NHDES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, New Hampshire 03302-0095

UNDERGROUND STORAGE TANK CLOSURE SUMMARY

FORMER DRAPER ENERGY CO; INC. 148 MAIN STREET WILTON, NEW HAMPSHIRE NHDES #199302018 UST FACILITY #0111761 MTBE PROJECT # 0034959

Prepared For: Clean Harbors Environmental Services, Inc. 20 Dunklee Road Bow, New Hampshire 03304 (603) 224-6626

Contact: Scott Kendall Email: Kendall.scott@cleanharbors.com

Prepared By: GeoInsight, Inc. 186 Granite Street, 3rd Floor, Suite A Manchester, New Hampshire 03101 (603) 314-0820

Contact: Peter D. Frank, P.G. Email: pdfrank@geoinc.com

June 9, 2015 GeoInsight Project 7690-000

June 9, 2015

GeoInsight Project 7690-000

John Pasquale, P.G. NHDES-WMD MTBE Bureau 29 Hazen Drive, PO Box 95 Concord, New Hampshire 03302-0095

RE: Underground Storage Tank Closure Report

Former Draper Energy Co; Inc.

148 Main Street

Wilton, New Hampshire NHDES #199302018 UST Facility #0111761 MTBE Project #0034959

Dear Mr. Pasquale:

On behalf of Clean Harbors Environmental Services, Inc. (Clean Harbors) of Bow, New Hampshire, GeoInsight, Inc. (GeoInsight) was retained to complete the underground storage tank (UST) closure activities, sampling, and this UST Closure Report. On May 7, 2015, GeoInsight oversaw the removal of one 3,000-gallon gasoline UST and one 8,000-gallon gasoline UST at the Former Draper Energy Co; Inc. facility located at 148 Main Street in Wilton, New Hampshire (Figure 1).

PROPERTY AND UNDERGROUND STORAGE TANK INFORMATION

The property is identified by the New Hampshire Department of Environmental Services (NHDES) as Site #199302018 and UST Facility #0111761. One 3,000-gallon gasoline UST and one 8,000-gallon gasoline UST were located on the property. According to the NHDES OneStop database, these UST's were installed on October 1, 1998. Additionally, three gasoline USTs, one diesel UST, and one #2 heating oil UST were historically located on the property and were reportedly removed on September 23, 1998 and December 1, 1992, respectively. One 3,000-gallon diesel UST and one 2,000-gallon #2 heating oil UST are listed as remaining on-site according to the NHDES OneStop database.

GeoInsight, Inc.

Clean Harbors performed the UST cleaning, disposal of the residual product, and the UST removal. The following activities were performed during the UST closure:

- excavation of soil directly above the UST to access the tank and piping;
- detaching vent, fill, and product piping from the UST to the two fuel dispensers;
- purging the UST of vapors and cleaning the UST of residual fuel (please note, the waste manifest was not provided to GeoInsight, as the documentation will be provided by Clean Harbors);
- removing the steel USTs from the subsurface;
- collecting soil samples for field screening and confirmatory laboratory analysis;
- backfilling the excavated areas with imported fill material;
- paving of the UST(s) excavation grave; and
- transporting the USTs off-site for scrap metal recycling.

UNDERGROUND STORAGE TANK SYSTEM OBSERVATIONS

The plastic wrapped double-walled, steel 3,000-gallon UST measured approximately 5.5 feet in diameter by 19 feet in length and was manufactured by Total Containment. The 8,000-gallon plastic wrapped double-walled UST measured approximately 7.5 feet in diameter by 24 feet in length and was also manufactured by Total Containment. The exterior structures of both USTs were found to be without any visual signs of tears, holes, pitting, or corrosion. UST pipe fittings and the fiberglass product piping from both tanks that supplied the fuel dispenser were noted to be in good condition without obvious cracks or joint failures.

GeoInsight oversaw the removal of the product piping from the USTs to the above fuel dispensers. The approximate location of the product piping is shown on Figure 2. Product piping was removed from the subsurface by excavating the soil from above the tank tops (product piping was above the tanks due to their close proximity to the dispensers) and cutting/removing by hand.

The soil surrounding the UST was observed to be a light brown, fine to medium sand generally intermixed with pea stone. Petroleum staining and odors were not observed during the piping, UST(s) removal, or upon encountering groundwater beneath the 8,000-gallon UST. Soil screening and sample collection from beneath this area did not yield elevated photoionization detector (PID) readings. Photographic documentation is presented in Attachment A.

FIELD SCREENING AND SAMPLING

Soil samples collected during the closure activities were screened in the field for photoionizable compounds using a PID. The PID was calibrated before use according to the manufacturer's specifications (i.e., using a 100 parts per million [ppm] isobutylene and air mixture and adjusting the instrument with a reference factor of 0.53 to provide readings in ppm as benzene). Seven discrete soil samples were collected for field screening at various depths from the sidewalls of the UST excavation. Soil screening and samples from the bottom of the UST excavation were not collected due to the presence of groundwater. Figure 2 depicts the PID field screening

locations. The soil samples were screened using the jar-headspace technique. A summary of the discrete soil samples collected and PID results are summarized in the table below.

Sample ID	Depth (feet)	PID Reading (ppm)	Sample/Note Info
1	9	ND	Sidewall screening
2	9	ND	
3	7	ND	0: 1- C1-
4	8	ND	Side-Comp sample
5	5	ND	
6	3	ND	Piping screening
7	6	ND	Sidewall screening

A composite soil sample (designated "Side-Comp") consisting of four discrete soil samples from the sidewalls of the UST excavation were placed into the appropriate laboratory-supplied sample containers and submitted to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts for analyses of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260B and total petroleum hydrocarbons (TPH) as gasoline range organics (GRO) by USEPA Method 8015B. The sample collected for VOC analysis was field-preserved with methanol in accordance with USEPA Method 5035 protocol. A discrete groundwater sample from beneath the USTs was collected (designated "BTM-GW") and submitted to Alpha for analysis of VOCs by USEPA Method 8260B.

LABORATORY ANALYTICAL RESULTS

VOCs and TPH-GRO were not detected at concentrations above laboratory practical quantitation limits (PQLs) in composite soil sample "Side-Comp" nor were concentrations of VOCs detected in the discrete groundwater sample "BTM-GW" above their respective PQLs. A copy of the soil and groundwater laboratory analytical report is included as Attachment B.

CONCLUSIONS AND RECOMMENDATIONS

The discrete soil samples collected from the sidewalls of the UST(s) excavation yielded no PID readings less than 1 ppm. VOCs and TPH-GRO were not detected above their applicable PQLs in composite soil sample "Side-Comp." Additionally, VOCs were not detected above laboratory PQLs in the discrete groundwater sample "BTM-GW" collected during the UST removal.

Additional subsurface investigation associated with the USTs does not appear to be warranted due to the apparent lack of impacts detected in soil and groundwater sampled in conjunction with the UST closure activities.

LIMITATIONS AND EXCEPTIONS

GeoInsight performed the activities described herein in a manner generally consistent with the level of care and skill ordinarily exercised by other environmental consultants engaged for similar services under similar circumstances. Accordingly, the findings and conclusions of this report do not constitute scientific certainties, but rather probabilities based upon our professional judgment concerning data gathered during the course of the assessment and the use of engineering and scientific principles. GeoInsight cannot represent that the property does not contain hazardous materials or other latent environmental conditions beyond those detected or observed by GeoInsight during this assessment. Should additional information regarding the property become available in the future that is inconsistent with the findings presented herein, the findings of this report should be re-evaluated by GeoInsight or another qualified environmental professional in light of the additional information. To the extent that the interpretations and findings presented in this letter report are based in whole, or in part, upon information and representations in reports prepared by others, they are contingent upon the validity of the information.

If you have questions regarding this UST Closure letter report, please feel free to contact us at (603) 314-0820.

Sincerely,

GEOINSIGHT, INC.

