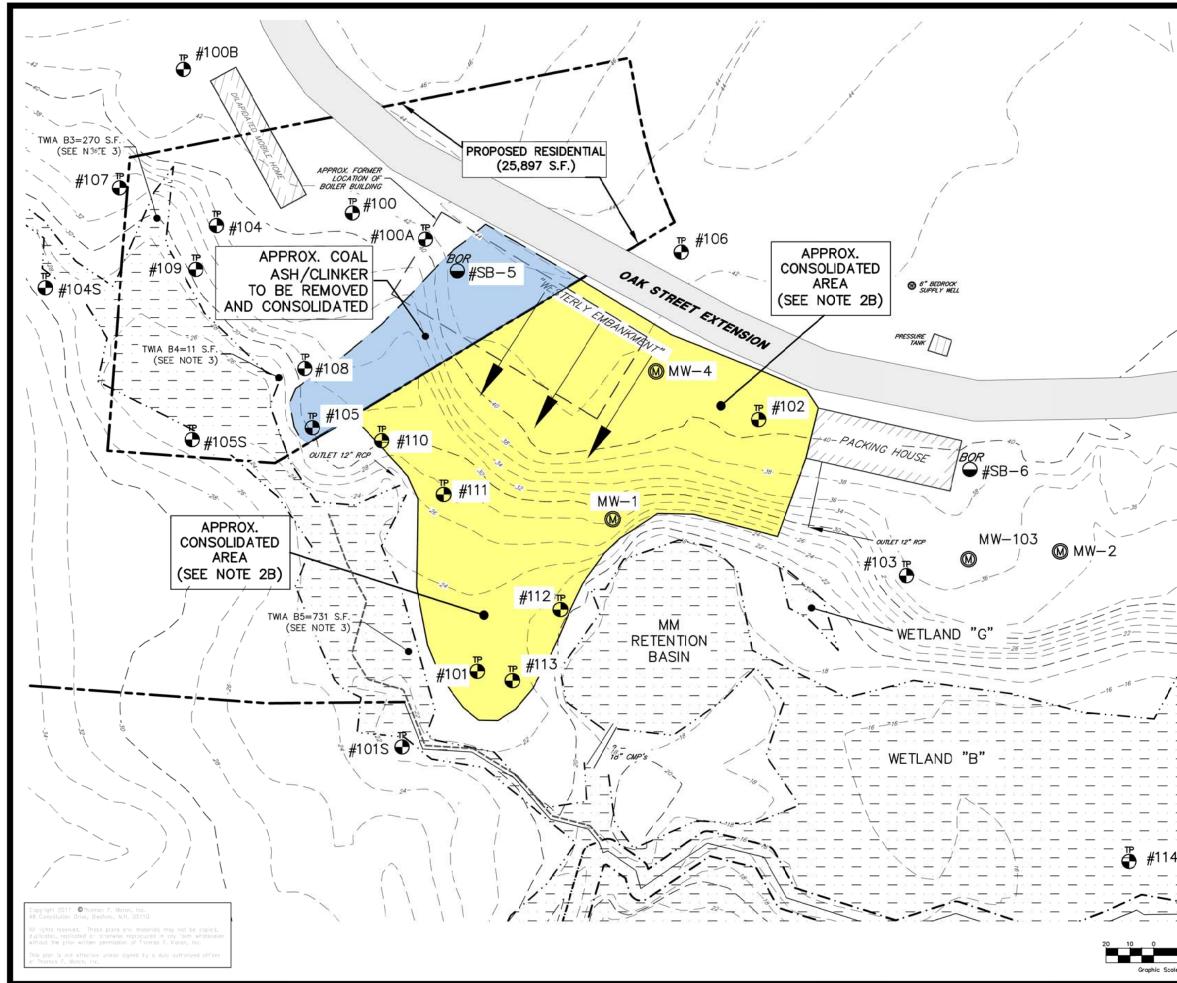
TEST PIT AND BORINGS SHOWN HEREON ARE FOR REFERENCE PURPOSES AND ARE APPROXIMATE LOCATIONS ONLY.

(SEE SHEET S-1 FOR OVERALL SITE AND SURVEY NOTES, SEE SHEET S-2 FOR FORMER GREENHOUSE AREA)

LE	GEND:					8
CMP RCP MM S.F.	CORRUGATED METAL PIR REINFORCED CONCRETE MANMADE SQUARE FEET	PIPE				80
BOR	TEMPORARY WETLAND IN BORING	MPACT AREA				
ä	TEST PIT					8
ă	MONITORING WELL					L dib
	STONE WALL BROOK PERENNIAL STREAM INTERMITTENT STREAM EDGE OF WETLANDS AN PROPERTY BOUNDARY	D SURFACE WATER				DESCRIPTION
	EXISTING PAVEMENT					
		APPROX. COAL				\square
APPRO WASTE	X. SOLID AREA	ASH/CLINKER AREA				DATE
	ETLANDS				\square	BEK.
"FO	NEW HAMPSH	OSTINO RO REET EXTENS IRE, COUNTY	DSE F.	ARM	1"	AM
		WNED BY				
	EXETER I	ROSE FARM,	LLC			
		PARED FOR				
	EXETER I	ROSE FARM,	LLC			
SCALE: 1'=2	0'		осто	OBER	23, 2	2017
TEN		Civil Engineers Structural Engineers Traffic Engineers Land Surveyors	170 Comm Portsmout Phone (60	h, NH 0.	3801	102

Phone (603) 431-2222 Fax (603) 431-0910

www.mscengineers.com


S-5

TFN

MSC

47175.00 DR BMK FB -CK JCC CADFILE 47175.00_ENV

Landscape Architects Scientists

ENVIRONMENTAL NOTES:

THIS SITE IS NHDES SITE #201203003 AND IS KNOWN AS THE "FORMER DAGOSTIN ROSE FARM" IN EXETER NH.

2. REMEDIAL ACTION PLAN:

A: FORMER GREENHOUSE AREA - SHALLOW SOL CONTAINING LEAD CONCENTRATIONS EXCEEDING THE INIDES STANDARD APPLICABLE TO RESIDENTIAL PROPERTIES WILL BE REMOVED AND PROFERLY DISPOSED AT AN OFF-SITE DISPOSAL FACILITY.

B: FORMER BOILER & PACKING BUILDING AREA - SOLID WASTES WILL BE IDENTIFIED, REMOVED AND PROPERLY DISPOSED OF. CONCRETE AND BRICK REMOVED FROM THE SOLID WASTE AREA MAY BE CRUSHED AND USED AS FOAD BASE. COAL ASH/CLINKER WILL BE CONSOLIDATED IN THE FORMER PACKING HOUSE AREA, CAPPED AND COVERED.

C: MANMADE RETENTION BASIN #4 - SEDIMENTS CONTAINING LEAD CONCENTRATIONS EXCEEDING THE INFORM ECOLOGICAL STANDARDS MILL BE REMOVED AND PROPERLY DISPOSED AT AN OFF-SITE DISPOSED AFACULTY.

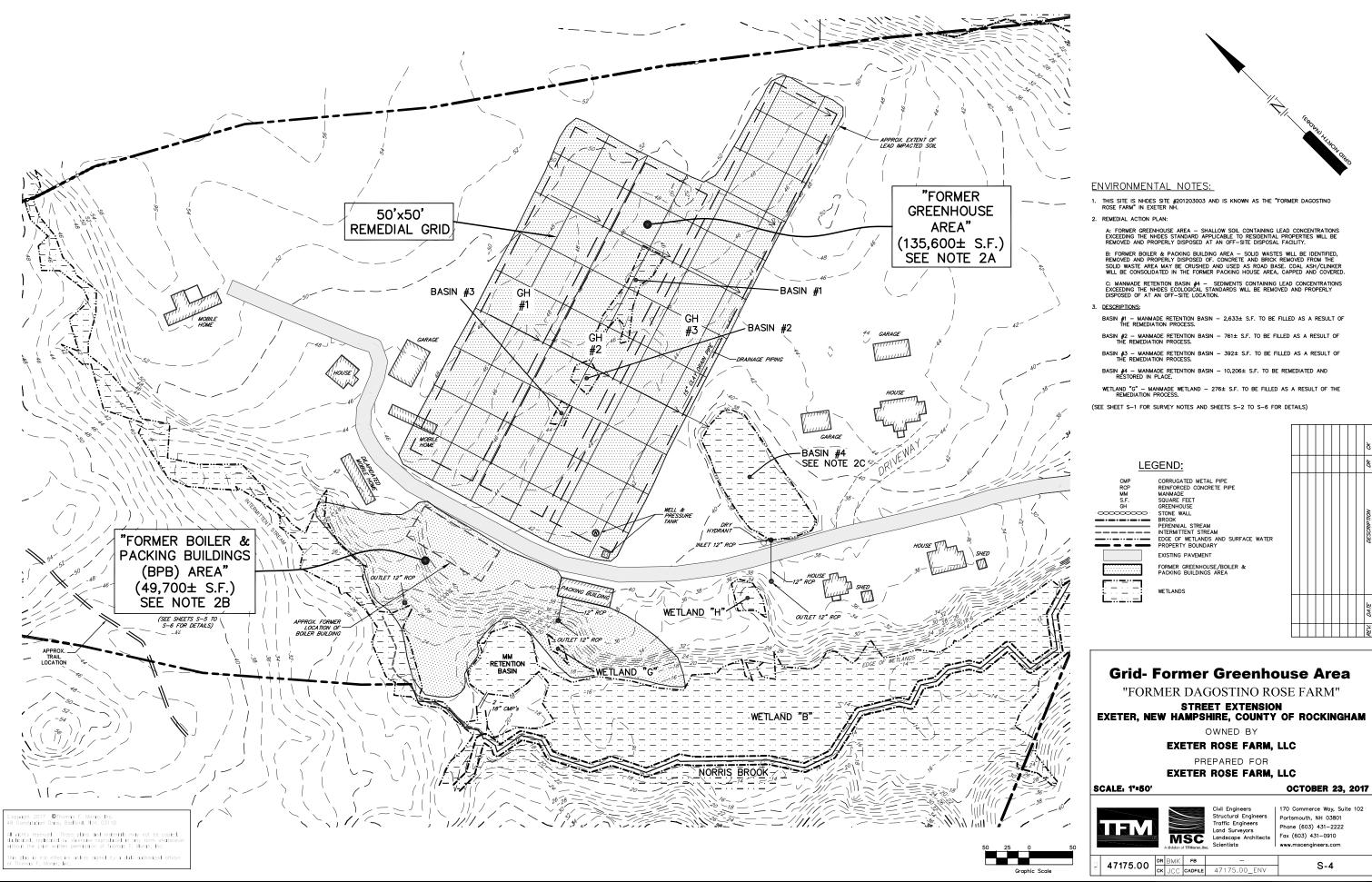
3. DESCRIPTIONS;

BASIN #1 - MANMADE RETENTION BASIN - 2,633± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #2 - MANMADE RETENTION BASIN - 761± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #3 - MANMADE RETENTION BASIN - 392± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

BASIN #4 - MANMADE RETENTION BASIN - 10,206± S.F. TO BE REMEDIATED AND RESTORED IN PLACE.


WETLAND "G" - MANNADE WETLAND - 276± S.F. TO BE FILLED AS A RESULT OF THE REMEDIATION PROCESS.

TEMPORARY WETLAND IMPACT AREAS B3-B6 - AREAS OF WETLANDS THAT WILL BE TEMPORARILY IMPACTED DURING THE REMEDIATION OF SOLID WASTE AND RESTORED IN PLACE. (NHDES WETLANDS PERINTI APPLICATION TO BE SUBMITTED IN CORRELATION WITH THIS REMEDIAL ACTION PLAN)

TEST PIT AND BORINGS SHOWN HEREON ARE FOR REFERENCE PURPOSES AND ARE APPROXIMATE LOCATIONS ONLY.

(SEE SHEET S-1 FOR OVERALL SITE AND SURVEY NOTES, SEE SHEET S-2 FOR FORMER

	GREENHOUSE AREA)					
	LE	GEND:				l
_	CMP RCP	CORRUGATED META REINFORCED CONCI				5 8
	MM S.F.	MANMADE SQUARE FEET				٩
	BOR	TEMPORARY WETLA	ND IMPACT AREA			
	e	BORING				
	ő	TEST PIT				8
	Ŏ	MONITORING WELL				UL dib
		STONE WALL BROOK				DESCRIPTION
		PERENNIAL STREAM				
		EDGE OF WETLAND PROPERTY BOUNDA	S AND SURFACE WATER			
		EXISTING PAVEMEN	т			
		OX. COAL	APPROX.			
	ASH/	CLINKER E REMOVED	CONSOLIDATED AREA			F.
		2.1 9.1				DATE
		WETLANDS				ЗJ
	"FOI	RMER DAG	OST-CONS GOSTINO RO REET EXTENS HIRE, COUNTY	DSE FAR	RM"	
			OWNED BY			.
			ROSE FARM,	uс		
· _			EPARED FOR			- 1
		1 Mar - California				- 1
		EXCIEN	BOSE FARM.	LLC		
	00415 #-00		ROSE FARM,			_
	SCALE, 1-20		ROSE FARM,		R 23, 201	17
	SCALE, 1"=20		Civil Engineers	OCTOBE	Way, Suite 102	
	SCALE: 1"-20		Civil Engineers Structural Engineers Traffic Engineers	OCTOBE 170 Commerce Portsmouth, NH	Way, Suite 102 1 03801	
	SCALE: 1"=20		Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscope Architects	OCTOBE	Way, Suite 102 1 03801 31-2222	
	TFN		Civil Engineers Structural Engineers Traffic Engineers Land Surveyors	OCTOBE 170 Commerce Portsmouth, NH Phone (603) 4	Way, Suite 102 1 03801 31-2222 -0910	
	TFN		Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscope Architects	OCTOBE 170 Commerce Portsmouth, NH Phone (603) 4. Fax (603) 431- www.mscengine	Way, Suite 102 1 03801 31-2222 -0910	

FIGURE 9

TABLES

<u>Table 1</u> Summary of Groundwater Elevation Data Dagostino Rose Farm Oak Street Extension, Exeter, NH

Monitoring	Well Depth	Well Screen	Top of Casing	Measurement	Depth to	Groundwater
Well	(feet bgs)	(feet bgs)	Elevation ¹	Date	Groundwater ² (feet)	Elevation
MW-1	27.41	17-27	92.01	9/23/2016	Dry	N/A
				8/4/2017	21.14	70.87
				8/10/2017	21.39	70.62
				9/25/2017	23.97	68.04
				-, -, -		
MW-2	19.96	10-20	86.76	9/23/2016	12.19	74.57
				8/4/2017	NM	NM
				8/10/2017	10.92	75.84
				9/25/2017	11.51	75.25
MW-3	17.31	7-17	98.96	9/23/2016	12.88	86.08
				8/4/2017	10.31	88.65
				8/10/2017	10.60	88.36
				9/25/2017	11.45	87.51
MW-4	27.18	17-27	93.14	9/23/2016	19.88	73.26
		/		8/4/2017	NM	NM
				8/10/2017	NM	NM
				9/25/2017	19.32	73.82
MW-5	17.35	7-17	100.00	9/23/2016	13.50	86.50
				8/4/2017	10.67	89.33
				8/10/2017	10.90	89.10
				9/25/2017	12.07	87.93
MW-100	14.35	5-15	101.63	8/6/2015	11.00	90.63
				4/29/2016	5.55	96.08
				9/23/2016	13.46	88.17
				8/4/2017	9.22	82.12
				8/10/2017	10.73	80.61
				9/25/2017	12.02	89.61
MW-101	11.65	2-12	91.34	8/6/2015	4.55	86.79
10100-101	11.05	2-12	91.54	4/29/2015	2.70	88.64
				9/23/2016	6.33	85.04
				8/4/2017	4.43	86.91
				8/10/2017	4.62	86.72
				9/25/2017	4.91	86.43
				- /- /		
MW-102	14.45	5-15	94.60	8/6/2015	9.45	85.15
				4/29/2016	3.40	91.2
				9/23/2016	13.72	80.88
				8/4/2017	NM	NM
				8/10/2017	8.80	85.80
				9/25/2017	11.78	82.82
MW-103	20.35	10-20	87.60	4/29/2016	11.25	76.35
				9/23/2016	14.37	73.23
				8/4/2017	NM	NM
				8/10/2017	NM	NM
				9/25/2017	13.15	74.45

Notes:

¹MW-5 - Arbitrary Bench Mark set to 100 ft.