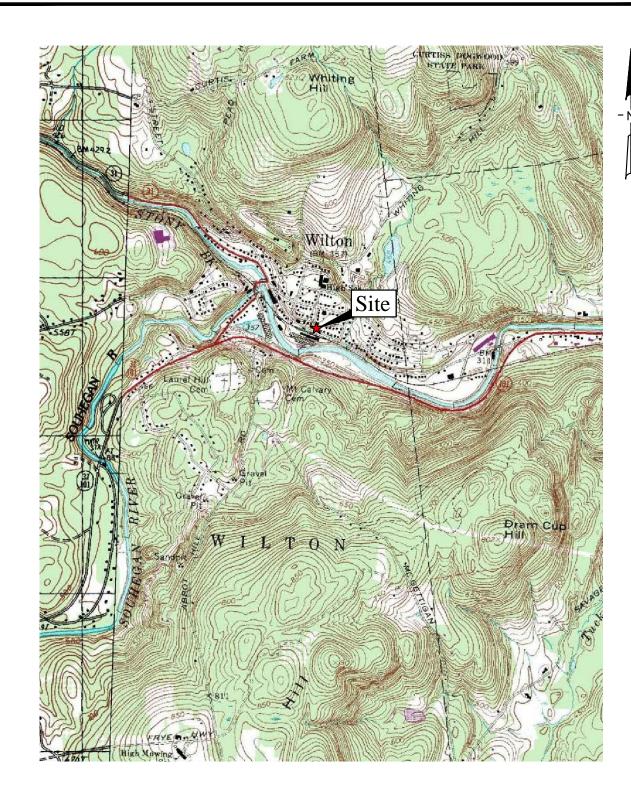
Anthony Janes

Project Environmental Scientist

ICC # 5126730-U2

Peter D. Frank, P.G.

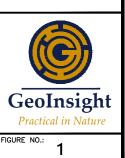
Associate/Senior Hydrogeologist


Attachments

cc: Scott Kendall, Clean Harbors

p:\7690 clean harbors - wilton\wilton ust removal.doc

FIGURES



SOURCE:

USGS MILFORD, NH TOPOGRAPHIC QUADRANGLE 1985 CONTOUR INTERVAL: 10 FEET

CLIENT: FORM	ER DRAPER	ENERGY CO); INC.
PROJECT:	148 MAI WILTON, NE	N STREET W HAMPSHIF	RE
TITLE:	SITE	LOCUS	
DESIGNED: PDF	DRAWN: STM	CHECKED: PDF	APPROVED: PDF
SCALE: 1" = 2000'	DATE: 06/09/15	FILE NO.: 7690-LOCUS	PROJECT NO.: 7690-000

PLOT DATE: 6-9-15 FILE: C:\Users\STMcKee\appdata\loca\\temp\AcPublish_11616\7690-LOCUS.dwg

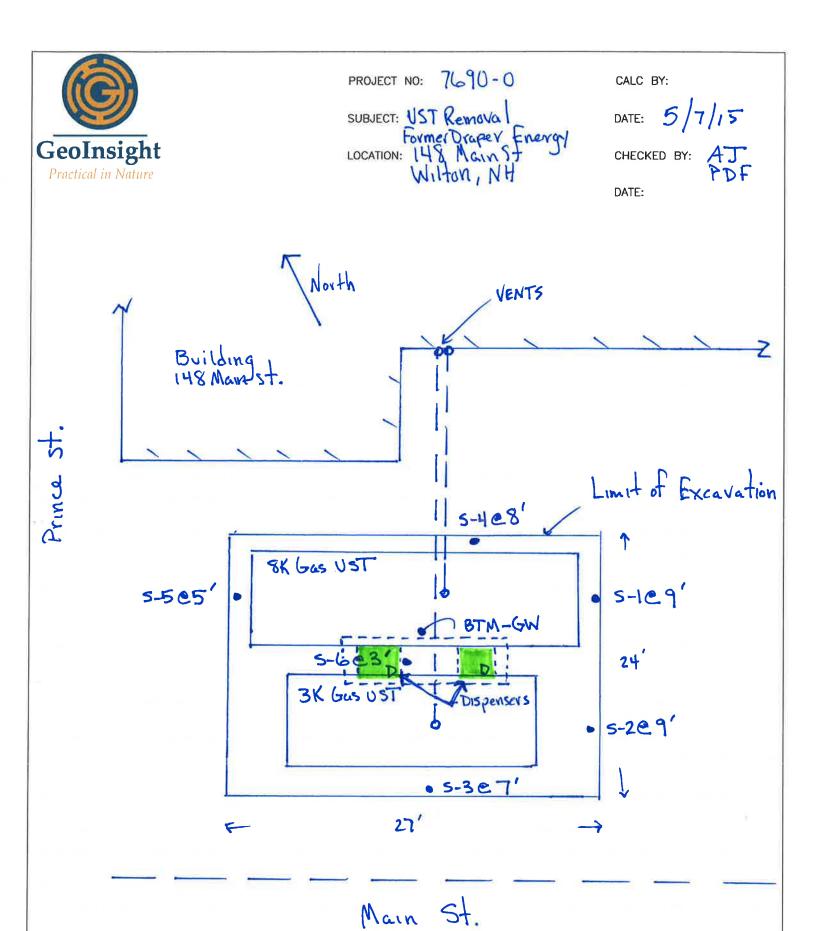
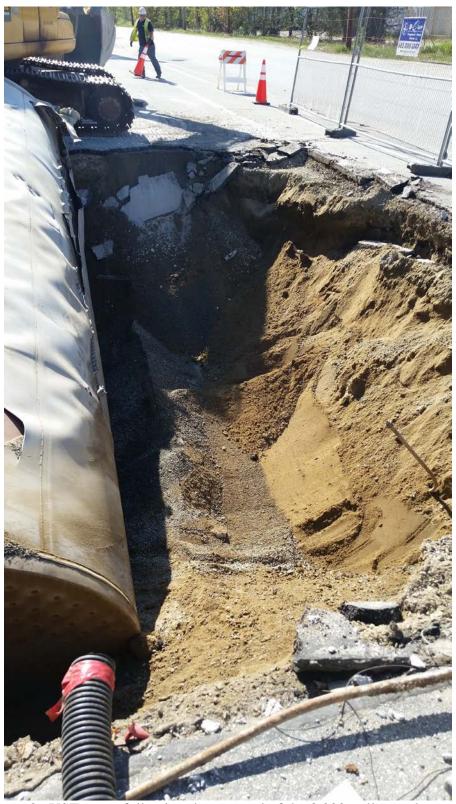


Figure 2


ATTACHMENT A SITE PHOTOGRAPHS

1. Top of gasoline USTs following pad removal, venting, cutting, and cleaning (view is to the south west).

2. Gasoline UST entry point; note previous welded patch (typical of two).

3. UST grave following the removal of the 3,000-gallon tank.

4. 3,000- gallon Gasoline UST following removal; no rips, holes or tears were noted (note plastic welded containment around tank).

5. 8000-gallon Gasoline UST following removal; no rips, holes or tears were noted (note plastic welded containment around tank).

6. Groundwater encountered below the 8,000-gallon UST at approximately 10 feet below ground surface.

7. UST being loaded for offsite scrap disposal (typical of two).

8. Backfilling and compacting following UST(s) removal.

ATTACHMENT B SOIL LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1509816

Client: Geoinsight

186 Granite Street 3rd Floor, Suite A

Manchester, NH 03101

ATTN: Peter Frank
Phone: (603) 314-0820

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Report Date: 05/14/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816 **Report Date:** 05/14/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1509816-01	BTM-GW	WATER	WILTON, NH	05/07/15 09:30	05/07/15
L1509816-02	SIDE -COMP	SOIL	WILTON, NH	05/07/15 10:35	05/07/15
L1509816-03	TRIP	SOIL	WILTON, NH	05/04/15 00:00	05/07/15
L1509816-04	TRIP	WATER	WILTON, NH	05/04/15 00:00	05/07/15

Project Name:CLEAN HARBORS-WILTONLab Number:L1509816Project Number:7690-000Report Date:05/14/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/14/15

600, Sharow Kelly Stenstrom

ALPHA

ORGANICS

VOLATILES

L1509816

05/14/15

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 05/07/15 09:30
Date Received: 05/07/15

Field Prep: Not Specified

Lab ID: L1509816-01
Client ID: BTM-GW
Sample Location: WILTON, NH

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/13/15 18:05

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: Date Collected: 05/07/15 09:30

Client ID: BTM-GW Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Sample Location. WILTON, NH				rieid Pie	₽p.	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,2-Dichlorobenzene	ND		ug/l	2.5		1	
1.3-Dichlorobenzene	ND		ug/l	2.5		1	
1,4-Dichlorobenzene	ND		ug/l	2.5		1	
Methyl tert butyl ether	ND		ug/l ug/l	1.0		1	
p/m-Xylene	ND			1.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l ug/l	0.50		1	
Dibromomethane	ND			5.0		1	
1,2,3-Trichloropropane	ND		ug/l	5.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND ND		ug/l	5.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	5.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l			1	
			ug/l	5.0			
Bromochloromethane Tetrobudrofuron	ND		ug/l	2.5		1	
Tetrahydrofuran	ND		ug/l	5.0		1	
2,2-Dichloropropane	ND		ug/l	2.5		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1	
Bromobenzene	ND		ug/l	2.5		1	
n-Butylbenzene	ND		ug/l	0.50		1	
sec-Butylbenzene	ND		ug/l	0.50		1	
tert-Butylbenzene	ND		ug/l	2.5		1	
o-Chlorotoluene	ND		ug/l	2.5		1	
p-Chlorotoluene	ND		ug/l	2.5		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Isopropylbenzene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	
n-Propylbenzene	ND		ug/l	0.50		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,3,5-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: Date Collected: 05/07/15 09:30

Client ID: BTM-GW Date Received: 05/07/15 Sample Location: WILTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Ethyl ether	ND		ug/l	2.5		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	100		70-130	

L1509816

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

SAMPLE RESULTS

Lab Number:

Report Date: 05/14/15

Lab ID: L1509816-02 Client ID: SIDE -COMP

Sample Location: WILTON, NH

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 05/11/15 16:30

Analyst: ΒN 85% Percent Solids:

Date Collected:	05/07/15 10:35
Date Received:	05/07/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
Methylene chloride	ND		ug/kg	7.8		1
1,1-Dichloroethane	ND		ug/kg	1.2		1
Chloroform	ND		ug/kg	1.2		1
Carbon tetrachloride	ND		ug/kg	0.78		1
1,2-Dichloropropane	ND		ug/kg	2.7		1
Dibromochloromethane	ND		ug/kg	0.78		1
1,1,2-Trichloroethane	ND		ug/kg	1.2		1
Tetrachloroethene	ND		ug/kg	0.78		1
Chlorobenzene	ND		ug/kg	0.78		1
Trichlorofluoromethane	ND		ug/kg	3.9		1
1,2-Dichloroethane	ND		ug/kg	0.78		1
1,1,1-Trichloroethane	ND		ug/kg	0.78		1
Bromodichloromethane	ND		ug/kg	0.78		1
trans-1,3-Dichloropropene	ND		ug/kg	0.78		1
cis-1,3-Dichloropropene	ND		ug/kg	0.78		1
1,3-Dichloropropene, Total	ND		ug/kg	0.78		1
1,1-Dichloropropene	ND		ug/kg	3.9		1
Bromoform	ND		ug/kg	3.1		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.78		1
Benzene	ND		ug/kg	0.78		1
Toluene	ND		ug/kg	1.2		1
Ethylbenzene	ND		ug/kg	0.78		1
Chloromethane	ND		ug/kg	3.9		1
Bromomethane	ND		ug/kg	1.6		1
Vinyl chloride	ND		ug/kg	1.6		1
Chloroethane	ND		ug/kg	1.6		1
1,1-Dichloroethene	ND		ug/kg	0.78		1
trans-1,2-Dichloroethene	ND		ug/kg	1.2		1
Trichloroethene	ND		ug/kg	0.78		1
1,2-Dichlorobenzene	ND		ug/kg	3.9		1

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: Date Collected: 05/07/15 10:35

Client ID: SIDE -COMP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Sample Location:	WILTON, NH				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS-5035 - Wes	tborough Lab					
1,3-Dichlorobenzene		ND		ug/kg	3.9		1
1,4-Dichlorobenzene		ND		ug/kg	3.9		1
Methyl tert butyl ether		ND		ug/kg	1.6		1
p/m-Xylene		ND		ug/kg	1.6		1
o-Xylene		ND		ug/kg	1.6		1
Xylenes, Total		ND		ug/kg	1.6		1
cis-1,2-Dichloroethene		ND		ug/kg	0.78		1
1,2-Dichloroethene, Total		ND		ug/kg	0.78		1
Dibromomethane		ND		ug/kg	7.8		1
1,2,3-Trichloropropane		ND		ug/kg	7.8		1
Styrene		ND		ug/kg	1.6		1
Dichlorodifluoromethane		ND		ug/kg	7.8		1
Acetone		ND		ug/kg	28		1
Carbon disulfide		ND		ug/kg	7.8		1
2-Butanone		ND		ug/kg	7.8		1
4-Methyl-2-pentanone		ND		ug/kg	7.8		1
2-Hexanone		ND		ug/kg	7.8		1
Bromochloromethane		ND		ug/kg	3.9		1
Tetrahydrofuran		ND		ug/kg	16		1
2,2-Dichloropropane		ND		ug/kg	3.9		1
1,2-Dibromoethane		ND		ug/kg	3.1		1
1,1,1,2-Tetrachloroethane)	ND		ug/kg	0.78		1
Bromobenzene		ND		ug/kg	3.9		1
n-Butylbenzene		ND		ug/kg	0.78		1
sec-Butylbenzene		ND		ug/kg	0.78		1
tert-Butylbenzene		ND		ug/kg	3.9		1
1,3,5-Trichlorobenzene		ND		ug/kg	3.1		1
o-Chlorotoluene		ND		ug/kg	3.9		1
p-Chlorotoluene		ND		ug/kg	3.9		1
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	3.9		1
Hexachlorobutadiene		ND		ug/kg	3.9		1
Isopropylbenzene		ND		ug/kg	0.78		1
p-Isopropyltoluene		ND		ug/kg	0.78		1
Naphthalene		ND		ug/kg	3.9		1
n-Propylbenzene		ND		ug/kg	0.78		1
1,2,3-Trichlorobenzene		ND		ug/kg	3.9		1
1,2,4-Trichlorobenzene		ND		ug/kg	3.9		1
1,3,5-Trimethylbenzene		ND		ug/kg	3.9		1
1,2,4-Trimethylbenzene		ND		ug/kg	3.9		1

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: Date Collected: 05/07/15 10:35

Client ID: SIDE -COMP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - Wes	stborough Lab						
Ethyl ether	ND		ug/kg	3.9		1	
Isopropyl Ether	ND		ug/kg	3.1		1	
Tert-Butyl Alcohol	ND		ug/kg	78		1	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	3.1		1	
Tertiary-Amyl Methyl Ether	ND		ug/kg	3.1		1	
1,4-Dioxane	ND		ug/kg	78		1	

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	93		70-130			
Toluene-d8	100		70-130			
4-Bromofluorobenzene	113		70-130			
Dibromofluoromethane	99		70-130			

L1509816

05/14/15

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

SAMPLE RESULTS

Date Collected: 05/04/15 00:00

Lab Number:

Report Date:

Date Received: 05/07/15
Field Prep: Not Specified

Lab ID: L1509816-03

Client ID: TRIP

Sample Location: WILTON, NH

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/11/15 16:55

Analyst: BN

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035	- Westborough Lab						
Methylene chloride	ND		ug/kg	10		1	
1,1-Dichloroethane	ND		ug/kg	1.5		1	
Chloroform	ND		ug/kg	1.5		1	
Carbon tetrachloride	ND		ug/kg	1.0		1	
1,2-Dichloropropane	ND		ug/kg	3.5		1	
Dibromochloromethane	ND		ug/kg	1.0		1	
1,1,2-Trichloroethane	ND		ug/kg	1.5		1	
Tetrachloroethene	ND		ug/kg	1.0		1	
Chlorobenzene	ND		ug/kg	1.0		1	
Trichlorofluoromethane	ND		ug/kg	5.0		1	
1,2-Dichloroethane	ND		ug/kg	1.0		1	
1,1,1-Trichloroethane	ND		ug/kg	1.0		1	
Bromodichloromethane	ND		ug/kg	1.0		1	
trans-1,3-Dichloropropene	ND		ug/kg	1.0		1	
cis-1,3-Dichloropropene	ND		ug/kg	1.0		1	
1,3-Dichloropropene, Total	ND		ug/kg	1.0		1	
1,1-Dichloropropene	ND		ug/kg	5.0		1	
Bromoform	ND		ug/kg	4.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		1	
Benzene	ND		ug/kg	1.0		1	
Toluene	ND		ug/kg	1.5		1	
Ethylbenzene	ND		ug/kg	1.0		1	
Chloromethane	ND		ug/kg	5.0		1	
Bromomethane	ND		ug/kg	2.0		1	
Vinyl chloride	ND		ug/kg	2.0		1	
Chloroethane	ND		ug/kg	2.0		1	
1,1-Dichloroethene	ND		ug/kg	1.0		1	
trans-1,2-Dichloroethene	ND		ug/kg	1.5		1	
Trichloroethene	ND		ug/kg	1.0		1	
1,2-Dichlorobenzene	ND		ug/kg	5.0		1	