²Elevation data collected prior to 8/4/2017 collected by Credere Associates, LLC

Depths measured from top of riser

NM = Not measured

N/A = Not applicable

bgs- below ground surface

TABLE 2

Former Greenhouse Area Field Investigation XRF Lead Results (May 17 & 18, 2017) Dagostino Rose Farm Oak Street Extension, Exeter, NH

Sample Location	Coordinates	Lead Results (mg/kg)			
F1	42° 59' 28.95" -70° 57' 27.61"	s-226 6"-252 concrete			
F2	28.53 27.27	s-3478 concrete			
F3	28.53 27.29	s-229 6"-217			
F4	28.45 27.25	s-407			
F5	27.94 27.20	s-2609 concrete			
F6	27.95 27.22	s-638 6"-448	yes		
G1 glaze	28.01 27.21	6910			
F7 glaze	27.57 26.79	s-898 6"-1574 12"-582 (clay)	yes		
F8	27.06 26.11	s-141 6"-201			
F9	26.97 26.02	s-134 6"-192			
F10	26.98 26.05	s-340 concrete			
F11	26.95 25.99	s-644 6"-600 8-10"-1870 12"-1059			
F12	26.78 25.99	s-421 6"-411			
F13	26.56 25.72	s-69 6"-26			
F14	26.85 26.54	s-393 concrete	yes		
F15	27.23 27.04	s-249 6"-268			
F16	26.73 26.90	s-322 6"-351 concrete			
F17	26.55 27.09	s-81 6"-94			
F18	26.29 27.29	s-93 6"-103			
F19	27.89 28.31	s-103 6"-188			
F20	29.37 27.09	6"-702	yes		
F21	29.43 27.08	s-446 4"-723			
F22	28.83 26.88	s-87 concrete			

			Re-Sampled for	
Sample	Coordinates	Field Samples XRF	Laboratory	
Location	coordinates	Lead Results (mg/kg)	Analysis?	
	28.60			
W1	26.69	7503		
F23	28.60	s-3197	NOS	
F23	26.69	concrete	yes	
F24	28.48	s-552	yes	
	26.69	6"-315	7	
F25	28.55 26.71	s-1476 concrete		
		s-191		
F26	28.12	6"215		
	26.24	concrete		
W2	28.07	7133		
	26.65	7155		
F27	28.07	6"-303		
	26.65	s-234		
F28	27.73	3"-251		
0	26.21	concrete		
F20	27.54	s-194		
F29	25.66	6"-219		
F30	27.21	s-105		
	23.75	0 100		
F31	27.34	s-340		
-	23.84 27.40			
F32	23.73	s-1399		
	28.04	s-490		
F33	23.80	6"-472		
	28.19	s-1187		
F34	24.34	6"-1536	yes	
		12"-515		
F35	27.66	s-331		
	24.25 27.74			
F36	24.70	6"-171		
F37	27.99	s-198		
F37	25.24	6"-185		
F38	28.40	s-413		
	25.21	concrete		
G2	28.50 25.33	1209		
	25.33 28.40			
F39	25.32	278	yes	
F40	28.41	1400		
glass	25.31	1466		
F41	28.25	s-195		
glass	25.38	6"-99		
F42	28.70	421		
	<u>25.68</u> 28.69	s-690		
F43	25.71	6"-351	yes	
	28.74			
F44	25.73	s-487		
F45	28.72	s-218		
145	25.84	6"-91		
F46	28.82	s-1988		
	<u>25.77</u> 28.94	concrete		
F47	28.94	s-243		
	23.30			

			Re-Sampled for
Sample	Coordinates	Field Samples XRF	Laboratory
Location	coordinates	Lead Results (mg/kg)	Analysis?
		c 210	Analysis
F48	29.03	s-219 6"-420	
F40	26.10		
	29.16	12"-177	
G3	26.14	2873	
		s-185	
F49	29.27	6"-283	
	26.26	concrete	
	29.65	s-1256	
F50	26.39	3-6"-2023	
		8"-2035	
F51	29.94	s-33	
	25.76	6"-15	
F52	29.72	s-380	
	25.69	concrete	
F53	29.71	s-690	yes
	25.57 29.48	6"-470 s-410	
F54	25.34	6"-223	yes
	29.27	0 -223	
F55	25.59	s-186	
	28.99		
F56	24.97	s-323	
	28.95	s-172	
F57	24.94	6"-217	
F58	28.84	s-281	
FJO	24.95	5-201	
W3	28.80	2504	
	24.82		
	28.80	s-511	
F59	24.82	3"-566	
	28.72	concrete	
G4	28.72	7113	
	28.72	3"-1634	
F60	24.67	concrete	
	28.66	s-255	
F61	24.89	6"-142	
F(2)	28.58		
F62	24.88	s-165	
F63	28.52	s-1088	Vec
105	24.92	3 1000	yes
W4	28.53	1372	
	25.00		
F64	27.74	2"-255	
┣────┤	23.32	6"-276	
F65	27.62	s-292	yes
F66	22.73 N/A	6"-313 s-690	
		s-090	
F67	N/A	-	
G5	N/A	3235	
W5	N/A	11300	
	28.02	s-956	
F68	22.91	6"-744	
		concrete	
F69	28.37	s-262	
	23.01		

Sample Location	Coordinates	Field Samples XRF Lead Results (mg/kg)	Re-Sampled for Laboratory Analysis?
570	28.43	s-410	
F70	23.09	6"-395	yes
	28.52	s-227	
F71	23.34	6"-250	
		concrete	
F72	28.72	s-179	
	23.21	12"-88	
570	28.58	s-1315 6"-3525	
F73	23.54		
	28.80	12"-2837	
G6	23.55	1798	
574	28.80	. 001	
F74	23.55	s-801	yes
F75	28.78	s-137	
175	23.60	concrete	
F76	28.83	s-295	
	23.62		
F77	28.93	s-455	
├ ───┼	23.63 28.93		
G7	23.63	1509	
	28.90	s-831	
F78	23.88	concrete	
570	28.95		
F79	23.93	s-2440	
F80	28.93	s-390	
FOU	23.95	5-390	
F81	29.07	s-297	
	24.07		
F82	29.05	s-108	
	24.04 29.10	6"-217	
F83	24.05	s-825	
	29.21		
F84	23.97	s-2606	
	29.61	s-351	
F85	29.81	6"-258	
	24.90	concrete	
F86	29.85	s-1941	yes
	25.12	6"-3712	,
F87	30.16	s-269	
	24.77	6"-126 s-445	
F88	29.77	6"-460	yes
	24.19	concrete	,
500	30.12	s-137	
F89	23.99	6"-48	
	28.74	s-40	
F90	22.36	6"-pond water	
ļ		45	
W6	28.37	1321	
┣────┤	22.53		
F91	28.02	136 concrete	yes
+	22.43	concrete	
F92	21.10	s-70	
	27.90	s-540	
F93	21.15	6"-1599	
504	28.00		
F94	21.22	s-147	
G8	28.04	1636	
	21.37	1050	

Sample Location	Coordinates	Field Samples XRF Lead Results (mg/kg)	Re-Sampled for Laboratory Analysis?
W7	28.04	68	
	21.37	s-246	
F95	28.20	6"-307	yes
	21.38	concrete	,
F96	28.31 21.57	s-1372	
W8	28.31 21.57	2650	
F97	28.47 21.80	s-1366	
W9	28.47 21.80	2396	
	28.54	s-346	
F98	21.78	6"-431	yes
	28.59	12"-263	
F99	28.59 21.88	s-758	
5100	28.68	s-64	
F100	22.12	6"-18	
F101	28.77	s-85	
. 101	21.99	6"-81	
F102	28.78 22.00	s-43 6"-63	
	22.00		
F103	21.00	3662	
W10	28.05 21.00	3550	
F104	28.11	s-168	
1104	20.46	6"-199	
F105	28.19 20.42	s-383	
W11	28.20 20.64	776	
F106	N/A	s-966 6"-1262	
А	N/A	349	
В	N/A	2416	
С	N/A	89	
D	N/A	287	
E	N/A	212	
F	N/A	63	
G	N/A	107	
Н	N/A	95	
I	N/A	101	
J	N/A	315	
К	N/A	296	
L	N/A	136	
М	N/A	217	
N	N/A	63	
0	N/A	54	
Notes:		· · · · · · · · · · · · · · · · · · ·	

Notes:

Field results measured using a Thermofisher Niton XL3t GOLDD+ XRF

mg/kg = milligrams per kilogram

s = Surface sample

6" = depth below ground surface

N/A =not available

"yes" = Sample locations resampled and submitted for laboratory confirmation

"--" = Sample locations not resasmpled for laboratory confirmation

TABLE 3

Former Greenhouse Area Field Investigation XRF and Laboratory Data Results for Lead (May 17 & 18, 2017) Dagostino Rose Farm Oak Street Extension, Exeter, NH

Sample Location	Coordinates	Field Results from Prior Samples (mg/kg)	Field Results of New Samples (mg/kg)	Laboratory Results of New Samples (mg/kg)
F6	42° 59' 27.95"	s-638	530	630
FU	-70° 57' 27.22"	6"-448		
F7 glass	27.57 26.79	s-898 6"-1574 12"-582 (clay)	1875	1700
F14	26.85 26.54	s-393	523	670
F20	29.37 27.09	6"-702	618	810
F23	28.60 26.69	s-3197	3717	4400
F24	28.48 26.69	s-552 6"-315	543	400
F34	28.19 24.34	s-1187 6"-1536 12"-515	1908	2300
F39	28.40 25.32	278	232	490
F43	28.69 25.71	s-690 6"-351	276	300
F53	29.71 25.57	s-690 6''-470	869	920
F54	29.48 25.34	s-410 6"-223	426	540
F63	28.52 24.92	s-1088	1261	2000
F65	27.62 22.73	s-292 6"-313	301	410
F70	28.43 23.09	s-410 6"-395	592	670
F74	28.80 23.55	s-801	1194	4800
F86	29.85 25.12	s-1941 6"-3712	3391	4900
F88	29.77 24.19	s-445 6"-460	614	610
F91	28.02 22.43	136	138	190
F95	28.20 21.38	s-246 6"-307	434	430
F98	28.54 21.78	s-346 6"-431 12"-263	461	730

SAN	SAMPLES OF SILTY CLAY (June 2, 2017)									
Sample Location	Coordinates	Sample Depth (inches)	Laboratory Results (mg/kg)							
F11	26.95 25.99	24	20.1							
F23	28.60 26.69	24	4.99							
F40	28.41 25.31	18-20	10							
F86	29.85 25.12	18-20	10.6							

Notes:

Field results measured using a Thermofisher Niton XL3t GOLDD+ XRF Sample locations identified in Table 2 were resampled and submitted for

laboratory analysis for duplication and and field confirmation purposes.

mg/kg = milligram per kilogram

s = Surface sample

6" = depth below ground surface

TABLE 4

BPB Area Field Investigation Test Pit Descriptions StoneHill, June 2, 2017 Dagostino Rose Farm Oak Street Extension, Exeter, NH

Test Pit ID	Description (feet)
TP-107	0.5 - 1 - loam 1-4 - Brown clayey sand All virgin soils, no fill
TP-108	0-4 - Virgin soils - No fill noted
TP-109	1-4.5 - Brick, glass, wire, metal 4.5 - Virgin soils
TP-110	0-4 - Virgin soils - No fill noted
TP-111	0-3 - Brick 3 - Virgin soils
TP-112	0-4 - Virgin soils - No fill noted
TP-113	0-5 - Coal clinkers 5 - Virgin soils
TP-114	0-4 - Sand - No fill noted

Notes:

TP = Test Pit

(0-4) = feet below ground surface

TABLE 5 Summary of Former Boiler and Packing Building Area Soil Analytical Data and Descriptions Source - Credere Associates, LLC Dagostino Rose Farm Oak Street Extension, Exeter, NH

Sample ID	NHDES SRS	CA-SB-1	CA-SB-2	CA-SB-2	CA-SB-4	CA-SB-4	CA-SB-5	CA-SB-6	CA-TP-100A	CA-TP-101	CA-TP-101S	CA-TP-102	CA-TP-104S	CA-TP-105	CA-TP-105S
Sample Date	(mg/kg)	12/11/2012 ¹	12/11/12	12/11/12	12/11/12	12/11/12	12/11/12	12/11/12	08/06/15	08/06/15	08/06/15	08/06/15	08/06/15	08/06/15	08/06/15
Sample Depth (inches)		5-7.5	0-2.5	12.5-15	0-2.5	7.5-10	5-7	7.5-10	9-10/9	5-5.5	0-2	4-5	0-2	5-6	0-2
Sample Description		Sand, Silt, Concrete, Asphalt	Sand, Clinker, Gravel	Sand, Silt	Sand, Silt, Gravel, Asphalt	Sand, Silt	Gravel, Coal, Clinker, Cinder	Sand, Silt	Silt, Clay	Sand, Silt	Sand, Ash	Sand, Clay, Silt	Hose, Car Parts, Plastic, Fabric	Silt, Clay	Ash, Clinkers, Bottles, Brick
FIELD HEADSPACE (ppmv)	NS	0.80	ND	0.50	ND	1.20	1.90	ND	ND	ND	ND	ND	ND	ND	ND
PAH by EPA Method 8270 (mg/kg)															
acenaphthylene	490	0.53	ND<0.6	ND<0.6	0.38	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
naphthalene	5	NA	NA	NA	NA	NA	NA	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
2-methylnaphthalene	96	NA	NA	NA	NA	NA	NA	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
phenanthrene	NS	3.8	ND<0.6	ND<0.6	0.74	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
anthracene	1000	0.72	ND<0.6	ND<0.6	0.2	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
fluoranthene	960	5.3	ND<0.6	ND<0.6	1.4	ND<0.07	0.1	NA	ND<0.06	ND<0.06	0.12	ND<0.6	ND<0.6	ND<0.8	ND<0.6
pyrene	720	4.2	ND<0.6	ND<0.6	1.5	ND<0.07	0.09	NA	ND<0.06	ND<0.06	0.1	ND<0.6	ND<0.6	ND<0.8	ND<0.6
benzo(a)anthracene	1	2.4	ND<0.6	ND<0.6	0.76	ND<0.07	0.06	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
chrysene	120	2.6	ND<0.6	ND<0.6	0.77	ND<0.07	0.08	NA	ND<0.06	ND<0.06	0.1	ND<0.6	ND<0.6	ND<0.8	ND<0.6
benzo(b)fluoranthene	1	1.8	ND<0.6	ND<0.6	0.8	ND<0.07	0.09	NA	ND<0.06	ND<0.06	0.12	ND<0.6	ND<0.6	ND<0.8	ND<0.6
benzo(k)fluoranthene	12	2.1	ND<0.6	ND<0.6	0.7	ND<0.07	0.11	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
benzo(a)pyrene	0.7	2.1	ND<0.6	ND<0.6	0.79	ND<0.07	0.06	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
indeno(1,2,3-cd)pyrene	1	0.9	ND<0.6	ND<0.6	0.22	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
dibenzo(a,h)anthracene	0.7	0.44	ND<0.6	ND<0.6	0.12	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
benzo(g,h,i)perylene	NS	0.91	ND<0.6	ND<0.6	0.21	ND<0.07	ND<0.05	NA	ND<0.06	ND<0.06	ND<0.09	ND<0.6	ND<0.6	ND<0.8	ND<0.6
VOC by EPA Method 8260 (mg/kg)															
All compounds	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Pesticides by EPA Method 8081 (mg/kg)															
4,4'-DDE	4								ND<0.04	ND<0.05	ND<0.07	NA	NA	NA	NA
4,4'-DDT	4								0.27	ND<0.05	ND<0.07	NA	NA	NA	NA
TPH by EPA Method 3550 (mg/kg)															
ТРН	10,000								NA	NA	NA	NA	NA	NA	NA
TPH by EPA Method 8015 (mg/kg)	10.000														
Gasoline Range Organics (GRO) Diesel Range Organics (DRO) C10-C28	10,000 10,000	NA ND<190	NA NA	NA NA	NA ND<220	NA ND<260	NA ND<200	ND<4 NA							
PCB by EPA Method 8082 (mg/kg) Total PCBs	1	NA	ND<0.2	ND<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Priority Pollutant Metals by EPA Method															1
6010 & 7471 (mg/kg)															
arsenic	11	5.6	8.7	5.2	10	67	13	NA	20	11	9.8	45	7.8	23	13
barium	1,000	20	20	45	37	100	58	NA	110	80	90	59	65	100	100
cadmium	33	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.3	0.3	NA	ND<0.5	ND<0.5	ND<0.7	ND<0.5	ND<0.5	ND<0.5	ND<0.6
chromium (total)	130	17	17	21	31	37	40	NA	17	31	31	24	36	33	36
	400	32	32	7.7	120	17	73	2.1	25	13	57	15	39	79	59
lead															
mercury	7 180	ND<0.15 ND<3	ND<0.15 ND<3	ND<0.19 ND<3	ND<0.16 ND<3	ND<0.20 7	0.16 ND<3	NA NA	ND<0.20 NA	ND<0.22 NA	0.34 NA	ND<0.20 NA	ND<0.23 UJ NA	ND<23 NA	ND<0.26 NA

Notes:

NHDES SRS = New Hampshire Department of Environmental Services Soil Remediation Standards

bold = concentrations above NHDES SRS

ND = Not detected above laboratory method detection limit

NA = Not Analyzed

NS = No Standard

ppmv = parts per million by volume

¹Sample tested positive for 0.32 mg/kg of fluorene, which is not over the NHDES SRS of 77 mg/kg.

Source - Table from Credere Associates, LLC

		Dagostino I Street Extensi NHDE	Rose Farm Pro on, Exeter, Nev S #201203003	v Hampshire	SULTS		
Regulatory Standard			s	ample ID, Sample Dat	e		
NH AGOS ⁽²⁾	DW-1	DW-2	CA-MW-1	CA-MW-2	CA-MW-3	CA-MW-4	CA-MW-5
(μg/L)	1/3/2013	1/3/2013	1/4/2013	1/3/2013	1/3/2013	1/4/2013	1/3/2013
EPA Method 826	i0B						
70	ND< 0.5	ND< 0.5	21	ND< 2	ND< 2	ND< 2	ND< 2
							ND< 2
70	ND< 0.5	2.3	ND< 2	ND< 2	ND< 2	ND< 2	ND< 2
EPA Method 826	O SIM						•
3	ND< 0.25	ND< 0.25	ND< 0.25	ND< 0.25	ND< 0.25	ND< 0.25	ND< 0.25
0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05
ncluding Polycyc	lic Aromatic Hydroca	arbons (ug/L) EPA Met	hod 8270D				:
800	5	6	11	NS	8	24	12
NH AGQS (mg/L)							:
0.01	0.008	ND< 0.008	0.009	ND< 0.008	ND< 0.008	ND< 0.008	ND< 0.008
2	ND< 0.05	ND< 0.05	0.05	ND< 0.05	ND< 0.05	0.05	ND< 0.05
)	Regulatory Standard NH AGQS ⁽²⁾ (µg/L) EPA Method 826 70 13 70 EPA Method 826 3 0.05 mcluding Polycyc 800 NH AGQS (mg/L) 0.01	Regulatory Standard DW-1 NH AGQS ⁽²⁾ (µg/L) DW-1 70 DW-0.5 70 ND< 0.5	Dagostino f Oak Street Extensis NHDE SUMMARY OF GROUNDWAT Regulatory Standard DW-1 DW-2 NH AGQS ⁽²⁾ (µg/L) DW-1 DW-2 1/3/2013 1/3/2013 EPA Method 8260B 1/3/2013 70 ND<0.5	Oak Street Extension, Exeter, New NHDES #201203003 SUMMARY OF GROUNDWATER SAMPLE A Regulatory Standard DW-1 DW-2 CA-MW-1 NH AGQS ⁽²⁾ (µg/L) DW-1 DW-2 CA-MW-1 Image: Display transmission of the system DW-1 DW-2 CA-MW-1 Image: Display transmission of the system DW-1 DW-2 CA-MW-1 Image: Display transmission of the system DW-1 DW-2 CA-MW-1 Image: Display transmission of the system DW-2 CA-MW-1 Image: Display transmission of the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM Top in the system DISPLATED SIGNATION OF THE SYSTEM	Dagostino Rose Farm Property Oak Street Extension, Exeter, New Hampshire NHDES #201203003 SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RE Regulatory Standard Sample ID, Sample Dat NH AGQS ⁽²⁾ (µg/L) DW-1 DW-2 CA-MW-1 CA-MW-2 1/3/2013 1/3/2013 1/4/2013 1/3/2013 EPA Method 8260B 70 ND<0.5	Dagostino Rose Farm Property Oak Street Extension, Exeter, New Hampshire NHDES #201203003 SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS Regulatory Standard Sample ID, Sample Date NH AGQS ⁽²⁾ (µg/L) DW-1 DW-2 CA-MW-1 CA-MW-2 CA-MW-3 1/3/2013 1/3/2013 1/3/2013 1/3/2013 1/3/2013 1/3/2013 EPA Method 8260B Total ND<0.5 D1 ND<2 ND<2 ND<2 70 ND<0.5	Dagostino Rose Farm Property Dak Street Extension, Exeter, New Hampshire NHDES #201203003SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTSRegulatory StandardSample ID, Sample DateNH AGQS ⁽²⁾ (µg/L)DW-1DW-2CA-MW-1CA-MW-2CA-MW-3CA-MW-41/3/20131/3/20131/3/20131/3/20131/3/20131/3/20131/3/2013EPA Method 8260BUUUND<0.5ND<2ND<2ND<270ND<0.5

mg/L = milligrams per liter ND = Not detected above practical quantitation limit (i.e. $0.2 \ \mu g/L$)

NS = Not sampled Bold Exceeds laboratory quantitation limit Exceeds NH AGQS

Table 7

Summary of Sediment Sample Analytical Results Dagostino Rose Farm Oak Street Extension, Exeter, NH

Source - Credere Associates, LLC

	Regulatory Criteria ¹ (mg/kg)				Sample ID, Depth, Sample Date									
Parameter*			SED-BKG	CA-SED-100	CA-SED-101	CA-SED-102	CA-SED-103	CA-SED-104	CA-SED-105	CA-SED-106	CA-SED-107	CA-SED-108		
	TEC	PEC	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5		
		120	7/23/2015	7/23/2015	7/23/2015	7/23/2015	4/8/2016	4/8/2016	4/8/2016	4/8/2016	4/8/2016	4/8/2016		
Volatile Organic Compounds	(VOCs) by EPA Meth	hod 8260C (mg/kg)	•	•	•	•								
All compounds	NA	NA	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS		
Semivolatile Organic Compou	nds (SVOCs) or Poly	cyclic Aromatic Hyd	rocarbons (PAHs)	by EPA Method 827	70D (mg/kg)		÷	-	÷	÷	÷			
fluoranthene	0.423	2.23	ND<0.07	ND<0.09	0.76	ND<0.41	NS	NS	NS	ND<1.1	ND<0.96	ND<0.66		
pyrene	0.195	1.52	ND<0.07	ND<0.09	0.75	ND<0.41	NS	NS	NS	ND<1.1	ND<0.96	ND<0.66		
chrysene	0.166	1.29	ND<0.07	ND<0.09	0.53	ND<0.41	NS	NS	NS	ND<1.1	ND<0.96	ND<0.66		
benzo(b)fluoranthene	0.24	13.4	ND<0.07	ND<0.09	0.53	ND<0.41	NS	NS	NS	ND<1.1	ND<0.96	ND<0.66		
benzo(a)pyrene	0.15	1.45	ND<0.07	ND<0.09	0.56	ND<0.41	NS	NS	NS	ND<1.1	ND<0.96	ND<0.66		
Pesticides by EPA Method 808	B1B (mg/kg)		•	•	•	•	•		•	•	•			
All compounds	NA	NA	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS		
Priority Pollutant Metals by E	PA Method 6010C &	2 7471B (mg/kg)												
arsenic	9.79	33	32	9.5	12	14	NS	NS	NS	NS	NS	NS		
barium	NE	NE	64	460	39	47	NS	NS	NS	NS	NS	NS		
cadmium	0.99	4.98	1.8	1.3	1.0	ND<0.6	NS	NS	NS	NS	NS	NS		
chromium (total)	43.4	111	29	ND<9	ND<9	14	NS	NS	NS	NS	NS	NS		
lead	35.8	128	44	180	140	46	110	140	81	220	66	57		
NOTES														

NOTES:

Gray and Bold headings are new samples collected during this Supplemental Phase II ESA

mg/kg - milligrams per kilogram

*Only analytes with detections are shown, all other sample results analyses were below the laboratory reporting limits.

1 - New Hampshire Department of Environmental Services, DRAFT Evaluation of Sediment Quality Guidance Document, April 2005.

NE - not established

ND<0.2 - Results were below the laboratory reporting limits, laboratory reporting limit shown

ND - Results were below the laboratory reporting limits and reporting limits vary between compounds

Bold Exceeds laboratory reporting limit

White and not bold headings are historical samples collected during the prior Phase II ESA

Reporting limit exceeds regulatory criteria

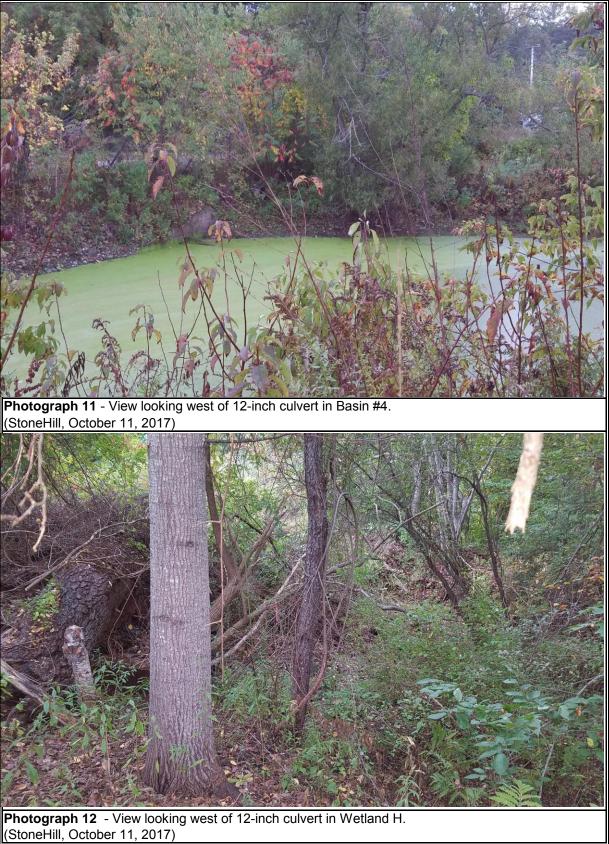
Exceeds applicable TEC or PEC but is consistent with site-specific background sample SED-BKG

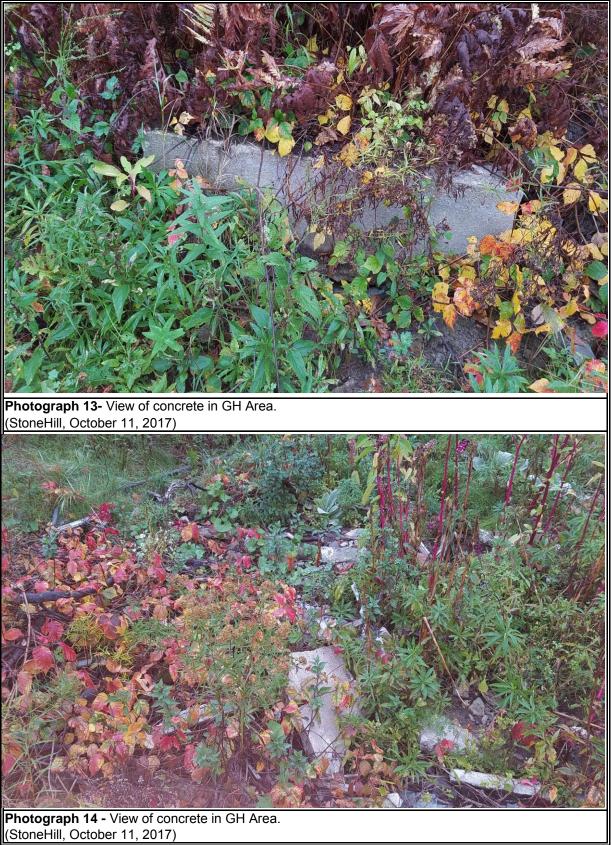
Exceeds applicable TEC but is below applicable PEC

Exceeds applicable TEC and PEC

PHOTOGRAPHS




Photograph 4 - View of solid wastes and appliances in Former Boiler and Packing Buildings Area. (StoneHill, May 17, 2017)



Photograph 6- View facing south of solid wastes on bank behind former boiler building. (StoneHill, September 26, 2016)

APPENDIX A

		GEOLOGIC LOG					
A 42.		SITE INFORMATION Project Number/Client:	WELL SPECIFICATIONS Well Depth (feet):				
	ere Associates, LLC	11001122	25	in (ieet).			
	/ain Street brook, ME 04092	Site Location: Screen Length (feet):					
	-	Dagostino Rose Farm Property Date Start/Finish:	15 TOC Elev	ation:			
Environment		12/11/2012	-				
		Credere, LLC Representative:	Well Mate		at Screen: No. 1 Sand: standning		
	D 1/	Judd R. Newcomb, CG, PG CONTRACTOR	1 PVC; 0.		ot Screen; No. 1 Sand; standpipe LING EQUIPMENT		
CA-S	DD-1/	Drilling Contractor:	Equipmen	ıt:			
		Eastern Analytical Foreman:	Track-mou Casing Di				
CA-N		David Nevison	NA				
		Drilling Method: Direct-Push	Casing Ma	aterial:			
Sample I	Information	Direct-Fush	INA		Equipment Installed		
		Soil Description and Classification	Strata	USCS Code			
Depth Sample No. Depth (Ft.) Pen/Rec (Feet)	Blows (/0.5')			Code	Depth		
S-1 0-5 5/4	NA NA		İ	1			
$\ \vdash + - \downarrow$	ND				1" Schedule-40		
	ND				PVC solid casing		
2		Moist, brown fine to medium SAND, little					
		coarse SAND, Silt, and Concrete, trace Asphalt.	ials		888 B88		
$\ \vdash + + - +$	0.4		Fill Materials	SW			
4	0.4		M	511	No. 1 sand		
		4	Fill		98. 88		
S-2 5-10 5/5	NA						
6	0.8*	Same as above.			6		
8					Bentonite Seal		
	0.7	Moist, tan fine SAND.		SP	° i		
					338 338		
10 8 2 10 15 57	NT 4		_		No. 1 sand		
10 S-3 10-15 5/5	NA						
	ND						
						1° Schedule-40 0.010°slotted PVC screen	
12		Moist, gray SILT, trace fine Sand.	×		SM	PVC screen 12	
						\$\$\$\$ 1 \$\$\$\$	
	ND						
14	<u> </u>		ne Deposits				
S-4 15-20 5/5	NA	1)ep(885 - 888		
			ne I				
16	ND		ariı		16		
			O		1101 - 1101		
		Moist to wet, gray SILT.	Glaciomari				
18			5		18		
	ND						
		<u>]</u>		ML	88 - 88		
20 S-5 20-25 5/5	NA			ML	20		
$\ \vdash + + - +$	ND						
22		Same as above.			22		
					222-222		
	ND						
24					24		
		End of exploration at 25' bgs.					
		any 1/ bas in this boring					
Remarks: Groundwater was		v v v v v v v v v v v v v v v v v v v	Approxim	ate grou	ndwater level		
bgs - below ground surfa	ace	<u>v</u>	Approxima	ate grou	ndwater level		
bgs - below ground surfa *indicates that this samp	ace ole interval was sent to lab	pratory for offsite analysis.		-	ndwater level Page 1 of 1 Boring No: CA-SB-1/CA-MW-1		