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: L1509816-03 Date Collected: 05/04/15 00:00

Client ID: TRIP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Xyfenes, Total ND ug/kg 2.0 - 1 cis-1.2-Dichloroethene ND ug/kg 1.0 - 1 1.2-Dichloroethene ND ug/kg 1.0 - 1 Dichloroethene ND ug/kg 10 - 1 1.2-3-Tirchloropropane ND ug/kg 10 - 1 Slyrene ND ug/kg 10 - 1 Dichlorodifloromethane ND ug/kg 10 - 1 Acetone ND ug/kg 10 - 1 Carbon disulfide ND ug/kg 10 - 1 Laberthyle-pentane </th <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichforobenzene ND	Volatile Organics by GC/MS-5035	- Westborough Lab					
Methyl tert butyl ether ND ug/kg 2.0 1 pfm-Xylene ND ug/kg 2.0 1 cxylenes ND ug/kg 2.0 1 Xylenes, Total ND ug/kg 1.0 1 Xylenes, Total ND ug/kg 1.0 1 1,2-Dichloroethene ND ug/kg 1.0 1 1,2-Dichloroethene, Total ND ug/kg 2.0 1 1,2-Dichloroethene ND ug/kg 2.0 1 2,2-Dichloroethene ND ug/kg 1.0	1,3-Dichlorobenzene	ND		ug/kg	5.0		1
p/m Xylene ND ug/kg 2.0 1 o Xylene ND ug/kg 2.0 1 Xylenes, Total ND ug/kg 2.0 1 Lycholoroethene ND ug/kg 1.0 1 1,2-Dichloroethene, Total ND ug/kg 1.0 1 Dichoroethene, Total ND ug/kg 1.0 1 Dichoroethene, Total ND ug/kg 1.0 1 Styrene ND ug/kg 1.0 1 Styrene ND ug/kg 2.0 1 Styrene ND ug/kg 3.6 1 Cabone ND ug/kg 3.6 1 Cabone ND ug/kg 1.0 1 Abetarroe ND ug/kg 1.0 1 Erboratione ND	1,4-Dichlorobenzene	ND		ug/kg	5.0		1
o-Xylene ND ug/kg 2.0 1 Xylenes, Total ND ug/kg 2.0 1 Xylenes, Total ND ug/kg 1.0 1 1.2-Dichloroethene, Total ND ug/kg 1.0 1 Dibromoenthane ND ug/kg 1.0 1 1.2,3-Trichloropopane ND ug/kg 1.0 1 Sylvene ND ug/kg 1.0 1 Dichloroeffikoromethane ND ug/kg 1.0 1 Acetone ND ug/kg 1.0 1 Carbon disulfide ND ug/kg 1.0 1 2-Bulanone	Methyl tert butyl ether	ND		ug/kg	2.0		1
Xydenes, Total ND ug/kg 2.0 - 1 cis-1,2-Dichloroethene ND ug/kg 1.0 - 1 cis-1,2-Dichloroethene ND ug/kg 1.0 - 1 Dichoromethane ND ug/kg 10 - 1 Slyrene ND ug/kg 10 - 1 Slyrene ND ug/kg 2.0 - 1 Carbon disulfide ND ug/kg 36 - 1 Carbon disulfide ND ug/kg 10 - 1 Labanone N	p/m-Xylene	ND		ug/kg	2.0		1
cis-1,2-Dichloroethene ND ug/kg 1.0 - 1 1,2-Dichloroethene, Total ND ug/kg 1.0 - 1 Dichromomethane ND ug/kg 1.0 - 1 Skyrene ND ug/kg 2.0 - 1 Dichlorodfluoromethane ND ug/kg 2.0 - 1 Acetone ND ug/kg 10 - 1 Acetone ND ug/kg 10 - 1 Carbon disulfide ND ug/kg 10 - 1 2-Butanone ND ug/kg 10 - 1 4-Methyl-2-pentanone ND ug/kg 10 - 1 2-Butanone ND ug/kg 10 - 1 2-Hexanone ND ug/kg 10 - 1 Bromochiomethane ND ug/kg 5.0 - 1 12-Politoropropane	o-Xylene	ND		ug/kg	2.0		1
1.2.Dichloroethene, Total ND ug/kg 1.0 1 Dibromomethane ND ug/kg 10 1 1.2.3-Trichloropropane ND ug/kg 20 1 Styrene ND ug/kg 20 1 Dichloroeffluoromethane ND ug/kg 10 1 Acetone ND ug/kg 10 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 2-Hexanone ND ug/kg 5.0 1 2-Hexanone ND ug/kg 5.0 1 2-Hexanone ND ug/kg 5.0 1 2-Hexanone	Xylenes, Total	ND		ug/kg	2.0		1
Dibromomethane ND	cis-1,2-Dichloroethene	ND		ug/kg	1.0		1
1,2,3-Trichloropropane ND	1,2-Dichloroethene, Total	ND		ug/kg	1.0		1
Styrene ND ug/kg 2.0 1 Dichlorodifluoromethane ND ug/kg 10 1 Acetone ND ug/kg 36 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 5.0 1 Bromochloromethane ND ug/kg 5.0 1 Bromochloromethane ND ug/kg 5.0 1 1,1-2-Dibromoethane ND ug/kg 4.0 1 1,1-12-Tetrachloroethane ND ug/kg 5.0 1 Bromocherane ND ug/kg 5.0 1 Ho-Bu	Dibromomethane	ND		ug/kg	10		1
Dicklorodiffuoromethane ND ug/kg 10 1 Acetone ND ug/kg 36 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 5.0 1 Bromochloromethane ND ug/kg 5.0 1 Tetrahydrofuran ND ug/kg 5.0 1 2-2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromethane ND ug/kg 4.0 1 1,2-Dibromethane ND ug/kg 1.0 1 1,2-Dibromethane ND ug/kg 1.0 1 1-2-Dibromethane ND ug/kg 1.0 1 1-2-Di	1,2,3-Trichloropropane	ND		ug/kg	10		1
Acetone ND ug/kg 36 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Efformochloromethane ND ug/kg 5.0 1 Efformochloromethane ND ug/kg 5.0 1 1-2-Dibromochtane ND ug/kg 5.0 1 1.2-Dibromochtane ND ug/kg 5.0 1 1.2-Dibromochtane ND ug/kg 5.0 1 1.1.1,12-Tetrachloroethane ND ug/kg 1.0 1 Efformochlorene ND ug/kg 5.0 1 1.3-Effichlorobenzene ND ug/kg 1.0 1 Efformochlorene ND ug/kg 1.0 1 Efformochlorene ND ug/kg 5.0 1 1-1.3-Effichlorobenzene ND ug/kg 5.0 1 Eff-Butylbenzene ND ug/kg 1.0 1 Eff-Butylbenzene ND ug/kg 5.0 1 Eff-Edibromochatene ND	Styrene	ND		ug/kg	2.0		1
Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 5.0 1 Bromochloromethane ND ug/kg 5.0 1 1-terlahydrofuran ND ug/kg 5.0 1 2-2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tetr-Butylbenzene ND ug/kg 5.0 1	Dichlorodifluoromethane	ND		ug/kg	10		1
2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 8-CHORDIO	Acetone	ND		ug/kg	36		1
4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Bromochloromethane ND ug/kg 5.0 1 Tetrahydrofuran ND ug/kg 20 1 2.2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1 tetr-Butylbenzene ND ug/kg 5.0 1 tetr-Butylbenzene ND ug/kg 5.0 1 tetr-Butylbenzene ND ug/kg 5.0 1	Carbon disulfide	ND		ug/kg	10		1
2-Hexanone ND ug/kg 10 1 Bromochloromethane ND ug/kg 5.0 1 Tetrahydrofuran ND ug/kg 20 1 2,2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tetr-Butylbenzene ND ug/kg 5.0 1 tetr-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 5.0 1	2-Butanone	ND		ug/kg	10		1
Bromochloromethane ND ug/kg 5.0 1 Tetrahydrofuran ND ug/kg 20 1 2,2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tetr-Butylbenzene ND ug/kg 5.0 1	4-Methyl-2-pentanone	ND		ug/kg	10		1
Tetrahydrofuran ND ug/kg 20 1 2,2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 5.0 1 <	2-Hexanone	ND		ug/kg	10		1
2,2-Dichloropropane ND ug/kg 5.0 1 1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 Bromobenzene ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 5.0 1 tert-Butylbenzene ND ug/kg 5.0 1 tert-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropyltoluene ND ug/kg 1.0 1	Bromochloromethane	ND		ug/kg	5.0		1
1,2-Dibromoethane ND ug/kg 4.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 5.0 1	Tetrahydrofuran	ND		ug/kg	20		1
1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 5.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 5.0 1 tetr-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1<	2,2-Dichloropropane	ND		ug/kg	5.0		1
Bromobenzene ND	1,2-Dibromoethane	ND		ug/kg	4.0		1
n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 4.0 1 o-Chlorotoluene ND ug/kg 5.0 1 p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 p-Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 5.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.0</td> <td></td> <td>1</td>	1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0		1
sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 4.0 1 o-Chlorotoluene ND ug/kg 5.0 1 p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 5.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1	Bromobenzene	ND		ug/kg	5.0		1
tert-Butylbenzene ND ug/kg 5.0 1 1,3,5-Trichlorobenzene ND ug/kg 4.0 1 0-Chlorotoluene ND ug/kg 5.0 1 p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 Isopropyltoluene ND ug/kg 1.0 1 ND ug/kg 5.0 1 1 1 In-Propylbenzene ND ug/kg 1.0 1 In-Propylbenzene ND ug/kg 5.0 1	n-Butylbenzene	ND		ug/kg	1.0		1
1,3,5-Trichlorobenzene ND ug/kg 4.0 1 o-Chlorotoluene ND ug/kg 5.0 1 p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 p-Isopropyltoluene ND ug/kg 5.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 5.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	sec-Butylbenzene	ND		ug/kg	1.0		1
o-Chlorotoluene ND ug/kg 5.0 1 p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 p-Isopropyltoluene ND ug/kg 5.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 5.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	tert-Butylbenzene	ND		ug/kg	5.0		1
p-Chlorotoluene ND ug/kg 5.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 5.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	1,3,5-Trichlorobenzene	ND		ug/kg	4.0		1
1,2-Dibromo-3-chloropropane ND ug/kg 5.0 1 Hexachlorobutadiene ND ug/kg 5.0 1 Isopropylbenzene ND ug/kg 1.0 1 p-Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 1.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	o-Chlorotoluene	ND		ug/kg	5.0		1
Hexachlorobutadiene ND	p-Chlorotoluene	ND		ug/kg	5.0		1
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0		1
p-Isopropyltoluene ND ug/kg 1.0 1 Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 1.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	Hexachlorobutadiene	ND		ug/kg	5.0		1
Naphthalene ND ug/kg 5.0 1 n-Propylbenzene ND ug/kg 1.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	Isopropylbenzene	ND		ug/kg	1.0		1
n-Propylbenzene ND ug/kg 1.0 1 1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	p-Isopropyltoluene	ND		ug/kg	1.0		1
1,2,3-Trichlorobenzene ND ug/kg 5.0 1 1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	Naphthalene	ND		ug/kg	5.0		1
1,2,4-Trichlorobenzene ND ug/kg 5.0 1 1,3,5-Trimethylbenzene ND ug/kg 5.0 1	n-Propylbenzene	ND		ug/kg	1.0		1
1,3,5-Trimethylbenzene ND ug/kg 5.0 1	1,2,3-Trichlorobenzene	ND		ug/kg	5.0		1
	1,2,4-Trichlorobenzene	ND		ug/kg	5.0		1
1,2,4-Trimethylbenzene ND ug/kg 5.0 1	1,3,5-Trimethylbenzene	ND		ug/kg	5.0		1
	1,2,4-Trimethylbenzene	ND		ug/kg	5.0		1