						GEOLOGIC LOG					
	A					SITE INFORMATION			L SPECIFICATION	ONS	
	E	8	Crod	ere Associates, LL	c	Project Number/Client:	Well Dept	th (feet):			
Solution of the second se	E v	Are		lain Street	C	11001122 Site Location:	15 Screen Le	4. (6	0		
C	5/ -			brook, ME 04092		Dagostino Rose Farm Property	12.5	ingth (le	et):		
		V				Dagostino Rose Failin Property Date Start/Finish:	TOC Elev	ation			
	Envir	ron men	t			12/11/2012	-	ution.			
						Credere, LLC Representative:	Well Mat	erial			
						Judd R. Newcomb, CG, PG			t Screen; No. 1 Sa	nd; standpipe	
		\sim		B-2 /		CONTRACTOR			LING EQUIPME		
		$\bigcup P$		D - Z		Drilling Contractor:	Equipmer	nt:			
						Eastern Analytical	Track-mo		oprobe		
				IW-2		Foreman:	Casing Di	ameter:			
		\mathcal{A}		I VV - <i>L</i>		David Nevison	NA Casing M				
						Drilling Method: Direct-Push	NA	aterial:			
			6 L I	e		Direct-rush	ΝA		Equipp	nent Installed	
		r –		nformation	r	-		USCS	Equipi		—
th	Sample No.	⊂ th	Pen/Rec (Feet)		(I - 0)	Soil Description and Classification	Strata	Code		-	ţ
Depth	San No.	Depth (Ft.)	Pen (Fee	Blows (/0.5')	PID (ppm) (RF=1.0)						Depth
	S-1	0-5	5/4	NA			<i>i</i> o			1010 310	
					1		Fill Materials			100	-
					ND*	Dry, brown fine to medium SAND and CLINKER, trace fine Gravel.	Fill Iteri	SP	1" Schedule-40 PVC solid casing	1	
Ľľ]	CERVICEN, udee fille Glavel.	1 1a1			6898 - 598	
2					1		4				2
						3" Moist, gray fine SAND and SILT.		SM	Bentonite Seal		
									Demonite Seal		
					ND				No. 1 as 1	888 - 888	
4						Moist, tan fine to medium SAND.			No. 1 sand	18 85–888	4
											3
	S-2	5-10	5/5	NA				SP			
6					ND	Same as above.			1" Schedule-40 0.010"slotted		6
							its		PVC screen	1999	
							 Glaciomarine Deposits			3.655 - 555	
)ep				
8							eI				8
					ND	Wet, light gray fine SAND and SILT.	Ŀ.			1010-010	£
							nai				
							ior				
10	S-3	10-15	5/5	NA			lac			222 22	10
							G				4
					ND	Same as above.		SM		566 - 66	
ГĻ		L			4						
12		L			 	4					12
		ļ			4						
		ļ			I .						
Г					0.5*	Wet, tan fine SAND and SILT.		1		588 - 888	
14					-						14
										5666 - 6666	•
		<u> </u>			<u> </u>	End of exploration at 15' bgs.					
H		<u> </u>			<u> </u>	4					
16		ł				4					16
		<u> </u>			<u> </u>	4		1			
		<u> </u>			<u> </u>	4		1			
		ł				4					
18		<u> </u>			<u> </u>	4					18
		ł				4					
		ł				4					
20		<u> </u>			<u> </u>	4					
20	-	L .			<u> </u>						20
					roxiate	ly 7.5' bgs in this boring.					
l I	bgs - b	elow gro	und surfa	ce		<u> </u>	Approxim	ate grour	dwater level		
	*indica	ates that t	his sampl	e interval was sent t	to labor	atory for offsite analysis.			Page	1 of 1	
Th	e modified	d Burmeister nav be gradu	system was al. Water lev	used to describe soils obse el readings have been made	erved at the	Site. Stratification lines represent approximate boundaries land under conditions stated. Fluctuations of groundwater ma	between soil type	s, her			
fac	tors than	those prese	nt at the time	measurements were made.					Boring No: C	A-SB-2/CA-M	W-2

						GEOLOGIC LOG					
	A					SITE INFORMATION			L SPECIFICATIO	DNS	
	S	E'S.	Crod	ara Acanaiatan II.	^	Project Number/Client:	Well Dept	th (feet):			
	E v	Are		ere Associates, LL /ain Street	6	11001122	15 G	41.76	0		
C	5 1			brook, ME 04092		Site Location: Dagostino Rose Farm Property	Screen Le 12.5	ength (fe	et):		
		V				Dagostino Rose Faint Property Date Start/Finish:	TOC Elev	ation			
	Envir	ron men	t			12/11/2012	-	ation.			
						Credere, LLC Representative:	Well Mat	erial			
						Judd R. Newcomb, CG, PG			t Screen; No. 1 Sa	nd: standnine	
						CONTRACTOR	1 1 1 0, 0		LING EQUIPME		
		ΙŻΑ		B-3 /		Drilling Contractor:	Equipmer				
						Eastern Analytical	Track-mo		oprobe		
						Foreman:	Casing Di	ameter:			
		ÌΑ		IW-3		David Nevison	NA				
			L IV.			Drilling Method:	Casing M	aterial:			
						Direct-Push	NA				
			Sample I	nformation					Equipm	ent Installed	
_	le	_	çe çe		î.	Soil Description and Classification	Strata	USCS			_
Depth	Sample No.	Depth (Ft.)	Pen/Rec (Feet)	DI (10 - 11	PID (ppm) (RF=1.0)	· · · · · · · · · · · · · · · · · · ·		Code		Π	Depth
ă				Blows (/0.5')	E B						Ă
	S-1	0-5	5/3.5	NA	-		ls	1			8
						Moist, brown fine to coarse SAND, little	ll ria				
					1.0*	Concrete and Brick.	Fill iteri	SP	1" Schedule-40 PVC solid casing		
							Fill Materials	1			·
2							4				2
									Reptorite See		
									Bentonite Seal		
					0.8	Moist, tan fine SAND.		SP			6
4			1		1				No. 1 sand	ki a Ekk	4
										icia Esta	8
	S-2	5-10	5/5	NA			-			5656 - 666	
	3-2	3-10	5/5	INA	-					6666 666	
					0.0				1" Schedule-40	888 88	
6					0.8	Moist to wet, light gray fine SAND and SILT.		SM	0.010"slotted		6
							its		PVC screen		2
							Glaciomarine Deposits			A 613 - 133	<u> </u>
							Jel			2222-222	
8							еI				8
					0.6*	Wet, tan fine to medium SAND.	ii.				£
							Jar			icia Esta	8
							u o			8888-888	
10	S-3	10-15	5/5	NA			aci			8686 - 666 1998 - 1998	10
	~ -						Ë			5555 - 555	
					0.2		Ŭ	SP		5353 <u>-</u> 355	3
		<u> </u>			0.2			51			
12					-						10
12					<u> </u>	Same as above.		1			12
∥∣		<u> </u>									
											÷
		L			ND						
14					1			1		5555 - 553	14
											¥
[End of exploration at 15' bgs.					
ĺĺ								1			
16						1					16
		1	1			1					
		1		1		1		1			
		1			<u> </u>	1					
10						1					10
18		<u> </u>						1			18
∥∤					<u> </u>						
∥∣		ł				4					
					L	4					
20						l					20
Rer	narks:	Ground	water was	encountered at app	roxiate	y 7.5' bgs in this boring.					
	bgs - b	elow gro	und surfa	ce		<u>v</u>	Approxim	ate groun	dwater level		
	-	-			o labor	atory for offsite analysis.		-	Page	1 of 1	
	mulca	aco ulat l	uns sampl	ic micryar was sell t	o iauor	atory for offsite allalysis.			r age	1 01 1	
_											
Th	e modified nsitions n	a Burmeister nay be gradu	system was ual. Water lev	used to describe soils obse el readings have been made	at times	e Site. Stratification lines represent approximate boundaries be and under conditions stated. Fluctuations of groundwater may	etween soil type occur due to ot	s, her	Doning No. 2		W 2
fac	tors than	tnose prese	nt at the time	measurements were made.					Boring No: C	а-эв-з/са-М	vv - 3

						GEOLOGIC LOG	T		
1000	S.					SITE INFORMATION Project Number/Client:	Well Dep	WEL	L SPECIFICATIONS
1000	un	A SH		ere Associates, LLC	:	11001122	25	in (reet):	
	il a	T.		lain Street brook, ME 04092		Site Location:	Screen Le	ength (fe	et):
1	-	V.				Dagostino Rose Farm Property Date Start/Finish:	20 TOC Elev	vation	
10110	Envir	onmen	t			12/11/2012	-	au011:	
						Credere, LLC Representative:	Well Mat	erial	
		\sim	G			Judd R. Newcomb, CG, PG	1" PVC; 0		ot Screen; No. 1 Sand; standpipe
				B-4 /		CONTRACTOR Drilling Contractor:	Equipmer		LING EQUIPMENT
						Eastern Analytical	Track-mo	unted Ge	
			\mathbb{N}			Foreman: David Nevison	Casing D NA	iameter:	
		\mathcal{A}	=1V]	IW-4		Drilling Method:	Casing M	aterial:	
						Direct-Push	NA		
				nformation				USCS	Equipment Installed
pth	Sample No.	Depth (Ft.)	Pen/Rec (Feet)		PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code	
Depth				Blows (/0.5')	PID ((RF=				Depth
	S-1	0-5	5/3	NA					
	-				ND*	Moist, brown fine to medium SAND, little Silt			1" Schedule-40
						and fine Gravel, trace asphalt.			PVC solid casing
2									2
							ials		No. 1 sand
				<u> </u>	0.3	Dry, black medium to coarse SAND, COAL,	iter	SW/Fill	
4					0.5	CLINKER, and fine GRAVEL.	Fill Materials	5.071 III	Bentonite Seal
							Fill		SS183
	S-2	5-10	5/5	NA				1	
6					0.6	Same as above.		1	6
0					0.0	Same as above.			°
								1	\$759 1 555
8					1.0*				8
					1.2*	Wet, tan fine SAND and SILT.		SM	SSE 333
								1	
10	S-3	10-15	5/5	NA			1		No. 1 sand
								1	
					0.9				1° Schedule-40
12				<u> </u>					0.010"slotted PVC screen 12
-						Moist, gray SILT.		1	SSS 583
									222 - 222 222
14					0.3		s		14
14							ne Deposits	1	SSS SSS 14
	S-4	15-20	5/5	NA)eb(\$555 1 5553
							le L	1	
16					ND		ariı	1	16
							omí		
						Moist to wet, same as above.	Glaciomari	ML	
18							E		18
					ND			1	SSSE (SSS
									\$555 5 555
20	S-5	20-25	5/5	NA				1	20
-0									
					ND				6555 <u>1</u> 5559
									2221 222
22						Wet, same as above.		1	22
									6666 - 6666
_					ND			1	
24								1	24
						Endeford and soft		<u> </u>	2724 2925
2.0	marke	Ground	votor wee	encountered at an	roviat	End of exploration at 25' bgs.	l	1	1
<u>se</u>			water was und surfa		noxiate	ely 17' bgs in this boring.	Approxim	ate grom	ndwater level
	-	-			to labo	ratory for offsite analysis.		3.2.4	Page 1 of 1
т	ne modified	Burmeister	system was u	used to describe soils obser	ved at the	Site. Stratification lines represent approximate boundaries be	tween soil turo	s.	
- 23	ansitions m	nay be gradu	al. Water leve	el readings have been made	at times a	nd under conditions stated. Fluctuations of groundwater may	occur due to ot	her	Boring No: CA-SB-4/CA-MW-4

						GEOLOGIC LOG SITE INFORMATION		WFLI	SPECIFIC	ATIC	NS	
	Ś	E				Project Number/Client:	Well Dep			AIIO	110	
	In	A SE	Crede	re Associates, LL	c	11001122	NA					
	E Y	A Y A	776 M	ain Street		Site Location:		ength (fee	t):			
C			West	prook, ME 04092		Dagostino Rose Farm Property	NA					
4	Envir	on men	t			Date Start/Finish:	TOC Ele	vation:				
	Suvil	onmen				12/11/2012	NA					
_						Credere, LLC Representative:	Well Mat	erial				
						Judd R. Newcomb, CG, PG	NA					
						CONTRACTOR			LING EQUI	PME	NT	
						Drilling Contractor:	Equipme					
		$(\) \land$		SB-5		Eastern Analytical, Inc.		unted Geo	probe			
						Foreman:	Casing D	iameter:				
						David Nevison	NA					
						Drilling Method: Direct-Push	Casing M NA	laterial:				
-			a	0 11		Direct-1 usi	INA		F		ont Installed	
ŀ			Sample Ir	nformation	1	1		USCS	E	գարտ	ent Installed	1
mdaa	Sample No.	Depth (Ft.)	Pen/Rec (Feet)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code				Denth
	S-1	0-5	5/3	NA								
ſ										1		
ſ					ND	Dry, gray fine to coarse SAND, fine GRAVEL, COAL, and CINDERS.		SW/Fill		1		
ľ]	COAL, and CINDERS.				1		
2										1		2
ſ										1		
ſ						Moist arou fine to use time CANTE 1 OF T	s			1		
					0.7	Moist, gray fine to medium SAND and SILT, trace Ash, Brick, and Concrete.	lial	SM		1		L
4						uncertain, Brick, and Concrete.	fill Materials			1		4
ſ							Ma			1		
ſ	S-2	5-9	4/2	NA			II			1		
ľ					1.9*	Moist, gray fine to coarse GRAVEL, little Coal,	Ē	CW		1		
5					1.9*	Clinker, and Cinders.		GW		1		(
ľ					1					1		
ľ										1		
ŀ						Moist gray, fine to coarse SAND, CONCRETE,				1		
8					0.8	and BRICK.		SW/Fill		p_i		5
ľ					1					talle		
Ī						Refusals on suspected boulder fill material at 7,				Insi		
ľ					1	8, and 9 feet bgs.				'ell		
0										No Monitoring Well Installed		1
ĺ					1	1				ring		1
ŀ					1	1				nito		
ŀ					1	1				ЮŅ		
2					1	1				101		1
Ī					-	1				~		1
ŀ					1	1				1		1
ŀ					1	1				1		1
ı					1					1		1
ŀ					1					1		1
ŀ					1	1				1		1
ŀ					1	1				1		1
5					1					1		1
ĺ					1	1				1		
ŀ					1	1				1		
ŀ					1	1				1		1
;					1	1				1		1
ŀ					1					1		1
ŀ					1	1				1		1
ŀ					+					1		
)					-					1		
	narka	Ground	vater was	not encountored :-	this be-	ll ring	1	1		1	1	
				not encountered in	uns doi	ing.						
	ugs - be	erow grou	und surfac	æ								
	*indica	tes that t	his sample	e interval was sent	to labor	atory for offsite analysis.			Page	•	1 of 1	
h	e modified	Burmeister	system was u	sed to describe soils obse	erved at the	Site. Stratification lines represent approximate boundaries be and under conditions stated. Fluctuations of groundwater may	etween soil type	is,				
		ay ne gradu	an. water leve	n readings have been Mad	e at umes a	and and of conditions stated. Fluctuations of groundwater may	occur due to o	andi	Boring No	•	CA-SB-5	

					GEOLOGIC LOG						
.c					SITE INFORMATION	Well Dept		L SPECIFIC	ATIO	INS	
Ĩ	is.	Crede	ere Associates, LI	с	Project Number/Client: 11001122	Well Dept NA	II (feet):				
and the second	A Yearing	776 N	lain Street		Site Location:	Screen Le	nath (fe	et)•			
0 1	E	West	brook, ME 04092		Dagostino Rose Farm Property	NA	ngui (166				
	V				Dagostino Rose Farm Property Date Start/Finish:	TOC Elev	ation				
Envi	ron men	t			12/11/2012	NA					
					Credere, LLC Representative:	Well Mate	arial				
					Judd R. Newcomb, CG, PG	NA	-1 Iai				
					CONTRACTOR	INA	DRIL	LING EQUI	PME	NT	
					Drilling Contractor:	Equipmen		EIIIO EQUI	1 10112		
			SB-6		Eastern Analytical, Inc.	Track-mou		oprobe			
	\mathbf{V})D-()		Foreman:	Casing Di		oproce			
					David Nevison	NA					
					Drilling Method:	Casing M	aterial:				
					Direct-Push	NA					
		Sample I	nformation					E	quipm	ent Installed	
۵			mormation	1.		G 4 4	USCS		1		1
Sample No.	Depth (Ft.)	Pen/Rec (Feet)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code				Depth
S-1	0-5	5/3.5	NA								
					2" Grass and Loam	Fill	Fill				
	1			ND	2" Asphalt	Materials					
	1		<u> </u>	-	Dry, orangish-tan fine to medium SAND.		1	1	1		
2	1			-							2
	1			-	1				1		2
	+			-							
	+			ND	Dry tan fine to madium CAND						
				ND	Dry, tan fine to medium SAND.				1		+-
4				_							4
			-	_	4						
S-2	5-10	5/5	NA	_							
				_			SP				
6				ND	Moist, same as above.	S			1		6
						lise					
						Glaciomarine Deposits			1		
						Q			1		
8	1					ine			p_i		8
	1			ND*	Wet, tan fine to medium SAND, little Silt.	lar			talle		
	1					on			Inst		
	1					aci			ell		
0 S-3	10-15	5/4	NA		1	Б		l	No Monitoring Well Installed		10
	10 10	5, 1		-					ring		
				ND	Wet, gray fine SAND and SILT.		SM		itoı		
				110	wet, gray fille SAIND allu SIL1.		1416		lon		
_				-					0 W		-
2					l	_			N.		12
	1			_					1		
	1			_					1		
				ND	Wet, organish-tan fine to medium SAND.		SP		1		
4											14
					End of exploration at 15' bgs.		Γ		1		
	1								1		
6	1				1						10
-	1				1						[]
	1		<u> </u>		1				1		1
	1			-	1				1		1
	+		ļ		1				1		-
0											18
8				-	4						
8				-	4						
8					1				1		
						1	1	1	1	1	2
8											_
0	: Ground	water was	encountered at ap	proxiate	ly 8' bgs in this boring.			I			
0 emarks:	-	water was		proxiate	y 8' bgs in this boring. ▼	Approxim	ate groun	dwater level			
0 emarks: bgs - t	below gro	und surfa	ce	-	<u> </u>	Approxim	ate groun		<u> </u>	1 of 1	
0 emarks: bgs - t	below gro	und surfa	ce	-	y 8' bgs in this boring. ↓ atory for offsite analysis.	Approxim	ate groun	dwater level Page		1 of 1	
0 emarks: bgs - t *indic	below gro	und surfac this sampl	ce e interval was sent	to labor	<u> </u>		-			1 of 1	

						GEOLOGIC LOG					
	A					SITE INFORMATION	_		L SPECIFICATIO	ONS	
	S	83	Crode	Anna Anna III	^	Project Number/Client:	Well Dept	th (feet):			
	E v	Are		ere Associates, LL lain Street	6	11001122	15	4. (6	0		
c	5 1			brook, ME 04092		Site Location: Dagostino Rose Farm Property	Screen Le 12.5	ngth (le	et):		
		V				Dagosuno Rose Faim Property Date Start/Finish:	TOC Elev	otion			
	Envi	ron men	t			12/11/2012	-	ation.			
						Credere, LLC Representative:	Well Mat	erial			
						Judd R. Newcomb, CG, PG			t Screen; No. 1 Sa	nd: standpipe	
				B-7 /		CONTRACTOR			LING EQUIPME		
		CA		DD-//		Drilling Contractor:	Equipmen	nt:			
						Eastern Analytical	Track-mou		oprobe		
				IW-5		Foreman:	Casing Di	ameter:			
		-A				David Nevison Drilling Method:	NA Casing M				
						Direct-Push	NA	ateriai:			
			Comula I	f 4 !	_		1121		Fauipr	nent Installed	
				nformation			_	USCS	Equipi		
oth	Sample No.) oth	Pen/Rec (Feet)		PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code			oth
Depth	San No.	Depth (Ft.)	Pen (Fe	Blows (/0.5')	E =						Depth
	S-1	0-5	5/4	NA						222 22	
											-
					ND*	Moist, tan fine to medium SAND.		SP	1" Schedule-40 PVC solid casing	1	•
										(383) ISS	
2				<u>_</u>						\Box	2
									Bentonite Seal		6
											\$
					0.3	Wet, tan fine SAND and SILT.		SM	No. 1 sand	888 88	·
4									NO. I Said	1933 - SS	4
										222	
	S-2	5-10	5/5	NA			S			222 22	
							DSi t			1666 – 666	÷
6					0.5	Moist, gray SILT.	ebe	ML	1" Schedule-40 0.010"slotted	<u> 888 - 88</u>	6
							A		PVC screen		
							 Glaciomarine Deposits				<u>s</u>
							lar				
8							om				8
					0.6	Wet, tan fine SAND and SILT.	aci			8888 888	8
							Ē				
10	~ ~	10.17				4				222 - 22	10
10	S-3	10-15	5/5	NA							10
					0.8*			CM .		888 88	9
					0.8*			SM			
12					-						12
12					<u> </u>	Same as above.					12
					-						ŝ.
		<u>├</u>			0.4						3
14			1		0.7						14
14					1						14
					-	End of exploration at 15' bgs.					
						Ind of exploration at 15 bgs.					
16						1					16
10						1					10
						1					
						1					
18						1					18
						1					10
						1					
						1					
20				<u> </u>		1					20
_	narks:	Ground	water was	encountered at ann	roxiate	ly 7.5' bgs in this boring.	1		u	•	
			und surfa		- <i>5.</i>	-, 550 m uno cormig.	Approxim	ate groun	idwater level		
Ĭ	-	-			0 10-	etom for offsite analysis		- 0.041		1 of 1	
	rindica	ates that t	ms sampl	e interval was sent t	o iabor	atory for offsite analysis.			Page	1 01 1	
.	o mo-1:6:	d Burnesier	outor	used to deperit	nund -+ +*	Site Stratification lines concernt and the lines	hotwoon!! to	_			
tra	nsitions n tors than	nay be gradu those prese	al. Water lev	el readings have been made measurements were made.	at times	e Site. Stratification lines represent approximate boundaries and under conditions stated. Fluctuations of groundwater ma	ay occur due to ot	, her	Boring No: C	A-SB-7/CA-M	W-5

	0.000 /**					GEOLOGIC LOG		WET T	SPECIFIC	1 110	NS	
	A.					SITE INFORMATION Project Number/Client:	Well Dep		L SPECIFIC	A 110	113	
	Ĩ	B.	Crede	ere Associates, LL	c		-	in (leet):				
	E V	A Y A	776 M	lain Street	-	11001122 Site Location:	NA Screen Le	nath (f-	at) .			
c		-	2 West	prook, ME 04092				ingtil (166	cu):			
7		V				Dagostino Rose Farm Property	NA TOC Elev	ati				
1	Envir	onmen	t			Date Start/Finish:		ation:				
6. 1	no se la companya da	n. 1997 (1945)	1997			12/11/2012	NA					
E	_					Credere, LLC Representative:	Well Mat	erial				
						Judd R. Newcomb, CG, PG	NA					
						CONTRACTOR			LING EQUI	PME	NT	
						Drilling Contractor:	Equipmer					
				SB-8		Eastern Analytical, Inc.	Track-mo		oprobe			
						Foreman:	Casing Di	ameter:				
						David Nevison	NA					
						Drilling Method:	Casing M	aterial:				
						Direct-Push	NA					
1			Sample I	nformation					E	quipm	ent Installed	
ŀ	9		2		~	Soil Description and Classificati	St	USCS				
mdaa	Sample No.	Depth (Ft.)	Pen/Rec (Feet)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code				Depth
Ħ	S-1	0-5	5/3.5	NA	<u> </u>		Fill	Fill				
ŀ	~ •		2.010	- ***	1					1		1
┢					ND*	5" Loam and Brick.	its			1		1
┢					110	Wet, tan fine SAND and SILT.	30d	SM		1		1
+					4		Del			1		
2					ļ		Glaciomarine Deposits			1		2
L					1		Li.			1		1
ĺ	T				j		na			1		1
ſ					ND*	Wet, gray SILT.	ior	ML		1		1
1					1		lac			1		4
ł					1		G			1		-
ŀ							ł	+		1		1
ŀ					<u> </u>					1		1
4					ļ	End of exploration at 5' bgs. Additional				1		<u> </u>
5						sampling was not possible due to darkness and				1		6
ſ	T					time constraints.				1		1
ľ										1		1
ŀ						1				1		1
3					1					p		8
Ή										iller		0
ŀ										ısta		1
ŀ					ļ	1				$1 I_{L}$		1
										Vel		
D					1					No Monitoring Well Installed		10
f					1					rin		1
ŀ					1	1				tito		1
ŀ										40n		1
+										0 V		
2					ļ	1				N		12
										1		1
l										1		1
ſ										1		1
1										1		14
ł						1				1		1.
ŀ										1		1
┢						1				1		1
_					ļ					1		-
6					ļ					1		16
										1		1
ſ	_ 1									1		1
ſ										1		
3					1					1		18
ŀ					1	1				1		10
ŀ					1					1		1
ŀ										1		
					ļ	1				1		
)												20
en	arks:	Groundy	water was	not encountered in	this bor	ring.						
			und surfac									
	-	-				a aa			_		1 - 6 1	
	indica	tes that t	his sampl	e interval was sent t	o labora	atory for offsite analysis.			Page		1 of 1	
	mulca											
	muica											
		Burmeister	system was u	used to describe soils obse	rved at the	Site. Stratification lines represent approximate boundaries be and under conditions stated. Fluctuations of groundwater may	etween soil type	s,				

PROJ DATE CONT DRILL DRILL	ECT # START RACTO ING ME	<u>15001</u> ED _7 R _Ge ETHOD	275 /23/15 eosearc 	h, Inc./Brian t Push Geoprobe 66	LOGGE Houle	D BY <u>M. Kennedy</u>	WELL MATERIALS PVC, 0.0	eet Extension, Exeter, NH DIAMETER _1
Uepth (ft)	Penetration/ Recovery (in)	Blow Counts	Field Screening (ppm)	Lab Analytical Sample	Graphic Log		LITHOLOGY	WELL DIAGRAM Casing Type: Flush-mount
0.0	60/55		0.7	CA-SB-100 (0-0.5)	$\frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}}$	0-10" Topsoil		Cement Collar
-				CA-SB-100 (0.5-2)		10-24" Dry, light brown	fine-medium SAND	1" PVC Riser
2.5			0.4			24-55" Dry, light brown	SILT	
			0.4					 ■ Bentonite Seal
-			0.0					Silica Sand Pa
5.0 - -	60/60		0.0 0.0			0-40" Dry, light brown S	SILT	
- - 7.5			0.0					
-			0.0			40-47" Wet, light brown	SILT	
-			0.0			47-53" Wet, light brown		
0.0	60/60		0.0			53-60" Wet, light brown 0-13" Wet, light brown \$		0.010" Slotted Screen
-			0.0			13-18" Wet, light brown		
2.5			0.0			18-40" Wet, light brown	I SILT and CLAY	
-			0.0			40-60" Wet, blue-gray (CLAY	
-			0.0					
15.0						End of Boring @ 15' bg	S	

Env	iron ment	776 Mai Westbro Phone: 2 Fax: 207	ok, Maine 04 207-828-1272 7-887-1051	092		oring Log		101/CA-MW-101 PAGE 1 OF 1
			anning Comm	nission				- /
		15001275		10005	D DV M Kanada	PROJECT LOCATION Oak S		
					D BY <u>M. Kennedy</u>			
						ANNULUS MATERIALS <u>#2 S</u> TOC ELEVATION		
						VOCs, Pesticides, and RCRA 8		
	. <u>3 _001</u>					VOCS, Festicides, and NCKA o		
Depth (ft)	Penetration/ Recovery (in)	Blow Counts Field Screening (ppm)	Lab Analytical Sample	Graphic Log		LITHOLOGY	Casi	WELL DIAGRAM
0.0	60/44	0.0	CA-SB-101	<u>x, 1</u> , <u>x, 1</u> ,	0-6" Topsoil		X	Cement Collar
			(0-0.5)	<u>1/ x1/ x</u>	6-20" Dry, light brown fin	e-medium SAND		 1" PVC Riser Bentonite Seal
		0.0	CA-SB-101					
			(0.5-2)					Silica Sand Pack
8	-	0.0			1			
2.5					20-35" Moist, light brown	fine-medium SAND		
	-	0.0						
]		0.0			35-44" Wet, light brown f	ine-coarse SAND		
	-				>			
5.0	60/54	0.0			0-9" Wet, light brown fine	e-coarse SAND		
						.		
		0.0			9-18" Wet, light gray SIL	I		
					18-36" Wet, light brown f	ine-medium SAND		
		0.0						0.010" Slotted
7.5								
		0.0			20.44")Mat light group Cl	. т		
	1				36-44" Wet, light gray SI			
		0.0			44-49" Wet, orange/red/t			∃ 31
					49-51" Wet, light gray SI			
10.0		0.0			51-54", Wet, light brown Drilled to 12' to set well	iine-coarse SAND	/	
		0.0						
					End of Boring @ 12' bgs			
12.5								
15.0								

PROJ	ECT #	776 M Westl Phone Fax: 2 kingham 1500127	/lain \$ brook e: 20 207-8 <u>Plan</u> /5)92 ission	Soil B	PROJECT NAME _ Dagostino Rose Fa	arm	
							WELL MATERIALS PVC, 0.010" s	otted screen, sc	lid riser
DRILL	ING ME	THOD _[Direct	t Push			ANNULUS MATERIALS #2 Silica Sa	nd, Bentonite Cł	nips
							TOC ELEVATIONGR		'ION
NOTE	S <u>Coll</u>		-	102(0-0.5) a	nd CA-S	<u>5B-102(0.5-2) for VOCs, S</u>	VOCs, Pesticides, and RCRA 8 Metals	analyses	
Ueptn (ft)	Penetration/ Recovery (in)	Blow Counts Field Screening	(mdd)	Lab Analytical Sample	Graphic Log		LITHOLOGY		'ELL DIAGRAM :: Flush-mount
0.0	60/53	0	0.0	CA-SB-102 (0-0.5)	<u>x1, x1, x1,</u>	0-5" Topsoil			⊢ Cement Collar
-		0	0.0	(0-0.3) CA-SB-102 (0.5-2)		5-21" Dry, light brown Sl	LT		- 1" PVC Riser
2.5).0			21-53" Dry, brown SILT		<u>11:</u> 11:	■Bentonite Seal
-).0).0						
5.0 -	60/42	0).0).0).0			0-42", Dry, light gray SIL	т		⊢ Silica Sand Pack
7.5 -		0).0).0).0						
0.0	36/33).0			0-33, Dry, SILT and fine-	coarse SAND, some GRAVEL		0.010" Slotted Screen
		0).0						
2.5		0).0						
- - - 15.0						encountered refusal at 2	four other nearby locations and ', 5', 6', and 11'. Well was set in location ght gray SILT and CLAY, groundwater v Il was set at 15 '.)	vas	
15.0 - -							· · · · · · · · · · · · · · · · · · ·		

් CL	Environmen	7 V P	76 Main Vestbroo hone: 20 ax: 207-	ok, Maine 040 07-828-1272 887-1051)92		Oring Log PROJECT NAME _ Dagostino R		B-103/	CA-MW-103 PAGE 1 OF 1
PR	ROJECT #	1500)1275				PROJECT LOCATION Oak St	reet Extensi	on, Exeter, I	NH
DA	TE STAR	TED _	4/8/16		LOGGEI	DBY J. Newcomb	DEPTH TO WATER 10	D	IAMETER _	2 inch
							WELL MATERIALSPVC, 0.			
DF	RILLING N	IETHO	D Hollo	ow Stem Aug	er		ANNULUS MATERIALS #2 Sil	lica Sand, Be	entonite Chi	ps
DF	RILLING E	QUIPN	MENT D	Diedrich Tracl	k Mount		TOC ELEVATION	GROUN	ID ELEVATI	ON
						s, pesticides, and PAHs				
Depth	(ft) Penetration/ Recovery (in)	Blow Counts	Field Screening (ppm)	Lab Analytical Sample	Graphic Log		LITHOLOGY		WE	ELL DIAGRAM
_	24/10				XXXXX				Well Finish: S	tandpipe
_	24/10	3 4 3 2 2 3	0.0			CONCRETE and ASPHA	ND and fine to coarse GRAVEL a			Silica Sand Backfill
- 5/20/16 10:37 - P:/15001275 DAGOSTINO BROWNFIELDS/WORKING FILES/HASE INFIELD/SOIL BORING LOGS GPJ	- 24/13	4	1.0			Asphalt.	nedium SAND, some Coal frag			Bentonite Seal
	24/4	2 3 15 5 3	1.4 NA			0-4" Gray, moist, fine SA inch chunk of concrete.	ND, fine GRAVEL, WOOD and F	PLASTIC, 1		Silica Sand Pack
	0 24/20	2 1 1	0.0			0-20" Brown, wet, fine S/	AND.			
<u>10:37 - P:\150012/5 שאט 10:37</u> 	⁻ 24/24 -	1 1 2 3 4	0.0	CA-SB-103 (10-12)		0-24" Gray, wet, fine SAI	ND.			0.010" Slotted Screen
	- 24/16 5	1 2 2 3	0.0			0-16" Gray, wet, fine SAI	ND.			
	- 24/24 - -	3333	0.0			0-24" Light-gray, wet, find End of Boring @ 18 feet	e SAND transitioning to gray clay	'. 		