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: L1509816-03 Date Collected: 05/04/15 00:00

Client ID: TRIP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035	5 - Westborough Lab						
Ethyl ether	ND		ug/kg	5.0		1	
Isopropyl Ether	ND		ug/kg	4.0		1	
Tert-Butyl Alcohol	ND		ug/kg	100		1	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.0		1	
1,4-Dioxane	ND		ug/kg	100		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	100		70-130	

L1509816

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

SAMPLE RESULTS

Lab Number:

Report Date: 05/14/15

Lab ID: L1509816-04

Client ID: **TRIP**

Sample Location: WILTON, NH

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/13/15 18:33

Analyst: PD

Date Collected:	05/04/15 00:00
Date Received:	05/07/15
Field Prep	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: L1509816-04 Date Collected: 05/04/15 00:00

Client ID: TRIP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Campio Eccationi TTIET CTT, TTT					γ.	riot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	gh Lab						
1,2-Dichlorobenzene	ND		ug/l	2.5		1	
1,3-Dichlorobenzene	ND		ug/l	2.5		1	
1,4-Dichlorobenzene	ND		ug/l	2.5		1	
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dibromomethane	ND		ug/l	5.0		1	
1,2,3-Trichloropropane	ND		ug/l	5.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	5.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.5		1	
Tetrahydrofuran	ND		ug/l	5.0		1	
2,2-Dichloropropane	ND		ug/l	2.5		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1	
Bromobenzene	ND		ug/l	2.5		1	
n-Butylbenzene	ND		ug/l	0.50		1	
sec-Butylbenzene	ND		ug/l	0.50		1	
tert-Butylbenzene	ND		ug/l	2.5		1	
o-Chlorotoluene	ND		ug/l	2.5		1	
p-Chlorotoluene	ND		ug/l	2.5		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Isopropylbenzene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	
n-Propylbenzene	ND		ug/l	0.50		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,3,5-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

SAMPLE RESULTS

Lab ID: L1509816-04 Date Collected: 05/04/15 00:00

Client ID: TRIP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Ethyl ether	ND		ug/l	2.5		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	100		70-130	

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/15 08:46

Analyst: BN

Parameter	Result	Qualifier	Units	RL		MDL
/olatile Organics by GC/MS-5035	- Westborou	gh Lab for	sample(s):	02-03	Batch:	WG784150-3
Methylene chloride	ND		ug/kg	10		
1,1-Dichloroethane	ND		ug/kg	1.5		
Chloroform	ND		ug/kg	1.5		
Carbon tetrachloride	ND		ug/kg	1.0		
1,2-Dichloropropane	ND		ug/kg	3.5		
Dibromochloromethane	ND		ug/kg	1.0		
1,1,2-Trichloroethane	ND		ug/kg	1.5		
Tetrachloroethene	ND		ug/kg	1.0		
Chlorobenzene	ND		ug/kg	1.0		
Trichlorofluoromethane	ND		ug/kg	5.0		
1,2-Dichloroethane	ND		ug/kg	1.0		
1,1,1-Trichloroethane	ND		ug/kg	1.0		
Bromodichloromethane	ND		ug/kg	1.0		
trans-1,3-Dichloropropene	ND		ug/kg	1.0		
cis-1,3-Dichloropropene	ND		ug/kg	1.0		
1,3-Dichloropropene, Total	ND		ug/kg	1.0		
1,1-Dichloropropene	ND		ug/kg	5.0		
Bromoform	ND		ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		
Benzene	ND		ug/kg	1.0		
Toluene	ND		ug/kg	1.5		
Ethylbenzene	ND		ug/kg	1.0		
Chloromethane	ND		ug/kg	5.0		
Bromomethane	ND		ug/kg	2.0		
Vinyl chloride	ND		ug/kg	2.0		
Chloroethane	ND		ug/kg	2.0		
1,1-Dichloroethene	ND		ug/kg	1.0		
trans-1,2-Dichloroethene	ND		ug/kg	1.5		
Trichloroethene	ND		ug/kg	1.0		

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/15 08:46

Analyst: BN

Volatile Organics by GC/MS-5035 - Westborough Lab for 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND Xylenes, Total ND cis-1,2-Dichloroethene ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Bromochloromethane ND Tetrahydrofuran ND 1,2-Dichloropropane ND Tetrahydrofuran ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND	ug/kg	5.0 5.0 5.0 2.0 2.0 2.0 1.0 1.0 10 2.0 10 36	Batch: WG784150-3
1,3-DichlorobenzeneND1,4-DichlorobenzeneNDMethyl tert butyl etherNDp/m-XyleneNDo-XyleneNDXylenes, TotalNDcis-1,2-DichloroetheneND1,2-Dichloroethene, TotalNDDibromomethaneND1,2,3-TrichloropropaneNDStyreneNDDichlorodifluoromethaneNDAcetoneNDCarbon disulfideND2-ButanoneND4-Methyl-2-pentanoneND2-HexanoneNDBromochloromethaneNDTetrahydrofuranND2,2-DichloropropaneND	ug/kg	5.0 5.0 2.0 2.0 2.0 1.0 1.0 10 2.0 10	
1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND Xylenes, Total ND cis-1,2-Dichloroethene ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND Tetrahydrofuran ND 2,2-Dichloropropane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	5.0 2.0 2.0 2.0 2.0 1.0 1.0 10 2.0	
Methyl tert butyl etherNDp/m-XyleneNDo-XyleneNDXylenes, TotalNDcis-1,2-DichloroetheneND1,2-Dichloroethene, TotalNDDibromomethaneND1,2,3-TrichloropropaneNDStyreneNDDichlorodifluoromethaneNDAcetoneNDCarbon disulfideND2-ButanoneND4-Methyl-2-pentanoneND2-HexanoneNDBromochloromethaneNDTetrahydrofuranND2,2-DichloropropaneND	ug/kg	2.0 2.0 2.0 2.0 1.0 1.0 10 2.0	
p/m-Xylene ND o-Xylene ND Xylenes, Total ND cis-1,2-Dichloroethene ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	2.0 2.0 2.0 1.0 1.0 10 2.0	
o-Xylene Xylenes, Total ND Xylenes, Total ND cis-1,2-Dichloroethene ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Bromochloromethane ND Tetrahydrofuran ND 1,2,3-Trichloropropane ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.0 2.0 1.0 1.0 10 10 2.0	
Xylenes, Total cis-1,2-Dichloroethene 1,2-Dichloroethene, Total ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND ND 2,2-Dichloropropane	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.0 1.0 1.0 10 10 2.0	
cis-1,2-Dichloroethene ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1.0 1.0 10 10 2.0 10	
1,2-Dichloroethene, TotalNDDibromomethaneND1,2,3-TrichloropropaneNDStyreneNDDichlorodifluoromethaneNDAcetoneNDCarbon disulfideND2-ButanoneND4-Methyl-2-pentanoneND2-HexanoneNDBromochloromethaneNDTetrahydrofuranND2,2-DichloropropaneND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1.0 10 10 2.0	
Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 2.0 10	
1,2,3-Trichloropropane ND Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg ug/kg ug/kg ug/kg	10 2.0 10	
Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg ug/kg ug/kg	2.0 10	
Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane	ug/kg ug/kg	10	
Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg		
Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND		36	
2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND			
4-Methyl-2-pentanone ND 2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	10	
2-Hexanone ND Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	10	
Bromochloromethane ND Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	10	
Tetrahydrofuran ND 2,2-Dichloropropane ND	ug/kg	10	
2,2-Dichloropropane ND	ug/kg	5.0	
,	ug/kg	20	
1,2-Dibromoethane ND	ug/kg	5.0	
	ug/kg	4.0	
1,1,1,2-Tetrachloroethane ND	ug/kg	1.0	
Bromobenzene ND	ug/kg	5.0	
n-Butylbenzene ND	ug/kg	1.0	
sec-Butylbenzene ND	ug/kg	1.0	
tert-Butylbenzene ND		5.0	
1,3,5-Trichlorobenzene ND	ug/kg		
o-Chlorotoluene ND	ug/kg ug/kg	4.0	

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/15 08:46

Analyst: BN

Parameter	Result	Qualifier Units	RL	ı	MDL
Volatile Organics by GC/MS-5035	- Westborou	gh Lab for sample	e(s): 02-03	Batch:	WG784150-3
p-Chlorotoluene	ND	ug/kg	5.0		
1,2-Dibromo-3-chloropropane	ND	ug/kg			
Hexachlorobutadiene	ND	ug/kg	5.0		
Isopropylbenzene	ND	ug/kg	1.0		
p-Isopropyltoluene	ND	ug/kg	1.0		
Naphthalene	ND	ug/kg	5.0		
n-Propylbenzene	ND	ug/kg	1.0		
1,2,3-Trichlorobenzene	ND	ug/kg	5.0		
1,2,4-Trichlorobenzene	ND	ug/kg	5.0		
1,3,5-Trimethylbenzene	ND	ug/kg	5.0		
1,2,4-Trimethylbenzene	ND	ug/kg	5.0		
Ethyl ether	ND	ug/kg	5.0		
Isopropyl Ether	ND	ug/kg	4.0		
Tert-Butyl Alcohol	ND	ug/kg	100		
Ethyl-Tert-Butyl-Ether	ND	ug/kg	4.0		
Tertiary-Amyl Methyl Ether	ND	ug/kg	4.0		
1,4-Dioxane	ND	ug/kg	100		

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	95		70-130		
Toluene-d8	94		70-130		
4-Bromofluorobenzene	94		70-130		
Dibromofluoromethane	96		70-130		

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/13/15 10:39

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01,04	Batch:	WG784622-3
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
1,2-Dichloroethene, Total	ND	ug/l	0.50	

Project Name: CLEAN HARBORS-WILTON **Lab Number:** L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/13/15 10:39

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,04 Batch	n: WG784622-3	
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l			
1,3-Dichlorobenzene	ND	ug/l			
1,4-Dichlorobenzene	ND	ug/l			
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
Xylenes, Total	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
Tetrahydrofuran	ND	ug/l	5.0		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/13/15 10:39

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,04 Batch:	WG784622-3
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l		
Isopropylbenzene	ND	ug/l		
p-Isopropyltoluene	ND	ug/l		
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Isopropyl Ether	ND	ug/l	2.0	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,4-Dioxane	ND	ug/l	250	

			Acceptance			
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	99		70-130			
Toluene-d8	105		70-130			
4-Bromofluorobenzene	92		70-130			
Dibromofluoromethane	101		70-130			

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

rameter	LCS %Recovery	LCSI Qual %Recov	,	RPD	RPD Qual Limits
latile Organics by GC/MS-5035 - Westb	orough Lab Assoc	iated sample(s): 02-03	Batch: WG784150-1 WG784	1150-2	
Methylene chloride	107	104	70-130	3	30
1,1-Dichloroethane	115	108	70-130	6	30
Chloroform	114	108	70-130	5	30
Carbon tetrachloride	121	106	70-130	13	30
1,2-Dichloropropane	113	109	70-130	4	30
Dibromochloromethane	97	95	70-130	2	30
1,1,2-Trichloroethane	99	96	70-130	3	30
2-Chloroethylvinyl ether	94	93	70-130	1	30
Tetrachloroethene	100	91	70-130	9	30
Chlorobenzene	103	98	70-130	5	30
Trichlorofluoromethane	110	94	70-139	16	30
1,2-Dichloroethane	106	103	70-130	3	30
1,1,1-Trichloroethane	119	107	70-130	11	30
Bromodichloromethane	110	105	70-130	5	30
trans-1,3-Dichloropropene	100	96	70-130	4	30
cis-1,3-Dichloropropene	112	108	70-130	4	30
1,1-Dichloropropene	121	109	70-130	10	30
Bromoform	93	91	70-130	2	30
1,1,2,2-Tetrachloroethane	93	91	70-130	2	30
Benzene	117	111	70-130	5	30
Toluene	104	98	70-130	6	30

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbo	rough Lab Assoc	ciated sample(s)	: 02-03 Batch	n: WG784150-1 WG784150)-2	
Ethylbenzene	108		102	70-130	6	30
Chloromethane	110		102	52-130	8	30
Bromomethane	107		100	57-147	7	30
Vinyl chloride	111		99	67-130	11	30
Chloroethane	116		104	50-151	11	30
1,1-Dichloroethene	118		104	65-135	13	30
trans-1,2-Dichloroethene	116		109	70-130	6	30
Trichloroethene	119		111	70-130	7	30
1,2-Dichlorobenzene	95		92	70-130	3	30
1,3-Dichlorobenzene	99		95	70-130	4	30
1,4-Dichlorobenzene	96		93	70-130	3	30
Methyl tert butyl ether	105		103	66-130	2	30
p/m-Xylene	111		104	70-130	7	30
o-Xylene	108		102	70-130	6	30
cis-1,2-Dichloroethene	115		109	70-130	5	30
Dibromomethane	105		104	70-130	1	30
1,4-Dichlorobutane	97		95	70-130	2	30
1,2,3-Trichloropropane	93		91	68-130	2	30
Styrene	108		103	70-130	5	30
Dichlorodifluoromethane	90		76	30-146	17	30
Acetone	113		111	54-140	2	30