Г

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272

Geosearch, Inc./Roger Jarry

TEST PIT DATA: PROJECT NAME:

PROJECT NUMBER:

Dagostino Rose Farm

15001275

CA-TP-100

Allison Drouin

DATE: <u>8/6/2015</u>

LOCATION ACTIVITY

START: 0840 END: 1230

SAMPLE LOCATION ID: CREDERE REPRESENTATIVE:

CONTRACTOR/FOREMAN:

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0 1	NA	CA-TP-100 (0-2/1)	Dry	0.0	0-2' Brown very fine SAND, some Silt, some Gravel.
2 3	NA		Moist	0.0	2-4' Orange-brown fine to medium SAND, some Silt, some Clay.
4 5			Moist	0.0	4-5' Brown-gray SILT and CLAY. End of Test Pit at 5 feet bgs
6					
7 8					
9 10					
11 12					
13					
14 15					
16 17					
		* - Submitted fo	r laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272				
TEST PIT DATA: PROJECT NAME:	Dagostino Rose Farm	DATE: <u>8/6/2015</u>		
PROJECT NUMBER:	15001275	LOCATION ACTIVITY		
SAMPLE LOCATION ID:	СА-ТР-100А	START: 0855		
CREDERE REPRESENTATIVE:	Allison Drouin	END: <u>1250</u>		
CONTRACTOR/FOREMAN:	Geosearch, Inc./Roger Jarry			

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	NA			0.0	0-9' Solid waste FILL (washing machine, car batteries, fabric, foundations stones, bricks), bitter odor, white milky substance dripping
1	NA .			down side	down sidewall at 5 feet bgs.
2	NA			0.0	
3					
4	NA			0.0	
5					
6	NA			0.0	
7					
8	NA			0.0	
9		CA-TP-100A (9-10/9)			9-10' Gray SILT and CLAY, some leaf matter partings.
10					End of Test Pit at 10 feet bgs
11					
12					
13					
14					
15					
16					
17		* - Submitted fo	rlaboratory	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272

Geosearch, Inc./Roger Jarry

TEST PIT DATA: PROJECT NAME:

PROJECT NUMBER:

Dagostino Rose Farm

15001275

CA-TP-100B

Allison Drouin

DATE: <u>8/6/2015</u>

LOCATION ACTIVITY

START: <u>1130</u> END: <u>1145</u>

SAMPLE LOCATION ID:

CREDERE REPRESENTATIVE:

CONTRACTOR/FOREMAN:

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0 1	NA		Dry	0.0	0-1' Brown TOPSOIL. 1-4' Orange-brown fine to medium SAND.
2 3	NA		Dry-moist	0.0	
4					End of Test Pit at 4 feet bgs
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
		* - Submitted for	r laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272				
TEST PIT DATA: PROJECT NAME:	Dagostino Rose Farm	DATE: <u>8/6/2015</u>		
PROJECT NUMBER:	15001275	LOCATION ACTIVITY		
SAMPLE LOCATION ID:	CA-TP-101	START: <u>1100</u> END: 1130		
CREDERE REPRESENTATIVE:	Allison Drouin	END: <u>1130</u>		
CONTRACTOR/FOREMAN:	Geosearch, Inc./Roger Jarry			

NOTES:

CA-TP-101 (0-2)S collected from native surface soil west of CA-TP-101 across stream. Clinker appeared to extend to stream.

FIELD ANA	LYSIS DAT	'A:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	NA		Dry	0.0	0-3' Dark-brown fine to medium SAND and ASH.
2	NA		Dry	0.0	
3			Moist	0.0	3-5' Red, white and black CLINKER and ASH.
4 5	NA	CA-TP-101 (5-6)	Moist	0.0	5-6' Brown very fine SAND and SILT.
6					End of Test Pit at 6 feet bgs
7					Extended edge of test pit northwest to find edge of clinker
8					
9					
10					
11					
12					
13					
14 15					
16 17					
		* - Submitted fo	r laboratorv a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272

Geosearch, Inc./Roger Jarry

TEST PIT DATA: PROJECT NAME:

PROJECT NUMBER:

Dagostino Rose Farm

15001275

CA-TP-102

Allison Drouin

DATE: <u>8/6/2015</u>

LOCATION ACTIVITY

START: <u>1310</u> END: <u>1330</u>

SAMPLE LOCATION ID:

CREDERE REPRESENTATIVE:

CONTRACTOR/FOREMAN:

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0			Dry	0.0	0-1' Brown TOPSOIL.
1	NA		Dry	0.0	1-4' Black COAL, COAI ASH, and CLINKER.
2					
3	NA		Dry	0.0	
4		CA-TP-102 (4-5)			4-7' Orange fine to medium SAND, some Clay, some Silt.
5	NA	(+ 0)	Moist	0.0	
6			Moist	0.0	
7					End of Test Pit at 7 feet bgs
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
		* - Submitted fo	r laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272						
TEST PIT DATA: PROJECT NAME:	Dagostino Rose Farm	DATE: <u>8/6/2015</u>				
PROJECT NUMBER:	15001275	LOCATION ACTIVITY				
SAMPLE LOCATION ID:	СА-ТР-103	START: 1400				
CREDERE REPRESENTATIVE:	Allison Drouin	END: <u>1430</u>				
CONTRACTOR/FOREMAN:	Geosearch, Inc./Roger Jarry					

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0 1	NA		Dry	0.0	0-12' Brown fine to medium SAND, some silt, little solid waste intermixed (modern waste such as cans, plastic sheeting, and plastic containers).
2 3	NA		Dry	0.0	
4 5	NA		Moist	0.0	
6 7	NA		Moist	0.0	
8 9	NA		Moist	0.0	
10 11	NA		Moist	0.0	
12 13			Moist	0.0	12-13' Solid Waste FILL (clinker, coal ash, bottles, metal scraps). End of Test Pit at 13 feet bgs
14 15					
16 17					
L		* - Submitted for	r laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272						
TEST PIT DATA: PROJECT NAME:	Dagostino Rose Farm	DATE: <u>8/6/2015</u>				
PROJECT NUMBER:	15001275	LOCATION ACTIVITY				
SAMPLE LOCATION ID:	CA-TP-104	START: 0905				
CREDERE REPRESENTATIVE:	Allison Drouin	END: <u>1010</u>				
CONTRACTOR/FOREMAN:	Geosearch, Inc./Roger Jarry					

NOTES:

CA-TP-104 (0-2)S collected from native surface soil northwest of CA-TP-101 across stream. Solid waste debris including drums and other waste were observed to extend to the stream.

Solid waste at surface surrounding test pit included a car frame, AST, grill, buckets, bottles, and other household debris.

FIELD ANA	ALYSIS DAT	'A:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0 1	NA		Dry	0.0	0-3' Light-brown TOPSOIL and solid waste FILL intermixed (bottles, fabric, plastic sheeting, hoses, car parts).
2 3	NA		Moist	0.0	3-5' Roots and dark-brown fine to medium SAND.
4 5	NA		Moist	0.0	5-8' Brown to gray SILT and CLAY.
6 7	NA			0.0	
8 9					End of Test Pit at 8 feet bgs
10 11					
12 13					
14 15					
16 17					
		* - Submitted fo	or laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272						
TEST PIT DATA: PROJECT NAME:	Dagostino Rose Farm	DATE: <u>8/6/2015</u>				
PROJECT NUMBER:	15001275	LOCATION ACTIVITY				
SAMPLE LOCATION ID:	CA-TP-105	START: <u>1010</u> END: 1050				
CREDERE REPRESENTATIVE:	Allison Drouin	END. 1030				
CONTRACTOR/FOREMAN:	Geosearch, Inc./Roger Jarry					

NOTES:

CA-TP-105 (0-2)S collected from native surface soil west of CA-TP-105 across stream. Solid waste debris including clay pots and bottles and other waste were observed to extend to the stream.

FIELD ANA	LYSIS DAT	TA:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	NA		Dry	0.0	0-5' Cultivation related FILL (miticide containers, clay pots, red clinker, bricks, ash, bottles, red powder).
2 3	NA		Dry	0.0	
4 5	NA	CA-TP-105 (5-6)	Moist	0.0	5-6' Gray-brown SILT and CLAY, native.
6 7					End of Test Pit at 6 feet bgs
8					
9					
10					
11 12					
12					
14					
15					
16 17					
		* - Submitted fo	r laboratory a	analysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG Credere Associates, LLC - 776 Main Street, Westbrook, Main 04092 - (207) 828-1272

Geosearch, Inc./Roger Jarry

TEST PIT DATA: PROJECT NAME:

Dagostino Rose Farm

15001275

CA-TP-106

Allison Drouin

DATE: <u>8/6/2015</u>

LOCATION ACTIVITY

START: <u>1300</u> END: <u>1315</u>

SAMPLE LOCATION ID:

PROJECT NUMBER:

CREDERE REPRESENTATIVE:

CONTRACTOR/FOREMAN:

NOTES:

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	NA	CA-TP-106	Dry	0.0	0-1' Brown TOPSOIL.
1		(0-2/1.5)	Moist	0.0	1-5' Orange-brown SILT and CLAY becoming gray towards bottom.
2	NA		Moist	0.0	
3	NA		WOISt	0.0	
4			Moist	0.0	
5					End of Test Pit at 5 feet bgs
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
L		* - Submitted fo	r laboratory a	analysis	

APPENDIX B

A Division of Nelson Analytical, LLC

153 West Road Canterbury, NH 03224 www.aquarianlabs.com (603) 783-9097

14 June 2017

Mr. Allen Wyman Stonehill Environmental, Inc. 600 State Street, Suite #2 Portsmouth, NH 03801 **RE: Rose Farm - Exeter, NH**

Dear Mr. Wyman:

Enclosed are the results of analytical testing performed on the following samples, which were received at 2.5 degrees C.

Laboratory ID	Sample ID	Sample matrix	Date sampled	Date received	
1706102-01	F20	Soil	18-May-17 00:00	09-Jun-17 00:00	
1706102-02	F24	Soil	18-May-17 00:00	09-Jun-17 00:00	
1706102-03	F63	Soil	18-May-17 00:00	09-Jun-17 00:00	
1706102-04	Glaze	Glaze	09-Jun-17 00:00	09-Jun-17 00:00	

The results in this report relate only to the submitted samples. Please refer to our website listed above for a complete list of accredited parameters. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James R. Sheelane

James R. Sherburne Laboratory Director

A Division of Nelson Analytical, LLC

153 West Road

Canterbury, NH 03224

www.aquarianlabs.com

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

Stonehill Environmental, Inc.	Project: Rose Farm - Exeter, NH	
600 State Street, Suite #2	Project Number: [none]	Reported:
Portsmouth NH, 03801	Project Manager: Mr. Allen Wyman	14-Jun-17 17:49
	F20 1706102-01 (Soil)	Sampled: 18-May-2017 0:00
Polychlorinated biphenyls		

<u>Analyte Result Rpt Limit Units Analyzed Method An</u>	<u>nalyst Notes</u>
Aroclor 1016 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 r	mwb
Aroclor 1221 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Aroclor 1232 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Aroclor 1242 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Aroclor 1248 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Aroclor 1254 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Aroclor 1260 BD 0.0720 mg/Kg 12-Jun-17 14:58 8082 m	mwb
Metals by ICPMS	
Analyte <u>Result Rpt Limit Units</u> <u>Analyzed</u> <u>Method</u> <u>Analyzed</u>	<u>nalyst</u> <u>Notes</u>
Arsenic 7.16 1.00 mg/kg 14-Jun-17 EPA 200.8 State	SUBL Sub
Barium 106 10.0 mg/kg 14-Jun-17 EPA 200.8 S	SUBL Sub
Cadmium BD 1.00 mg/kg 14-Jun-17 200.8 S	SUBL Sub
Chromium 22.6 10.0 mg/kg 14-Jun-17 200.8 S	SUBL Sub
Lead 755 1.00 mg/kg 14-Jun-17 200.8 S	SUBL Sub
Mercury BD 0.40 mg/kg 14-Jun-17 200.8 S	SUBL Sub
Selenium BD 10.0 mg/kg 14-Jun-17 200.8 S	SUBL Sub
Silver BD 10.0 mg/kg 14-Jun-17 200.8 S	SUBL Sub
TCLP Metals by ICPMS	
Analyte <u>Result</u> <u>Rpt Limit</u> <u>Units</u> <u>Analyzed</u> <u>Method</u> <u>Analyzed</u>	nalyst Notes
Lead 0.448 0.001 mg/L 13-Jun-17 200.8 S	SUBL Sub
% Solids, dry weight	
Analyte <u>Result</u> <u>Rpt Limit</u> <u>Units</u> <u>Analyzed</u> <u>Method</u> <u>Analyzed</u>	nalyst Notes
% Solids 68.9 0.1 [blank] 13-Jun-17 12:18 SM 2540G A	ADH

A Division of Nelson Analytical, LLC

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

Project: Rose Farm - Exeter, NH	
Project Number: [none]	Reported:
Project Manager: Mr. Allen Wyman	14-Jun-17 17:49
F24 1706102-02 (Soil)	Sampled: 18-May-2017 0:00
	Project Number: [none] Project Manager: Mr. Allen Wyman F24

Polychlorinated biphenyls

153 West Road

Canterbury, NH 03224

www.aquarianlabs.com

Polychlorinalea bipnenyis							
<u>Analyte</u>	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Aroclor 1016	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1221	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1232	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1242	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1248	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1254	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Aroclor 1260	BD	0.0618	mg/Kg	12-Jun-17 16:02	8082	mwb	
Metals by ICPMS							
Analyte	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Arsenic	5.94	1.00	mg/kg	14-Jun-17	EPA 200.8	SUBL	Sub
Barium	65.7	10.0	mg/kg	14-Jun-17	EPA 200.8	SUBL	Sub
Cadmium	BD	1.00	mg/kg	14-Jun-17	200.8	SUBL	Sub
Chromium	18.3	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
Lead	289	1.00	mg/kg	14-Jun-17	200.8	SUBL	Sub
Mercury	BD	0.40	mg/kg	14-Jun-17	200.8	SUBL	Sub
Selenium	BD	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
Silver	BD	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
TCLP Metals by ICPMS							
Analyte	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Lead	0.132	0.001	mg/L	13-Jun-17	200.8	SUBL	Sub
% Solids, dry weight							
Analyte	Result	Rpt Limit	<u>Units</u>	Analyzed	Method	Analyst	Notes
% Solids	80.2	0.1	[blank]	13-Jun-17 12:18	SM 2540G	ADH	

A Division of Nelson Analytical, LLC

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

Stonehill Environmental, Inc. Project: Rose Farm - Exeter, NH 600 State Street, Suite #2 Project Number: [none] **Reported:** Portsmouth NH, 03801 14-Jun-17 17:49 Project Manager: Mr. Allen Wyman F63 1706102-03 (Soil) Sampled: 18-May-2017 0:00

Polychlorinated biphenyls

153 West Road

Polychlorinatea bipnenyis							
<u>Analyte</u>	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Aroclor 1016	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1221	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1232	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1242	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1248	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1254	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Aroclor 1260	BD	0.0860	mg/Kg	12-Jun-17 16:33	8082	mwb	
Metals by ICPMS							
Analyte	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	Analyst	Notes
Arsenic	7.38	1.00	mg/kg	14-Jun-17	EPA 200.8	SUBL	Sub
Barium	222	10.0	mg/kg	14-Jun-17	EPA 200.8	SUBL	Sub
Cadmium	BD	1.00	mg/kg	14-Jun-17	200.8	SUBL	Sub
Chromium	30.8	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
Lead	1570	1.00	mg/kg	14-Jun-17	200.8	SUBL	Sub
Mercury	BD	0.40	mg/kg	14-Jun-17	200.8	SUBL	Sub
Selenium	BD	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
Silver	BD	10.0	mg/kg	14-Jun-17	200.8	SUBL	Sub
TCLP Metals by ICPMS							
Analyte	Result	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	Analyst	Notes
Lead	1.51	0.001	mg/L	14-Jun-17	200.8	SUBL	Sub
% Solids, dry weight							
Analyte	Result	Rpt Limit	<u>Units</u>	Analyzed	Method	Analyst	Notes
% Solids	57.7	0.1	[blank]	13-Jun-17 12:18	SM 2540G	ADH	

Canterbury, NH 03224 www.aquarianlabs.com

A Division of Nelson Analytical, LLC

153 West Road Canterbury, NH 03224 www.aquarianlabs.com National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

600 State Street, Suite #2	Project Number: [none]	Reported:
Portsmouth NH, 03801	Project Manager: Mr. Allen Wyman	14-Jun-17 17:49
	Glaze 1706102-04 (Glaze)	Sampled: 09-Jun-2017 0:00

Polychlorinated biphenyls

i olychiorthalea olphenyis							
Analyte	Result	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Aroclor 1016	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Aroclor 1221	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Aroclor 1232	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Aroclor 1242	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Aroclor 1248	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Aroclor 1254	0.224	0.0518	mg/Kg	13-Jun-17 10:09	8082	mwb	
Aroclor 1260	BD	0.0518	mg/Kg	12-Jun-17 17:05	8082	mwb	
Metals by ICPMS							
Analyte	<u>Result</u>	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes
Lead	5600	1.00	mg/kg	13-Jun-17	200.8	SUBL	Sub
% Solids, dry weight							
Analyte	Result	Rpt Limit	Units	Analyzed	Method	Analyst	Notes
% Solids	96.4	0.1	[blank]	13-Jun-17 12:18	SM 2540G	ADH	

Notes and Definitions

Sub Analysis subcontracted to Nelson Analytical, Manchester, NH.