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbor	ough Lab Asso	ciated sample(s)	: 02-03 Batch	n: WG784150-1 WG78415	0-2	
Carbon disulfide	79		67	59-130	16	30
2-Butanone	119		117	70-130	2	30
Vinyl acetate	94		91	70-130	3	30
4-Methyl-2-pentanone	89		88	70-130	1	30
2-Hexanone	84		82	70-130	2	30
Ethyl methacrylate	89		87	70-130	2	30
Acrolein	94		92	70-130	2	30
Acrylonitrile	109		105	70-130	4	30
Bromochloromethane	113		110	70-130	3	30
Tetrahydrofuran	102		101	66-130	1	30
2,2-Dichloropropane	118		106	70-130	11	30
1,2-Dibromoethane	98		95	70-130	3	30
1,3-Dichloropropane	98		96	69-130	2	30
1,1,1,2-Tetrachloroethane	102		98	70-130	4	30
Bromobenzene	94		92	70-130	2	30
n-Butylbenzene	110		101	70-130	9	30
sec-Butylbenzene	109		99	70-130	10	30
tert-Butylbenzene	106		98	70-130	8	30
1,3,5-Trichlorobenzene	115		112	70-139	3	30
o-Chlorotoluene	104		98	70-130	6	30
p-Chlorotoluene	102		98	70-130	4	30

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - West	borough Lab Asso	ciated sample(s): 02-03 Batc	h: WG784150-1 WG784150)-2	
1,2-Dibromo-3-chloropropane	80	79	68-130	1	30
Hexachlorobutadiene	102	95	67-130	7	30
Isopropylbenzene	111	102	70-130	8	30
p-Isopropyltoluene	108	99	70-130	9	30
Naphthalene	87	86	70-130	1	30
n-Propylbenzene	107	99	70-130	8	30
1,2,3-Trichlorobenzene	94	91	70-130	3	30
1,2,4-Trichlorobenzene	97	94	70-130	3	30
1,3,5-Trimethylbenzene	105	98	70-130	7	30
1,2,4-Trimethylbenzene	104	98	70-130	6	30
trans-1,4-Dichloro-2-butene	97	91	70-130	6	30
Ethyl ether	109	108	67-130	1	30
Methyl Acetate	107	102	65-130	5	30
Ethyl Acetate	108	106	70-130	2	30
Isopropyl Ether	111	107	66-130	4	30
Cyclohexane	129	109	70-130	17	30
Tert-Butyl Alcohol	95	92	70-130	3	30
Ethyl-Tert-Butyl-Ether	108	106	70-130	2	30
Tertiary-Amyl Methyl Ether	107	105	70-130	2	30
1,4-Dioxane	92	94	65-136	2	30
Methyl cyclohexane	125	107	70-130	16	30

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number:

L1509816

Report Date:

05/14/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-5035 -	Westborough Lab Associ	ciated sample(s): 02-03 Batc	h: WG7841	50-1 WG784150)-2		
1,1,2-Trichloro-1,2,2-Trifluoroethane	123		104		70-130	17		30
1,4-Diethylbenzene	122		114		70-130	7		30
4-Ethyltoluene	124		117		70-130	6		30
1,2,4,5-Tetramethylbenzene	116		111		70-130	4		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		94		70-130	
Toluene-d8	96		95		70-130	
4-Bromofluorobenzene	99		99		70-130	
Dibromofluoromethane	104		102		70-130	

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,04 Batch: \	WG784622-1	WG784622-2		
Methylene chloride	106		98		70-130	8	20
1,1-Dichloroethane	104		95		70-130	9	20
Chloroform	111		101		70-130	9	20
Carbon tetrachloride	100		91		63-132	9	20
1,2-Dichloropropane	105		97		70-130	8	20
Dibromochloromethane	108		102		63-130	6	20
1,1,2-Trichloroethane	114		108		70-130	5	20
Tetrachloroethene	104		97		70-130	7	20
Chlorobenzene	104		96		75-130	8	25
Trichlorofluoromethane	88		79		62-150	11	20
1,2-Dichloroethane	102		94		70-130	8	20
1,1,1-Trichloroethane	106		97		67-130	9	20
Bromodichloromethane	104		95		67-130	9	20
trans-1,3-Dichloropropene	120		112		70-130	7	20
cis-1,3-Dichloropropene	89		83		70-130	7	20
1,1-Dichloropropene	106		98		70-130	8	20
Bromoform	104		98		54-136	6	20
1,1,2,2-Tetrachloroethane	104		101		67-130	3	20
Benzene	106		96		70-130	10	25
Toluene	109		100		70-130	9	25
Ethylbenzene	111		103		70-130	7	20

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,04 Batch:	WG784622-1	WG784622-2			
Chloromethane	102		91		64-130	11		20
Bromomethane	60		56		39-139	7		20
Vinyl chloride	104		95		55-140	9		20
Chloroethane	91		75		55-138	19		20
1,1-Dichloroethene	97		89		61-145	9		25
trans-1,2-Dichloroethene	103		94		70-130	9		20
Trichloroethene	102		93		70-130	9		25
1,2-Dichlorobenzene	101		93		70-130	8		20
1,3-Dichlorobenzene	106		97		70-130	9		20
1,4-Dichlorobenzene	104		95		70-130	9		20
Methyl tert butyl ether	107		101		63-130	6		20
p/m-Xylene	115		105		70-130	9		20
o-Xylene	109		100		70-130	9		20
cis-1,2-Dichloroethene	104		95		70-130	9		20
Dibromomethane	100		93		70-130	7		20
1,2,3-Trichloropropane	112		111		64-130	1		20
Styrene	66	Q	62	Q	70-130	6		20
Dichlorodifluoromethane	95		85		36-147	11		20
Acetone	93		87		58-148	7		20
Carbon disulfide	94		86		51-130	9		20
2-Butanone	88		88		63-138	0		20

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number: L1509816

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,04 Batch:	WG784622-1	WG784622-2			
4-Methyl-2-pentanone	100		97		59-130	3	20	
2-Hexanone	115		114		57-130	1	20	
Bromochloromethane	105		98		70-130	7	20	
Tetrahydrofuran	78		77		58-130	1	20	
2,2-Dichloropropane	107		95		63-133	12	20	
1,2-Dibromoethane	110		106		70-130	4	20	
1,1,1,2-Tetrachloroethane	115		106		64-130	8	20	
Bromobenzene	98		92		70-130	6	20	
n-Butylbenzene	108		100		53-136	8	20	
sec-Butylbenzene	100		91		70-130	9	20	
tert-Butylbenzene	84		77		70-130	9	20	
o-Chlorotoluene	108		98		70-130	10	20	
p-Chlorotoluene	104		95		70-130	9	20	
1,2-Dibromo-3-chloropropane	105		97		41-144	8	20	
Hexachlorobutadiene	83		78		63-130	6	20	
Isopropylbenzene	95		89		70-130	7	20	
p-Isopropyltoluene	101		91		70-130	10	20	
Naphthalene	98		93		70-130	5	20	
n-Propylbenzene	94		86		69-130	9	20	
1,2,3-Trichlorobenzene	104		98		70-130	6	20	
1,2,4-Trichlorobenzene	109		102		70-130	7	20	

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number:

L1509816

05/14/15

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westb	orough Lab Associated	sample(s):	01,04 Batch:	WG784622-1	WG784622-2				
1,3,5-Trimethylbenzene	109		98		64-130	11		20	
1,3,5-Trichlorobenzene	101		94		70-130	7		20	
1,2,4-Trimethylbenzene	104		94		70-130	10		20	
Ethyl ether	99		95		59-134	4		20	
Isopropyl Ether	103		96		70-130	7		20	
Tert-Butyl Alcohol	118		120		70-130	2		20	
Ethyl-Tert-Butyl-Ether	107		100		70-130	7		20	
Tertiary-Amyl Methyl Ether	107		102		66-130	5		20	
1,4-Dioxane	164	Q	153		56-162	7		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	%Recovery Qual %Recovery		Qual	Criteria	
1,2-Dichloroethane-d4	98		97		70-130	
Toluene-d8	104		104		70-130	
4-Bromofluorobenzene	95		95		70-130	
Dibromofluoromethane	105		103		70-130	