BD - Analyte result is below the method reporting limit.

NR - Not reported.

Soil sample results are reported on a dry weight basis.

The reporting limit is the lowest value at which reliable quantitation has been demonstrated and verified.

Analytes in **bold** are values above the reporting limit.

Relinquisted by Relinquisted by Relinquisted by:	Glaze	F24 F24	Sample ID	anced.	÷.	Turnaround Réquirements	2 2 2
Date/Time: 54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5/18	Sample Matrix		Rush Samples Need Prior Approval Same Day Tumaround One Cay Tumaround Two Day Tumaround	ts (check one)	
Pecenived by: Ruceived by: Received by: Received by: Received by: Received by: Received by:			STODE SIM SW Havel SVOCs EPA 92/9C/82/60 POUIST (PAH only POUIST Anoders Stop 36 and a see	Bid Reference: Jtone Hu	Rose For Exeter		A Division of Velson
Receipt Conditions (laboratory use only): Latoratory Supplier Consiliant?, Job (Mg) Continent InterpFingenip Labout?, Job (No Vener somples collevant on tot?, Job (No Network Company Labout?, Job (No			WH Geseline 90158 Gilseline Range Ungerits MADDP ESH MADDP Ange Ungerits MADP Ange Ungerits	Petroleum Matals	Project I R	Project Information	
PROJECT REQUIREMENTS (Please complete); PROJECT REQUIREMENTS (Please complete			EPh 300 # Chickle / Subin Hopkle / Nimo / Nihis / Hownide 11/ Apace Con / Alkalainy (dicta analysis reflecture) EPA, SW848 Chapter 7 Reactively Settica and Cymrides Reactively Settica and Cymrides (distance) EPA 10.10 Perchants (cobeet-CourFlackator) EPA 10.10 A kultisativy EPA 10.10 A kultisa	E-mail: auxirpera Shares	Project Manager: Allen Wumph Report To: Allen Wumph Invoice To: Allen Wumph Phone: 603.333		E-mail: frontdesk@aquarianlabs.com
¢r	K . 63	70 4 102/0	Aquartan	- Con	1935		Any NH 03224 66577-33-9097 arianiabs.com

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

A. Wyman Stonehill Environmental 600 State St Suite 2 Portsmouth, NH 03801

PO Number: None Job ID: 40355 Date Received: 5/24/17

Project: Rose Farm 15046

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

mil 3 Lowe (for)

Sue Sylvester Principal, General Manager

Date of Approval: 6/13/2017 Total number of pages: 7

Absolute Resource Associates Certifications

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

Project ID: R Job ID: 40		15046										
Sample#: Sample ID:	F-6											
Matrix:	Solid	Percen	t Dry: 85	% Results	expre	ssed on a	dry weig	ght basi	S.			
Sampled:	5/18/17	13:00		Reporting		Instr Dil'n		Prep		Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst		Batch	Date	Time	Reference
Arsenic			7.8	2.4	ug/g	20		5/31/17		5/31/17	14:28	SW3051A6020A
Lead			630	12	ug/g	20	AM 5	5/31/17	9720	5/31/17	14:28	SW3051A6020A
Sample#: Sample ID:)2										
Matrix:		Percen	t Dry: 86	.8% Resul	ts expi	ressed on	a dry we	eight ba	sis.			
Sampled: Parameter	5/18/17	13:10	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time	Reference
Arsenic			12	2.3	ug/g	20	-	5/31/17		5/31/17	14:53	SW3051A6020A
Lead			1700	12	ug/g	20		5/31/17	9720	5/31/17	14:53	SW3051A6020A
Sample#: Sample ID: Matrix:	F-14		t Dry: 67	.6% Resul	ts expi	ressed on	a dry we	eight ba	sis.			
Sampled:		13:20	,	Reporting	•	Instr Dil'n	,	Prep		Anal	veie	
Parameter	0, 10, 11		Result	Limit	Units	Factor	Analyst	•	Batch	Date	Time	Reference
Arsenic			9.9	3.0	ug/g	20	-	5/31/17	9720	5/31/17	14:59	SW3051A6020A
Lead			670	15	ug/g	20	AM 5	5/31/17	9720	5/31/17	14:59	SW3051A6020A
Sample#: Sample ID: Matrix:	F-23		t Dry: 60).5% Resul	ts expi	ressed on	a dry we	eight ba	sis.			
Sampled: Parameter	5/18/17	13:30	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time	Reference
Arsenic			12	3.2	ug/g	20	AM 5	5/31/17	9720	5/31/17	15:05	SW3051A6020A
Lead			4400	16	ug/g	20	AM 5	5/31/17	9720	5/31/17	15:05	SW3051A6020A
Sample#: Sample ID:		05										
Matrix:	Solid	Percen	t Dry: 86	6.4% Resul	ts expi	ressed on	a dry we	eight ba	sis.			
Sampled: Parameter	5/18/17	13:40	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time	Reference
Arsenic			8.8	2.3	ug/g	20		5/31/17		5/31/17	15:11	SW3051A6020A
Lead			400	12	ug/g	20	AM 5	5/31/17	9720	5/31/17	15:11	SW3051A6020A
Sample#: Sample ID: Matrix:	F-20		t Dry: 74	.5% Resul	ts expi	ressed on	a dry we	eight ba	sis.			
Sampled:	5/18/17	13:50		Reporting		Instr Dil'n		Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analyst	•	Batch	Date	Time	Reference
Arsenic			9.9	2.4	ug/g	20	AM 5	5/31/17	9720	5/31/17	15:17	SW3051A6020A
Lead			810	12	ug/g	20	AM 5	5/31/17	9720	5/31/17	15:17	SW3051A6020A

Project ID: R Job ID: 4		15046									
Sample#: Sample ID:	F-34										
Matrix:			t Dry: 80).1% Resul	ts expi	ressed on	a dry weight ba	ISIS.			
Sampled:	5/18/17	14:00		Reporting		Instr Dil'n	Prep	_	Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			14	2.3	ug/g	20	AM 5/31/17		5/31/17	15:23	SW3051A6020A
Lead			2300	11	ug/g	20	AM 5/31/17	9720	5/31/17	15:23	SW3051A6020A
Sample#:	40355-00	08									
Sample ID:											
Matrix:		Percen	t Dry: 72	2.7% Resul	ts expi	ressed on	a dry weight ba	asis.			
Sampled:	5/18/17	14:10	2	Reporting	•	Instr Dil'n			۸nal	veie	
Parameter	0,10,11		Result	Limit	Units	Factor	Prep Analyst Date	Batch	Anal Date	Time	Reference
Arsenic			7.3	2.6	ug/g	20	AM 5/31/17	9720		15:29	SW3051A6020A
Lead			490	13	ug/g	20	AM 5/31/17		5/31/17	15:29	SW3051A6020A
					-3-3						
Sample#:	40355-0	09									
Sample ID:	F-43										
Matrix:	Solid	Percen	t Dry: 83	3.1% Resul	ts expi	ressed on	a dry weight ba	asis.			
Sampled:	5/18/17	14:20		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			8.0	2.2	ug/g	20	AM 5/31/17	9720	5/31/17	15:36	SW3051A6020A
Lead			300	11	ug/g	20	AM 5/31/17	9720	5/31/17	15:36	SW3051A6020A
Somelo#.	10255 0	10									
Sample#:		10									
Sample ID: Matrix:		Doroon	+ Dr 76	60/ Doout	to ovo	roopod on	a dry weight ba	ncio			
			(Diy. 70		is exp		a ury weigin ba	1515.			
Sampled:	5/18/17	14:30	.	Reporting		Instr Dil'n	Prep	Datak	Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			13	2.4	ug/g	20	AM 5/31/17		5/31/17	15:42	SW3051A6020A
Lead			920	12	ug/g	20	AM 5/31/17	9720	5/31/17	15:42	SW3051A6020A
Sample#:	40355-0	11									
Sample ID:	F-54										
Matrix:	Solid	Percen	t Dry: 77	.9% Resul	ts expi	ressed on	a dry weight ba	asis.			
Sampled:	5/18/17	14:40		Reporting		Instr Dil'n	Prep		Anal	veie	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			10	2.3	ug/g	20	AM 5/31/17	9720	5/31/17	15:48	SW3051A6020A
Lead			540	12	ug/g	20	AM 5/31/17	9720	5/31/17	15:48	SW3051A6020A
• · · "	40055.0										
Sample#:		12									
Sample ID:		_									
Matrix:		Percen	t Dry: 67	2% Resul	ts expi	ressed on	a dry weight ba	ISIS.			
Sampled:	5/18/17	14:50		Reporting		Instr Dil'n	Prep	_	Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			6.7	2.9	ug/g	20	AM 5/31/17		5/31/17	16:12	SW3051A6020A
Lead			2000	15	ug/g	20	AM 5/31/17	9720	5/31/17	16:12	SW3051A6020A

Project ID: R Job ID: 40		15046									
Sample#: Sample ID: Matrix:	F-65		t Dry: 72	0% Posul	te ovo	ressed on	a dry weigh	t basis			
			It DTy. 72		is exp		a ury weign	1 00515.			
Sampled:	5/18/17	15:00		Reporting	•••••	Instr Dil'n		ер	Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst Da		Date	Time	Reference
Arsenic			10.0	2.6	ug/g	20	AM 5/31/		5/31/17	16:18	SW3051A6020A
Lead			410	13	ug/g	20	AM 5/31/	17 9720	5/31/17	16:18	SW3051A6020A
Sample#:	40355-0 ⁻	14									
Sample ID:											
Matrix:		Percen	t Drv: 80	.2% Resul	ts exp	ressed on	a dry weigh	t basis.			
Sampled:		15:10							•		
Parameter	5/10/17	15.10	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst Da	ep ate Batch	Anal Date	ysıs Time	Reference
Arsenic			13	2.4		20	AM 5/31/		5/31/17	16:24	SW3051A6020A
Lead			670	2.4 12	ug/g ug/g	20 20	AM 5/31/		5/31/17	16:24	SW3051A6020A
Leau			670	12	uy/y	20	AIVI 5/31/	17 9720	5/51/17	10.24	3113031A0020A
Sample#:	40355-0	15									
Sample ID:	F-74										
Matrix:	Solid	Percen	t Dry: 44	% Results	expre	ssed on a	dry weight b	oasis.			
Sampled:	5/18/17			Reporting		Instr Dil'n		ер	Anal	veie	
Parameter	0,10,11	10.20	Result	Limit	Units	Factor	Analyst Da	•	Date	Time	Reference
Arsenic			20	4.3	ug/g	20	AM 5/31/		5/31/17	16:49	SW3051A6020A
Lead			4800	21	ug/g	20	AM 5/31/		5/31/17	16:49	SW3051A6020A
2000			1000		~ 9 /9		, 0, 0, 1,		0,01,11		0
Sample#:	40355-0	16									
Sample ID:	F-86										
Matrix:	Solid	Percen	t Dry: 66	6.8% Resul	ts expi	ressed on	a dry weigh	t basis.			
Sampled:	5/18/17	15:30		Reporting		Instr Dil'n	Pr	ер	Anal	vsis	
Parameter			Result	Limit	Units			•	Date	Time	Reference
Arsenic			13	2.9	ug/g	20	AM 5/31/	/17 9721	5/31/17	16:55	SW3051A6020A
Lead			4900	14	ug/g	20	AM 5/31/	17 9721	5/31/17	16:55	SW3051A6020A
Sample#:		17									
Sample ID:											
Matrix:	Solid	Percen	t Dry: 86	% Results	expre	ssed on a	dry weight b	oasis.			
Sampled:	5/18/17	15:40		Reporting		Instr Dil'n	Pr	ер	Ana	ysis	
Parameter			Result	Limit	Units	Factor	Analyst Da	ate Batch	Date	Time	Reference
Arsenic			10	2.3	ug/g	20	AM 5/31/	17 9721	5/31/17	17:01	SW3051A6020A
Lead			610	11	ug/g	20	AM 5/31/	17 9721	5/31/17	17:01	SW3051A6020A
Somplo#.	10255 0	10									
Sample#:		10									
Sample ID:		Dense	+ D 00				الناء المنام والم				
Matrix:			אין איז אוין אוי		expre	ssed on a	dry weight b	Jasis.			
Sampled:	5/18/17	15:50		Reporting		Instr Dil'n		ep	Anal	-	
Parameter			Result	Limit	Units	Factor	Analyst Da		Date	Time	Reference
Arsenic			17	2.1	ug/g	20	AM 5/31/			17:07	SW3051A6020A
Lead			190	10	ug/g	20	AM 5/31/	9721	5/31/17	17:07	SW3051A6020A

Project ID: Rose Farm 1 Job ID: 40355	15046								
Sample#: 40355-01	9								
Sample ID: F-95									
Matrix: Solid	Percent Dry: 74	.9% Result	ts expr	essed on	a dry weight b	asis.			
Sampled: 5/18/17	16:00	Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	7.6	2.5	ug/g	20	AM 5/31/17	9721	5/31/17	17:31	SW3051A6020A
Lead	430	13	ug/g	20	AM 5/31/17	9721	5/31/17	17:31	SW3051A6020A
Sample#: 40355-020	0								
Sample ID: F-98									
Matrix: Solid	Percent Dry: 74	.4% Result	ts expr	essed on	a dry weight b	asis.			
Sampled: 5/18/17	16:10	Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	12	2.5	ug/g	20	AM 5/31/17	9721	5/31/17	17:37	SW3051A6020A
Lead	730	12	ug/g	20	AM 5/31/17	9721	5/31/17	17:37	SW3051A6020A