PETROLEUM HYDROCARBONS

Serial_No:05141514:12

L1509816

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

SAMPLE RESULTS

Report Date: 05/14/15

Lab ID: L1509816-02 Client ID: SIDE -COMP Sample Location: WILTON, NH

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 05/09/15 01:35

Analyst: BS 85% Percent Solids:

Date Collected: 05/07/15 10:35 Date Received: 05/07/15 Field Prep: Not Specified

Extraction Method:

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Gasoline Range Organics - Westborough Lab)					
Gasoline Range Organics	ND		ug/kg	3100		1

		Acceptance						
Surrogate	% Recovery	Qualifier	Criteria					
1,1,1-Trifluorotoluene	99		70-130					
4-Bromofluorobenzene	89		70-130					

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 **Report Date:** 05/14/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015C(M)
Analytical Date: 05/08/15 20:55

Analyst: BS

Parameter	Result	Qualifier	Units	RL	MDL	
Gasoline Range Organics - Wes	tborough Lab for	sample(s)	: 02	Batch: WG78	3767-10	
Gasoline Range Organics	ND		ug/kg	2500		

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,1,1-Trifluorotoluene	102		70-130				
4-Bromofluorobenzene	101		70-130				

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number:

L1509816

05/14/15

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Gasoline Range Organics - Westborough Lal	b Associated sa	mple(s): 02	Batch: WG783	3767-8 WG	G783767-9				
Gasoline Range Organics	88		92		80-120	4		20	

Surrogate	LCS %Recovery			Qual	Acceptance Criteria	
1,1,1-Trifluorotoluene	102		98		70-130	
4-Bromofluorobenzene	97		97		70-130	

Matrix Spike Analysis Batch Quality Control

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number:

L1509816

Report Date:

05/14/15

	Native	MS	MS	MS	MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual Foun	d %Recover	y Qual Limits	RPD	Qual Limits
Gasoline Range Organics -	Westborough La	ab Associate	d sample(s):	02 QC Batch	ID: WG783767-4	WG783767-5	QC Sample: L15095	79-05	Client ID: MS Sample
Gasoline Range Organics	ND	18400	17000	95	15000	83	80-120	13	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,1,1-Trifluorotoluene	89	74	70-130
4-Bromofluorobenzene	78	72	70-130

INORGANICS & MISCELLANEOUS

Serial_No:05141514:12

Project Name: CLEAN HARBORS-WILTON Lab Number: L1509816

Project Number: 7690-000 Report Date: 05/14/15

SAMPLE RESULTS

Lab ID: L1509816-02 Date Collected: 05/07/15 10:35

Client ID: SIDE -COMP Date Received: 05/07/15
Sample Location: WILTON, NH Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	85.4		%	0.100	NA	1	_	05/08/15 00:16	30,2540G	RT

Lab Duplicate Analysis
Batch Quality Control

Project Name: CLEAN HARBORS-WILTON

Project Number: 7690-000

Lab Number:

L1509816

Report Date:

05/14/15

Parameter	Native Sample	Duplicate Sar	mple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated sam	ple(s): 02 QC Batch ID:	WG783037-1	QC Sample: L150951	1-15 Cli	ent ID: DUP Sample
Solids, Total	88.3	88.9	%	1	20

Serial_No:05141514:12

Project Name: CLEAN HARBORS-WILTON

Lab Number: L1509816 **Report Date:** 05/14/15 Project Number: 7690-000

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 05/07/2015 20:32

Cooler Information Custody Seal

Cooler

Α Absent

Container Information				Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)	
L1509816-01A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	8260-NH(14)	
L1509816-01B	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	8260-NH(14)	
L1509816-01C	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	8260-NH(14)	
L1509816-02A	Vial MeOH preserved	Α	N/A	5.3	Υ	Absent	TPH-GRO(14),8260HLW-NH(14)	
L1509816-02B	Vial water preserved	Α	N/A	5.3	Υ	Absent	8260HLW-NH(14)	
L1509816-02C	Vial water preserved	Α	N/A	5.3	Υ	Absent	8260HLW-NH(14)	
L1509816-02D	Plastic 2oz unpreserved for TS	Α	N/A	5.3	Υ	Absent	TS(7)	
L1509816-03A	Vial MeOH preserved	Α	N/A	5.3	Υ	Absent	8260HLW-NH(14)	
L1509816-03B	Vial water preserved	Α	N/A	5.3	Υ	Absent	8260HLW-NH(14)	
L1509816-04A	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	8260-NH(14)	

Project Name:CLEAN HARBORS-WILTONLab Number:L1509816Project Number:7690-000Report Date:05/14/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.

Report Format: Data Usability Report

Project Name:CLEAN HARBORS-WILTONLab Number:L1509816Project Number:7690-000Report Date:05/14/15

Data Qualifiers

- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:05141514:12

Project Name:CLEAN HARBORS-WILTONLab Number:L1509816Project Number:7690-000Report Date:05/14/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	CUSTODY	PAGE	OF 1	Date-Rec'd	H n Lab i	5/7/15		ALPHA Job	#: L150981(a	
A MAILE Y I O A L		Project Information			Report li	formation	- Data Deli		Billing Infor		
8 Walkup Drive Westboro, MA 015 Tel: 508-898-9220	320 Forbes Blvd 581 Mansfield, MA 02048 0 Tel: 508-822-9300	Project Name: Clan A	arlurs-Willer		□ ADEx	_	ÉMAIL		☐ Same as Clie	_	
Client Information		Project Location: Willow: 1/14			Regulatory Requirements & Project Information Requirements ☐ Yes ☐ No MA MCP Analytical Methods ☐ Yes ☐ No CT RCP Analytical Methods						
Client: Slowly	1 July	Project #: 7190-00	00	l		പ Matrix Sp	ike Required	on this SDG?	(Required for M	ICP Inorganics)	
Address: 181. Mani	le It, 3d Silver, Suite A.	Project Manager: Poly Flush ALPHA Quote #: Turn-Around Time			☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets) ☐ Yes ☐ No NPDES RGP						
manchester ~	H 03101				Other State /Fed Program Criteria						
Phone: 603-314	-0820				/		Ci PP13	\\ \sqrt{\rm \mu_0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Email: PDFRAA	VK O Geoinc. Com	☑Standard □ RI	JSH (only confirmed if pre-ap	proved!)	\$/.			Ranges Only erprint	' / / /		Т
Additional Pro	oject Information:	Date Due:			ANALYSIS 24 (1524)	MCP 1		D Fingerprint		/ / SAMPLE IN	FO A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,				4 / A/V		arger		////	/ / Filtration □ Field	#
					District to	S GP G	88 47 S	"Comb		Lab to do	В
					Second An	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TRang Rang			/ Preservation ☐ Lab to do	
ALPHA Lab ID	Sample ID	Collecti		Sampler Initials	, VOC:	METALS: DMCP 13 DMCP 14 C	EPH: DRanges & Targets D Ranges Only	TPH: Dawn Only C	////	Sample Comme	E nts s
(Lab Use Only)		Date	Time								વ
09816-01	BTM-GW		91,30 GW	a	\Diamond			X			L_{I}
-02	Side-Comp Trip		10:35 50	51	$\langle \rangle$	_					3
-03,-04	1 Jub	5-4-15	- W/F	UVV							
					-				. - -		
									+ +		
				-							
				_							
Container Type	Preservative		Conf	ainer Type	V						
P≃ Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃	333	Р	reservative	B						
G= Glass D= H ₂ SO ₄ B= Bacteria cup E= NaOH C= Cube F= MeOH		Relinquished By:		te/Time	TCOCIVOU Dy.				e/Time All samples submitted are subject to		
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	thay any	5/7/	7-1512:	20		A CONTRACTOR OF THE PARTY OF TH	16 5715	/2:5c Se	oha's Terms and Condition e reverse side. 립	s. 1/2 / 2/2
Page 46 of 46	J = NH₄Cl K= Zn Acetate O= Other	THE STATE OF THE S	5.7./5	18:42	6	M		5/7/15	18:40 FOI	RM NO: 01-01 (rev. 12-Mar-2012)	4. 45