Abso	lute	Reso	* urce	e	K	/				Port	sma	age Aven outh, NH 3-436-200	03801			CHA										RL)			4()3	5	5	iΕ		
	as	soci	ate	s	5							urceasso		om								ŀ	AN/		/S	SF	RE	QL	JE	ST						
Company Nan								Pr	oject	Name	R	ose Fa	rm												SS											
Stone Company Add	liess.							- Pr	roject	#: 15	56	46 МЭ ма м											olor		- Hardness				Nd		- Fluoride	£	a C	D PFC		
00 Sta	te St	. Por	forme	at	h	UH	380	01				-			e.				rint				C Apparent Color		etals				Bacteria MPN			Ignitibility/FP	D TCLP Pesticide	L Formaldehyde		
	A, Wy							A		1	RCR	A SDW		ES	MAD	21VT		ist:	ngerp		8		Appar	- Acidity	TAL Metals		TOO		Bact	Ortho P	Bromide	Ignit	TCLP	rmaid		
hone #:	3-433	3 197	c-					- Pi	rotoc		MCP	P NHD	ES DOD)	D VOC 8260 MADEP	U VOC 8021VT	ane	Gases-List:	D TPH Fingerprint		G08 Pest/PCB					0	L INC							2		
			2						eport mits:		AP	P GW-1 DW Othe		>	200		-Diox	06		C EDB	608 P	OF	Turbidity	Alkalinity	Metals	(Pb	E		eria P	itrite	Sulfat	Ictive	DVS 4	cides		
voice to: _/			1.44			,	1				FA	Dw Othe	·			, only	□ 1,4-Dioxane	H List	C EPH MADEP	255	S	SM552		T			INT C		Lacteria P/A	 Nitrate + Nitrite 	Chloride Sulfate	L Re	TCLP SVOC	- Herbicides		
Email: 4	syman	estone	hiller	und	onm	ent	er haa	Q	uote	#	_				8260 NHDES	MtBE		4.2 NH	EPH N	D 625	sticide	0&6 \$	ctivity		y Pollt	3	IVAL		ols C	Nitra	hlorid	CN	0 0		As	0
Hard Copy	Invoice Req	juired 🖸 P	°O #	_				- 0	NH F	Reimbu	rser	ment Pricing	g		3 826I	BTEX	CH0 8015	D VOC 524.2 NH List		OABN	81 Pe	neral	Conductivity		 Priority Pollutant Metals 	Le	IIST.		~ 1		0	active	T TCLP VOC	in Siz		site (C
Lab			ERS		Matri	x	Pre	serva	ation	Meth	bd	Sa	mpling		D VOC	UNC BTEX MtBE, only		010	0 801	0 8270ABN	08	Ň			s	-list:	-sials-		S	C Sulfide	O Nitrite	CI He		Grain Size	J.	Composite (C)
Sample ID Lab Use Only)		eld D	# CONTAINERS	WATER	SOLID	OTHER	HCI	HNO ₃	H₂SO₄	NaOH	MeOH	DATE	TIME	SAMPLER	D VOC 8260	U VOC 624	O VPH MADEP	□ V0C 524.2	TPH DR0 8015	B270PAH	🗙 8082 PCB 🗆 8081 Pesticides 🗆 608	J 0&G 1664	DOB C Hd C		CRA Metals	A Total Metals-list: Level	Dissolved metals-list.	Ammonia	T-Phosphorus			Corrosivity C Reactive CN C Reactive S-		Subcontract:	Arsenic	Grab (G) or (
035501	F-6		1		X		-	-	-	-	-	5-18-17	-	AW	Ĩ		-			-	1	0		1		x		-	-	5		-	10		X	0
-07	F-7		1		X						_	5-18-17		AN				-					1	T	-	x	1	1	1		T	T	-		X	T
-03	F-14	1	1		X							5-18-17		AW	1						-					ĸ									X	+
-oy	F-23	3	1		X							5-18-17		AN						(X		1	T		x		T			1		T	1	X	1
-05	F-24	1	1		x							5-18-17		AW						X	-					x								1	X	
-06	F-20	5	1		X							5-18-17		AN					h	2	A			1		x			T	1		T			X	1
-07	F-34		1		X						_	5-18-17	2:00	AN					1	10	a					x								3	×	
60-	F-39	_	1		X							5-18-17		AN												x									X	
-09	F-43		1		X							5-18-17	2:20	AN												x								· · · ·		
-10	F-53		1	_	X		_				_	5-18-17	2:30	Au												x									X	
-11	F.54		1		X							5-18-17	2:40	AN												x									X	
TAT REQU riority (24 hr xpedited (48 tandard (10 Business Date Needed)*	See absol for sam curr REPOR	ple acco rent acc	eptan redita	ation I	ists.	nd	le	ve	5	e	UCTIONS A	Pb,					_	_								she	U	F	REC		DO	N IC	-	h Wyoundry DYES	
		Relinquis	-	Contraction of the local division of the loc	-	0	96				-	Da	te .	Tim	ne	F	Rece	eive	d by	()	-	0	71				-		1	-141	T	-	ate	-	Tim	-
		Relinquis	quen	the	1 1	n	/				_	5/2 Da	4	942 Tim	30	m		eived	k	fei	m	l	Un	L	_	-					5	512	All ate	2	0942 Tim	>
RECO	JRD			-																																

Abso	lute R	lesol) Irce		1					Ports	smo	age Aver outh, NH -436-200	03801									QL			OR	D									
Abso	ass	socia	te	selle	2				abso			urceasso		om								AN	A	YS	SIS	RE	QL	JE	ST	-				-	
Company Nan Shorre Company Add GOO She Report To: Phone #: GO	ne: Iress: ate St f. Wyn 23-433	. Por 	tsm	icta	1 2	En	c. 350	Pr Pr Ac Pr Re	roject roject roject	Name: #: [] Location itation ol: R M ing Q	on: (Requ RCRA	Uired? N/	HE VT Y: Y: E8 DOI 1 S-1	DES	UVOC 8260 MADEP	D VOC 8021VT	1,4-Dioxane	🗅 Gases-List:	D TPH Fingerprint	C EDB	LI 608 PESUPUB	dity	C Alkalinity C Acidity	D TAL Metals D Hardness	(6b)		D TOC	/A 🗆 Bacteria MPN	Cortho P			LITCLP SVOC LITCLP Pesticide			
Email: Au		asten		eum	an	rente	alac	en Qi	uote #	#					SO NHDES	UNC BTEX MtBE, only		UVOC 524.2 NH List	PH MAD	0 625	U 8081 Pesticides U 60	Conductivity DTurbidity		Priority Pollutant Metals	ead				Nitrate + Nitrite			0 0		(ch)	(C)
Hard Copy I	Invoice Requ	uired D PC	1			_		-	-	-	-	ent Pricin			I VOC 826	DC BTE	GR0 8015	V0C 52		0 8270ABN	Minoral	Condu	DIS	I Priori	1	s-list:		~ 1			C Reactive CN	C Grain Size		5	Composite (C)
Lab Sample ID (Lab Use Only)	Fie		# CONTAINERS		atrix	OTHER	IOH	serva [©] ONH	H ⁵ SO ⁴	HOBN	MeOH	DATE	ampling	SAMPLER	U VOC 8260 UV	U VOC 624 U VO	0	D VOC 524.2 D	TPH DR0 8015	8 C HA4028 C	8 D 8082 PUB 1 8		D SOTE STE	CRA Metals	X Total Metals-list:	Dissolved Metal	LI Ammonia COD	T-Phosphorus	Cyanide Sulfide		Corrosivity D	TCLP Metals		Arsenic	Grab (G) or Com
40355-12 -13 -14 -14 -15 -15 -15 -17 -18 -19	F-676 F-676 F-676 F-76 F-88 F-88	3507										5-18-17 5-18-17 5-18-17 5-18-17 5-18-17 5-18-17 5-18-17 5-18-17	3: 60 3: 10 3: 20 3: 30 3: 40 3: 50	AW AW AW AW AW AW						5	0				× × × × × × × ×								2	< <	
-20	F-98		1		x							5-18-17		AW								-	-	-	X							-		Ì	
TAT REQU Priority (24 hr, Expedited (48 Standard (10 Business *Date Needed CUST)* B hr)* s Days) ODY	REPOR HARD Relinquis	TING	INSTR REQU	UC UC IREC	icy ar sts. TION	nd					51	Se wyman ate 24		sta	me	Rec	eive	d by	re	_	2 ven Li					l b	F	REC	IPER	ATU Di	N IC		VES D Tim	□NO °C ie
RECC QSD-01 Revisio	ORD	Relinquish Relinquish	0								_		ate	Tin				eive		Lab	prato	ry:				_			-			ate ate		Tim Tim	

A Division of Nelson Analytical, LLC

153 West Road Canterbury, NH 03224 www.aquarianlabs.com (603) 783-9097

08 June 2017

Mr. Allen Wyman Stonehill Environmental, Inc. 600 State Street, Suite #2 Portsmouth, NH 03801 **RE: Rose Farm - Exeter, NH**

Dear Mr. Wyman:

Enclosed are the results of analytical testing performed on the following samples, which were received at 7.0 degrees C.

Laboratory ID	Sample ID	Sample matrix	Date sampled	Date received
1706048-01	1	Soil	02-Jun-17 00:00	06-Jun-17 09:10
1706048-02	2	Soil	02-Jun-17 00:00	06-Jun-17 09:10
1706048-03	3	Soil	02-Jun-17 00:00	06-Jun-17 09:10
1706048-04	4	Soil	02-Jun-17 00:00	06-Jun-17 09:10

The results in this report relate only to the submitted samples. Please refer to our website listed above for a complete list of accredited parameters. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James R. Sheelane

James R. Sherburne Laboratory Director

This analytical report may only be reproduced in its entirety.

A Division of Nelson Analytical, LLC

153 West Road Canterbury, NH 03224 www.aquarianlabs.com

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

Stonehill Environmental, Inc. 600 State Street, Suite #2 Portsmouth NH, 03801		Project: Rose Farm - Exeter, NH Project Number: [none] Project Manager: Mr. Allen Wyman				Reported: 08-Jun-17 11:21		
		17(1 06048-01 (Soil)		Sa	mpled: 02-Jun-20	17 0:00	
Metals by ICPMS							A-01	
Analyte	Result	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	<u>Analyst</u>	Notes	
Lead	20.1	0.001	mg/kg	06-Jun-17	200.8	SUBL	Sub	

NOTES: mg/l = ppm, ug/l = ppb. "<" denotes "less than". This report of analysis may not be modified in any way, or reproduced except in full, without written approval from Aquarian Analytical. Results as reported above relate only to samples as submitted, unless specifically noted otherwise. Aquarian Analytical is accredited by the New Hampshire Environmental Lab Accreditation Program. For a current list of accredited tests, please visit the New Hampshire DES web site at the following link. $\label{eq:http://www2.des.nh.gov/CertifiedLabs/Certified-Method-Result.aspx?matrix=\%&cat1=&method=\%&analyte=\%&labstatee\%&labstate=\%&labstatee\%&labstatee\%&labstatee\%&labstatee\%&labstatee\%&\$

A Division of Nelson Analytical, LLC

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

153 West Road

Canterbury, NH 03224

www.aquarianlabs.com

(603) 783-9097 frontdesk@aquarianlabs.com

Stonehill Environmental, Inc. 600 State Street, Suite #2 Portsmouth NH, 03801		Project: Rose Farm - Exeter, NH Project Number: [none] Project Manager: Mr. Allen Wyman				Reported: 08-Jun-17 11:21		
			2)6048-02 (Soil)		Sa	mpled: 02-Jun-20	17 0:00	
Metals by ICPMS							A-01	
<u>Analyte</u>	Result	<u>Rpt Limit</u>	<u>Units</u>	Analyzed	Method	Analyst	Notes	
Lead	4.99	0.001	mg/kg	06-Jun-17	200.8	SUBL	Sub	

NOTES: mg/l = ppm, ug/l = ppb. "<" denotes "less than". This report of analysis may not be modified in any way, or reproduced except in full, without written approval from Aquarian Analytical. Results as reported above relate only to samples as submitted, unless specifically noted otherwise. Aquarian Analytical is accredited by the New Hampshire Environmental Lab Accreditation Program. For a current list of accredited tests, please visit the New Hampshire DES web site at the following link: http://www.des.nh.gov/CertifiedLabs/Certified-Method-Result.aspx?matrix=%&cat1=&method=%&analyte=%&labstate=%

A Division of Nelson Analytical, LLC

153 West Road Canterbury, NH 03224 www.aquarianlabs.com

Lead

National Environmental Lab Accreditation Program NELAP Accreditation #NH1004, VT1004, NH00035(ME) MADEP Accreditation #M-NH035

(603) 783-9097 frontdesk@aquarianlabs.com

SUBL

Sub

Stonehill Environmental, Inc.			oject: Rose Farm	n - Exeter, NH				
600 State Street, Suite #2		Project Number: [none]			Reported:			
Portsmouth NH, 03801		Project Manager: Mr. Allen Wyman			08-Jun-17 11:21			
3 1706048-03 (Soil)					Sampled: 02-Jun-2017 0:00			
Metals by ICPMS							A-01	

mg/kg

06-Jun-17

200.8

NOTES: mg/l = ppm, ug/l = ppb. "<" denotes "less than". This report of analysis may not be modified in any way, or reproduced except in full, without written approval from Aquarian Analytical. Results as reported above relate only to samples as submitted, unless specifically noted otherwise. Aquarian Analytical is accredited by the New Hampshire Environmental Lab Accreditation Program. For a current list of accredited tests, please visit the New Hampshire DES web site at the following link: http://www.2.des.nh.gov/CertifiedLabs/Certified-Method-Result.aspx?matrix=%&cat1=&method=%&analyte=%&labstate

10.0

0.001

A Division of Nelson Analytical, LLC

153 West Road National Environmental Lab Accreditation Program Canterbury, NH 03224 NELAP Accreditation #NH1004, VT1004, NH00035(ME) (603) 783-9097 MADEP Accreditation #M-NH035 www.aquarianlabs.com frontdesk@aquarianlabs.com Stonehill Environmental, Inc. Project: Rose Farm - Exeter, NH 600 State Street, Suite #2 **Reported:** Project Number: [none] 08-Jun-17 11:21 Portsmouth NH, 03801 Project Manager: Mr. Allen Wyman 4 1706048-04 (Soil) Sampled: 02-Jun-2017 0:00 A-01 Metals by ICPMS Analyte Result **Rpt Limit** Units Analyzed Method Analyst Notes 10.6 0.001 mg/kg 06-Jun-17 200.8 SUBL Sub Lead

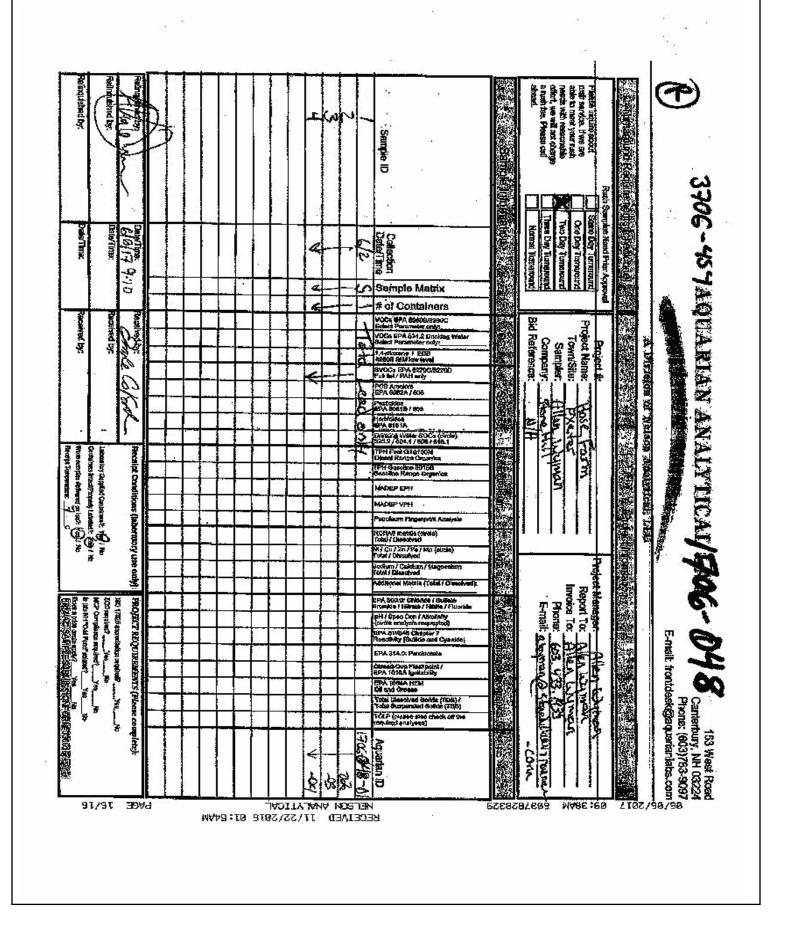
Notes and Definitions

Sub	Analysis subcontracted to	Nelson An	nalytical, N	Ianchester, 1	NH
	2		,	,	

A-01 Sample results reported as received; no dry weight correction made.

BD - Analyte result is below the method reporting limit.

NR - Not reported.


Soil sample results are reported on a dry weight basis.

The reporting limit is the lowest value at which reliable quantitation has been demonstrated and verified.

Analytes in **bold** are values above the reporting limit.

NOTES: mg/l = ppm, ug/l = ppb. "<" denotes "less than". This report of analysis may not be modified in any way, or reproduced except in full, without written approval from Aquarian Analytical. Results as reported above relate only to samples as submitted, unless specifically noted otherwise. Aquarian Analytical is accredited by the New Hampshire Environmental Lab Accreditation Program. For a current list of accredited tests, please visit the New Hampshire DES web site at the following link: http://www.des.nh.gov/CertifiedLabs/Certified-Method-Result.aspx?matrix=%&cat1=&method=%&analyte=%&labstate=%

